Files
@ c7dd7d6afafd
Branch filter:
Location: AENC/switchchain/cpp/graph_spectrum.hpp - annotation
c7dd7d6afafd
1.7 KiB
text/x-c++hdr
Add new ETMT datafile
b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 b8a998539881 | #include "graph.hpp"
#include <Eigen/Dense>
#include <Eigen/Eigenvalues>
using MatrixType =
Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
// A: Adjacency matrix
// lambda_max <= d_max
//
// L: Laplacian
// L = D - A
///
// P: Random walk matrix
// lambda_max = 1
class GraphSpectrum {
public:
GraphSpectrum(const Graph& g) : graph(g) {}
~GraphSpectrum() {}
std::vector<float> computeAdjacencySpectrum() const {
// matrix stored as std::vector<std::vector<bool>>
auto& badj = graph.getBooleanAdj();
// Convert it to MatrixType
auto n = badj.size();
MatrixType m(n, n);
for (auto i = 0u; i < n; ++i)
for (auto j = 0u; j < n; ++j)
m(i, j) = badj[i][j] ? 1.0f : 0.0f;
return getEigenvalues_(m);
}
std::vector<float> computeLaplacianSpectrum() const {
// matrix stored as std::vector<std::vector<bool>>
auto& badj = graph.getBooleanAdj();
auto& adj = graph.getAdj();
// - A
auto n = badj.size();
MatrixType m(n, n);
for (auto i = 0u; i < n; ++i)
for (auto j = 0u; j < n; ++j)
m(i, j) = badj[i][j] ? -1.0f : 0.0f;
// + D
for (auto i = 0u; i < n; ++i)
m(i, i) = float(adj[i].size());
return getEigenvalues_(m);
}
private:
const Graph& graph;
std::vector<float> getEigenvalues_(const MatrixType& m) const {
Eigen::SelfAdjointEigenSolver<MatrixType> es(
m, Eigen::DecompositionOptions::EigenvaluesOnly);
auto ev = es.eigenvalues();
return std::vector<float>(ev.data(), ev.data() + ev.rows() * ev.cols());
}
};
|