Files
@ d0883e1df741
Branch filter:
Location: AENC/switchchain/powerlaw_info.tex - annotation
d0883e1df741
1.2 KiB
text/x-tex
Add proper cputime plots
42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d | \documentclass{article}
\begin{document}
\section{Continuous powerlaw with minimum cut-off}
Exponent $\tau > 1$.
\subsection{Also maximum cut-off}
Let $m$ be the minimum, $M$ be the maximum.\\
PDF: $$f(x) = \frac{\tau-1}{m^{-(\tau-1)} - M^{-(\tau-1)}} x^{-\tau}$$
CDF: $$F(x) = \frac{m^{-(\tau-1)} - x^{-(\tau-1)}}{m^{-(\tau-1)} - M^{-(\tau-1)}}$$
Inverse: $$F^{-1}(y) = \left( (1-y) m^{-(\tau-1)} + y M^{-(\tau-1)} \right)^{\frac{-1}{\tau-1}}$$
i.e. linear interpolate between $M^{-(\tau-1)} < m^{-(\tau-1)}$.\\
$F^{-1}(0) = m$ and $F^{-1}(1) = M$.\\
For $m=1$ and $M$ steps of interpolation:\\
$F^{-1}(1/M) = \left( 1-M^{-1} + M^{-\tau} \right)^{\frac{-1}{\tau-1}}$\\
$F^{-1}(1-1/M) = \left( M^{-1} + M^{-(\tau-1)} - M^{-\tau} \right)^{\frac{-1}{\tau-1}}$
\subsection{No maximum cut-off}
For $M=\infty$ we have:\\
PDF: $$f(x) = \frac{\tau-1}{m^{-(\tau-1)}} x^{-\tau} = \frac{\tau-1}{m} \left(\frac{x}{m}\right)^{-\tau}$$
CDF: $$F(x) = \frac{m^{-(\tau-1)} - x^{-(\tau-1)}}{m^{-(\tau-1)}} = 1 - \left(\frac{x}{m}\right)^{-(\tau-1)}$$
Inverse: $$F^{-1}(y) = \left( (1-y) m^{-(\tau-1)} \right)^{\frac{-1}{\tau-1}} = m \; \left( 1-y \right)^{\frac{-1}{\tau-1}}$$
For interpolation:\\
$F^{-1}(0) = m$\\
$F^{-1}(1-\frac{1}{n}) = m\cdot n^{\frac{1}{\tau-1}}$
\end{document}
|