Files
@ eba8261885e8
Branch filter:
Location: AENC/switchchain/triangle_analysis.m - annotation
eba8261885e8
16.8 KiB
application/vnd.wolfram.mathematica.package
Change trimeevol plot for thesis
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 | 2c2c8fc81176 2c2c8fc81176 4b6c189e4ae4 4b6c189e4ae4 4b6c189e4ae4 2c2c8fc81176 eba8261885e8 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 59e3e241c8ea 59e3e241c8ea 59e3e241c8ea 59e3e241c8ea 9c99596eadb5 59e3e241c8ea 59e3e241c8ea 59e3e241c8ea ba07c5475997 ba07c5475997 2c2c8fc81176 3349f6d40bd8 2c2c8fc81176 2c2c8fc81176 cd465118bb78 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 cd465118bb78 cd465118bb78 cd465118bb78 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 9df034849ada cd465118bb78 cd465118bb78 6218fdc51593 9df034849ada 9df034849ada ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 ba07c5475997 fda8425fac05 fda8425fac05 fda8425fac05 ba07c5475997 9df034849ada 9df034849ada 9df034849ada 9df034849ada ba07c5475997 9df034849ada 9c99596eadb5 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 9df034849ada 2c2c8fc81176 2c2c8fc81176 843d893407af 9c99596eadb5 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 3349f6d40bd8 3349f6d40bd8 2c2c8fc81176 2c2c8fc81176 9df034849ada 9df034849ada 9df034849ada 9df034849ada 0290e63ba024 0290e63ba024 0290e63ba024 2c2c8fc81176 2c2c8fc81176 9df034849ada 9df034849ada 9df034849ada 9df034849ada 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 9c99596eadb5 9c99596eadb5 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 efc6996e97a2 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 843d893407af 843d893407af 3349f6d40bd8 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 843d893407af 843d893407af 257995a65b71 2c2c8fc81176 257995a65b71 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 843d893407af 843d893407af 843d893407af 843d893407af 843d893407af 843d893407af 843d893407af 843d893407af 843d893407af 843d893407af 843d893407af 843d893407af 843d893407af 843d893407af 843d893407af 843d893407af eba8261885e8 eba8261885e8 eba8261885e8 843d893407af 843d893407af 843d893407af 843d893407af 843d893407af 843d893407af 843d893407af 843d893407af eba8261885e8 eba8261885e8 eba8261885e8 eba8261885e8 843d893407af 843d893407af 843d893407af 843d893407af 843d893407af 843d893407af 5cec3a409ef3 5cec3a409ef3 5cec3a409ef3 5cec3a409ef3 4b6c189e4ae4 4b6c189e4ae4 4b6c189e4ae4 4b6c189e4ae4 4b6c189e4ae4 4b6c189e4ae4 4b6c189e4ae4 4b6c189e4ae4 4b6c189e4ae4 4b6c189e4ae4 ea18a7bd1a0d 4b6c189e4ae4 4b6c189e4ae4 4b6c189e4ae4 4b6c189e4ae4 4b6c189e4ae4 4b6c189e4ae4 ea18a7bd1a0d ea18a7bd1a0d ea18a7bd1a0d ea18a7bd1a0d ea18a7bd1a0d ea18a7bd1a0d ea18a7bd1a0d ea18a7bd1a0d ea18a7bd1a0d ea18a7bd1a0d ea18a7bd1a0d 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 257995a65b71 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 4b6c189e4ae4 4b6c189e4ae4 4b6c189e4ae4 4b6c189e4ae4 4b6c189e4ae4 4b6c189e4ae4 4b6c189e4ae4 4b6c189e4ae4 4b6c189e4ae4 4b6c189e4ae4 efc6996e97a2 3349f6d40bd8 3349f6d40bd8 efc6996e97a2 fda8425fac05 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 3349f6d40bd8 4b6c189e4ae4 4b6c189e4ae4 4b6c189e4ae4 4b6c189e4ae4 4b6c189e4ae4 efc6996e97a2 efc6996e97a2 4b6c189e4ae4 4b6c189e4ae4 4b6c189e4ae4 4b6c189e4ae4 efc6996e97a2 efc6996e97a2 efc6996e97a2 4b6c189e4ae4 4b6c189e4ae4 4b6c189e4ae4 fda8425fac05 efc6996e97a2 efc6996e97a2 2c2c8fc81176 fda8425fac05 fda8425fac05 fda8425fac05 fda8425fac05 fda8425fac05 fda8425fac05 fda8425fac05 fda8425fac05 fda8425fac05 fda8425fac05 fda8425fac05 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 3349f6d40bd8 3349f6d40bd8 9c99596eadb5 3349f6d40bd8 9c4226491043 9c99596eadb5 9c99596eadb5 3349f6d40bd8 3349f6d40bd8 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c4226491043 9c4226491043 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c4226491043 9c4226491043 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c4226491043 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c4226491043 9c99596eadb5 3349f6d40bd8 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c99596eadb5 9c4226491043 9c99596eadb5 3349f6d40bd8 3349f6d40bd8 9c99596eadb5 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 9c99596eadb5 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 9df034849ada 9df034849ada 9df034849ada 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 9df034849ada 9df034849ada 9df034849ada 3349f6d40bd8 9df034849ada 9df034849ada fda8425fac05 fda8425fac05 fda8425fac05 fda8425fac05 fda8425fac05 fda8425fac05 fda8425fac05 9df034849ada fda8425fac05 fda8425fac05 | (* ::Package:: *)
Quit[]
Needs["ErrorBarPlots`"]
Needs["MaTeX`"]
(* ::Section:: *)
(*TODO*)
(* ::Text:: *)
(*- Triangle law exponent: gather more data*)
(**)
(*- Why does GCM-2 start with very low #triangles*)
(* Do not only consider number of standard deviations but also relative number of triangles.*)
(* Look at the following: for all triangles (v1, v2, v3) consider the degrees d1<d2<d3 and make a scatter plot of di vs dj. Make such a scatter plot for the initial GCM-2 graph and for a mixed graph and see how it changes.*)
(**)
(*- GCM success rates: for the degree sequences where it "always fails", look at the degree sequence. Does it have a low/high number of degree 1 nodes? Is the maximum degree very low/high?*)
(**)
(*- Does GCM start closer to uniform?*)
(* (a) How close to uniform ? At least w.r.t. the measure of #triangles*)
(* (b) How often does this procedure work/fail. Might still be faster to do switchings from Erdos-Gallai.*)
(* (d) Time evolution for GCM on top of Erdos-Gallai time evolution.*)
(**)
(*- Count #moves that result in +-k triangles (one move could create many triangles at once!)*)
(**)
(*- For a graph snapshot: for all V shapes, compute the number of ways to make it into a triangle:*)
(* Let u1,u2 be the endpoints of the V. For all neighbors v1 of u1 and v2 of u2, see of v1,v2 has an edge. Meaning, if we were to select randomly an u1 edge and an u2 edge, then whats the probability that it can be used to switch the V into a triangle.*)
(**)
(*- Improve runtime*)
(* (a) Better direct triangle counting? (I doubt it)*)
(* (b) Better triangle counting by only keeping track of CHANGES in #triangles*)
(* ::Subsection:: *)
(*Done*)
(* ::Text:: *)
(*- Do a single very long run: nothing weird seems to happen with the triangle counts. Tried 10 million steps.*)
(**)
(*- Compute Sum over i<j<k of (1-Exp[- d_i d_j / (2E)]) * (1 - Exp[-d_j d_k / (2E)]) * (1 - Exp[-d_k d_i / (2E)]) .*)
(* Computing the f(i,j) = (1-Exp[..]) terms is fine, but then computing Sum[ f(i,j) f(j,k) f(i,k) ) ] over n^3 entries is very slow.*)
(* *)
(*- Improve runtime*)
(* (a) Don't remove/add edges from the std::vector. Simply replace them. Done, is way faster for large n.*)
(* (b) Do not choose the three permutations with 1/3 probability: choose the "staying" one with zero probability. Should still be a valid switch chain?*)
(* *)
(*- Experimental mixing time as function of n. At (n,tau)=(1000,2.5) it seems to be between 10.000 and 20.000 steps.*)
(* Done. Seems to be something like (1/2)(32-26(tau-2))n so we run it for that time without the factor (1/2).*)
(* ::Subsection:: *)
(*Observations on `Greedy Configuration Model'*)
(* ::Text:: *)
(*- GCM1: Greedy Configuration Model 1: take highest degree and do a single pairing, then take new highest degree*)
(*- GCM2: Greedy Configuration Model 2: take highest degree and completely do all its pairings (at random)*)
(*The difference does not matter if one node is by far the highest.*)
(**)
(*The success rates, conditioned on the degree sequence being graphical, is almost always higher using GCM2. For certain degree sequences the success rate of GCM2 can be 0.9 higher than that of GCM1. (i.e. amost always works vs almost always fails).*)
(*For tau > ~2.3 the success rate of GCM2 seems to be higher than 80% for most sequences.*)
(*For tau < ~2.3 the success rate of GCM2 can drop to less than 10% for some sequences but for many sequences it is still larger than 80%.*)
(**)
(*Success rate of GCM seems to be correlated with mixing time from Erdos-Gallai: higher success rate implies lower mixing time. *)
(**)
(*Initial #triangles in both GCM1 and GCM2 is always below the average #triangles whereas Erdos-Gallai is usually many times higher than average.*)
(* ::Section:: *)
(*Data import*)
gsraw=Import[NotebookDirectory[]<>"data/graphdata_timeevol.m"];
(* gsraw=SortBy[gsraw,{#[[1,1]]&,#[[1,2]]&}]; (* Sort by n and then by tau. The {} forces a *stable* sort because otherwise Mathematica sorts also on triangle count and other things. *) *)
gdata=GatherBy[gsraw,{#[[1,2]]&,#[[1,1]]&}];
(* Data format: *)
(* gdata[[ tau index, n index, run index , datatype index ]] *)
(* datatype index:
1: {n,tau}
2: #triangles time sequence
3: degree sequence
4: GCM1 starting triangle counts
5: GCM2 starting triangle counts
6: GCM1 time sequence
7: GCM2 time sequence
*)
nlabels=Map["n = "<>ToString[#]&,gdata[[1,All,1,1,1]]];
taulabels=Map["tau = "<>ToString[#]&,gdata[[All,1,1,1,2]]];
(* ::Subsection:: *)
(*Merge data*)
newData=Import[NotebookDirectory[]<>"data/graphdata_3.m"];
mergedData=Import[NotebookDirectory[]<>"data/graphdata_merged.m"];
Export[NotebookDirectory[]<>"data/graphdata_merged_new.m",Join[mergedData,newData]]
(* ::Section:: *)
(*Plot triangle counts*)
(* ::Subsection:: *)
(*Plot empirical distribution of maximum degree*)
maxDegrees=Map[{#[[1]],Max[#[[3]]]}&,gsraw];
maxDegrees=GatherBy[maxDegrees,{#[[1,2]]&,#[[1,1]]&}];
(* maxDegrees[[ tau index, n index, run index, ntau or dmax ]] *)
Histogram[maxDegrees[[1,-1,All,2]],PlotRange->{{0,2000},{0,100}},AxesLabel->{"d_max","frequency"}]
Histogram[maxDegrees[[4,-1,All,2]],PlotRange->{{0,2000},{0,100}},AxesLabel->{"d_max","frequency"}]
Histogram[maxDegrees[[-1,-1,All,2]],PlotRange->{{0,2000},{0,100}},AxesLabel->{"d_max","frequency"}]
(* ::Subsection:: *)
(*Plot #trianges vs some degree-sequence-property*)
getProperty[ds1_]:=Module[{ds,n=Length[ds1],tmp=ConstantArray[0,{Length[ds1],Length[ds1]}]},
ds=N[ds1/Sqrt[N[Total[ds1]]]]; (* scale degrees by 1/Sqrt[total] *)
(* The next table contains unneeded entries, but its faster to have a square table for the sum *)
tmp=Table[1.-Exp[-ds[[i]]ds[[j]]],{i,1,n},{j,1,n}];
Sum[tmp[[i,j]]*tmp[[j,k]]*tmp[[i,k]],{i,3,n},{j,2,i-1},{k,1,j-1}] (* somehow i>j>k is about 60x faster than doing i<j<k !!! *)
(* This sparser table is slower
tmp=Table[1.-Exp[-ds[[i]]ds[[j]]],{i,1,n-1},{j,i+1,n}];
(* tmp[[a,b]] is now with ds[[a]]*ds[[a+b]] *)
Sum[tmp[[i,j-i]]*tmp[[j,k-j]]*tmp[[i,k-i]],{i,1,n-2},{j,i+1,n-1},{k,j+1,n}]
*)
];
(* gdata[[ tau index, n index, run index , {ntau, #tris, ds} ]] *)
avgAndProp=ParallelMap[{getProperty[#[[3]]],Mean[#[[2,1;;-1]]]}&,gdata[[2,2,1;;100]]];
Show[ListPlot[avgAndProp,AxesOrigin->{0,0},AxesLabel->{"degree-sequence-property","<#triangles>"},AspectRatio->1],Plot[x,{x,1,1000}]]
(* ::Subsection:: *)
(*Plot triangle count over "time" in Markov chain instances*)
numPlots=20;
selectedData=gdata[[1,1]][[-numPlots;;-1]];
measureSkip=1;
minCount=Min[Map[Min[#[[2]]]&,selectedData]];
maxCount=Max[Map[Max[#[[2]]]&,selectedData]];
maxTime=Max[Map[Length[#[[2]]]&,selectedData]];
(* maxTime=30000; *)
skipPts=Max[1,Round[maxTime/500]]; (* Plotting every point is slow. Plot only once per `skipPts` timesteps *)
coarseData=Map[#[[2,1;;maxTime;;skipPts]]&,selectedData];
labels=Map["{n,tau} = "<>ToString[#[[1]]]&,selectedData];
ListPlot[coarseData,Joined->True,PlotRange->{0*minCount,maxCount},DataRange->{0,measureSkip*maxTime},PlotLegends->labels]
(* Map[ListPlot[#,Joined->True,PlotRange\[Rule]{minCount,maxCount},DataRange\[Rule]{0,maxTime}]&,coarseData] *)
selectedData=gdata[[1,1]];
measureSkip=1;
minCount=Min[Map[Min[#[[2]]]&,selectedData]];
maxCount=Max[Map[Max[#[[2]]]&,selectedData]];
maxTime=Max[Map[Length[#[[2]]]&,selectedData]];
maxTime=30000;
skipPts=Max[1,Round[maxTime/100]]; (* Plotting every point is slow. Plot only once per `skipPts` timesteps *)
coarseData=Map[#[[2,1;;maxTime;;skipPts]]&,selectedData];
labels=Map["{n,tau} = "<>ToString[#[[1]]]&,selectedData];
plot1=ListPlot[coarseData[[1;;5]],Joined->True,PlotRange->{0*minCount,maxCount},DataRange->{0,measureSkip*maxTime}]
plot2=ListPlot[coarseData[[6;;10]],Joined->True,PlotRange->{0*minCount,maxCount},DataRange->{0,measureSkip*maxTime}]
plot3=ListPlot[coarseData[[11;;15]],Joined->True,PlotRange->{0*minCount,maxCount},DataRange->{0,measureSkip*maxTime}]
plot4=ListPlot[coarseData[[16;;20]],Joined->True,PlotRange->{0*minCount,maxCount},DataRange->{0,measureSkip*maxTime}]
(* For export *)
numPlots=25;
selectedPlots={6,7,8,11,12,13,16,17,18,21,22,23};
selectedData=gdata[[2,1]][[selectedPlots]];
measureSkip=1;
minCount=Min[Map[Min[#[[2]]]&,selectedData]];
maxCount=Max[Map[Max[#[[2]]]&,selectedData]];
maxTime=Max[Map[Length[#[[2]]]&,selectedData]];
(* maxTime=30000; *)
skipPts=Max[1,Round[maxTime/5000]]; (* Plotting every point is slow. Plot only once per `skipPts` timesteps *)
coarseData=Map[#[[2,1;;maxTime;;skipPts]]&,selectedData];
labels=Map["{n,tau} = "<>ToString[#[[1]]]&,selectedData];
plotTimeEvol=ListPlot[coarseData,Joined->True,PlotRange->{0*minCount,maxCount},DataRange->{0,measureSkip*maxTime},
Frame->True,FrameLabel->{MaTeX["\\text{timesteps}"],MaTeX["\\text{number of triangles}"]},
PlotLabel->MaTeX["n=1000,\\; \\tau = 2.2"],
ImageSize->250]
(* Map[ListPlot[#,Joined->True,PlotRange\[Rule]{minCount,maxCount},DataRange\[Rule]{0,maxTime}]&,coarseData] *)
Export[NotebookDirectory[]<>"plots/timeevol.pdf",plotTimeEvol]
movingAvg=Map[MovingAverage[#[[2]],2000][[1;;-1;;skipPts]]-Mean[#[[2,-20000;;-1]]]&,selectedData[[1;;-1;;5]]];
plotMovingAvg=ListPlot[movingAvg,Joined->True,PlotRange->All,DataRange->{0,measureSkip*maxTime},Frame->True,FrameLabel->{"timesteps","number of triangles"}]
(* ::Subsection:: *)
(*Fit exponential to triangles time evolution*)
fitList=Map[NonlinearModelFit[#[[2]],Exp[-(t-t0)/tmix]+c,{{tmix,1000},{t0,10000},{c,2000}},t]&,selectedData];
(* tmix*Log[1/epsilon] gives the time it takes to get a factor epsilon close to the average *)
(* t0 gives the time it takes to be exactly 1 triangle (in absolute value) away from the average *)
(* Use fit["BestFitParameters"] to get parameters *)
(* Use fit[t] to get fit value *)
fitFuncsT=Map[#[t]&,fitList];
tmixList=Map[tmix/.#["BestFitParameters"]&,fitList];
timeplot1=ListPlot[coarseData,Joined->True,PlotRange->{0*minCount,maxCount},DataRange->{0,measureSkip*maxTime},PlotStyle->Opacity[0.5]];
Show[timeplot1,Plot[fitFuncsT,{t,1,maxTime},PlotRange->All]]
(* Log version of exponential fits *)
fitAverages=Map[c/.#["BestFitParameters"]&,fitList];
shiftedFitFuncsT=MapIndexed[#1[t]-fitAverages[[#2[[1]]]]&,fitList];
shiftedCoarseData=MapIndexed[MovingAverage[#1[[2]],1000][[1;;-1;;skipPts]]-fitAverages[[#2[[1]]]]&,selectedData];
(* Plot log version *)
timeplot2=ListLogPlot[shiftedCoarseData[[1;;5]],Joined->True,PlotRange->{0*minCount+0.1,maxCount},DataRange->{0,measureSkip*maxTime},PlotStyle->Opacity[0.5]];
Show[timeplot2,LogPlot[Evaluate[shiftedFitFuncsT[[1;;5]]],{t,1,maxTime},PlotRange->All,PlotStyle->Dotted]]
(* ::Subsection:: *)
(*Plot success rate over "time"*)
numPlots=10;
selectedData=gdata[[1,-1]][[-numPlots;;-1]];
measureSkip=100;
maxTime=Max[Map[Length[#[[4]]]&,selectedData]];
maxTime=10000;
coarseData=Map[#[[4,1;;maxTime/measureSkip]]&,selectedData];
labels=Map["{n,tau} = "<>ToString[#[[1]]]&,selectedData];
ListPlot[coarseData,Joined->True,PlotRange->{0,100},DataRange->{0,maxTime},PlotLegends->labels]
(* Map[ListPlot[#,Joined->True,PlotRange\[Rule]{minCount,maxCount},DataRange\[Rule]{0,maxTime}]&,coarseData] *)
(* ::Subsection:: *)
(*Correlation of avgsuccess rate vs other things*)
compare1=Map[{Mean[#[[4]]],Mean[#[[2]]]}&,gdata,{3}];
(* { GCM1 rate, GCM2 rate, mixing time from ErdosGallai } *)
scatterPlots=Map[ListPlot[#,PlotRange->{{0,100},All},PlotStyle->PointSize[Large]]&,compare1,{2}];
TableForm[scatterPlots,TableHeadings->{taulabels,nlabels}]
(* ::Subsection:: *)
(*Compute 'mixing time'*)
(* Compute average of last part and check when the value drops below that for the first time *)
getMixingTime[values_]:=Module[{avg},
(* average over the last 20 percent *)
avg=Mean[values[[-Round[Length[values]/5];;-1]]];
FirstPosition[values,_?(#<=avg&)][[1]]
]
(* Get fit of Exp[-t/tmix] *)
getMixingTime2[values_]:=Module[{avg,etmt,fitVals},
(* average over the last 20 percent *)
avg=Mean[values[[-Round[Length[values]/5];;-1]]];
etmt=FirstPosition[values,_?(#<=avg&)][[1]];
fitVals=FindFit[values,Exp[-(t-t0)/tmix]+tavg,{{tmix,etmt/4},{t0,2*etmt},{tavg,avg}},t];
tmix/.fitVals
(* tmix*Log[1/epsilon] gives the time it takes to get a factor epsilon close to the average *)
(* t0 gives the time it takes to be exactly 1 triangle (in absolute value) away from the average *)
]
(* gdata[[ tau index, n index, run index , {ntau, #tris, ds} ]] *)
measureSkip=1;
mixingTimes=Map[{#[[1,1]],(1/#[[1,1]])measureSkip * getMixingTime[#[[2]]]}&,gdata,{3}];
mixingTimesBars=Map[
{{#[[1,1]],Mean[#[[All,2]]]},ErrorBar[StandardDeviation[#[[All,2]]](*/Sqrt[Length[#]]*)]}&
,mixingTimes,{2}];
ErrorListPlot[mixingTimesBars,Joined->True,PlotMarkers->Automatic,AxesLabel->{"n","~~mixing time divided by n"},PlotLegends->taulabels]
(* For n fixed, look at function of tau *)
measureSkip=1;
mixingTimes=Map[(PrintTemporary[#[[1]]];
{#[[1,2]],(1/#[[1,1]])measureSkip * getMixingTime[#[[2]]],(1/#[[1,1]])measureSkip * getMixingTime2[#[[2]]]}
)&,gdata,{3}];
mixingTimesBars=Map[
{{#[[1,1]],Mean[#[[All,2]]]},ErrorBar[StandardDeviation[#[[All,2]]]]}&
,mixingTimes[[All,-1,All,{1,2}]],{1}];
mixingTimesBars2=Map[
{{#[[1,1]],Mean[#[[All,2]]]},ErrorBar[StandardDeviation[#[[All,2]]]]}&
,mixingTimes[[All,-1,All,{1,3}]],{1}];
Show[
ErrorListPlot[{mixingTimesBars,mixingTimesBars2},Joined->True,PlotMarkers->Automatic,
AxesLabel->{"tau","~~mixing time divided by n, for n = 1000"},
PlotRange->{{2,3},{0,30}}]
,Plot[(32-20(tau-2)),{tau,2,3}]]
(* ::Subsection:: *)
(*Plot #triangles distribution for specific (n,tau)*)
plotRangeByTau[tau_]:=Piecewise[{{{0,30000},tau<2.3},{{0,4000},2.3<tau<2.7},{{0,800},tau>2.7}},Automatic]
histograms=Map[Histogram[#[[All,2]],PlotRange->{plotRangeByTau[#[[1,1,2]]],Automatic}]&,averagesGrouped,{2}];
(* TableForm[histograms,TableHeadings->{taulabels,nlabels}] *)
TableForm[Transpose[histograms],TableHeadings->{nlabels,taulabels}]
(* ::Section:: *)
(*Greedy configuration model*)
(* ::Subsection:: *)
(*Distribution of initial #triangles for GCM1,GCM2,EG compared to average #triangles.*)
(* Data format: *)
(* gdata[[ tau index, n index, run index , datatype index ]] *)
(* datatype index:
1: {n,tau}
2: #triangles time sequence
3: degree sequence
4: GCM1 starting triangle counts
5: GCM2 starting triangle counts
6: GCM1 time sequence
7: GCM2 time sequence
*)
(* Stats for a single run at every (n,tau) *)
timeWindow=Round[Length[gdata[[1,1,1,2]]]/10];
skipPts=Max[1,Round[timeWindow/100]];
getSingleStats[runs_]:=Module[{run,avg,stddev},
run=runs[[1]]; (* Select some run *)
avg=N[Mean[run[[2,-timeWindow;;-1]]]];
stddev=N[StandardDeviation[run[[2,timeWindow;;-1]]]];
{run[[1]], (* {n,tau} *)
stddev/avg,
(run[[2,1]])/avg, (* EG starting point *)
Map[N[#/avg]&,run[[4]]], (* GCM1 counts *)
Map[N[#/avg]&,run[[5]]], (* GCM2 counts *)
(run[[2,-timeWindow;;-1;;skipPts]])/avg (* counts in uniform distribution *)
}
]
singleStats=Map[getSingleStats,gdata,{2}];
(* Yellow: GCM1 (take new highest everytime *)
(* Blue: GCM2 (finish highest first, more similar to EG) *)
(* Green: Actual uniform distribution *)
histogramsSingle=Map[Histogram[{#[[4]],#[[5]],#[[6]]},PlotRange->{{0,3},Automatic},ImageSize->300,PlotLabel->"ErdosGallai="<>ToString[NumberForm[#[[3]],3]]<>"\[Cross]average"]&,singleStats,{2}];
TableForm[histogramsSingle,TableHeadings->{taulabels,nlabels}]
(* Consider all runs *)
timeWindow=Round[Length[gdata[[1,1,1,2]]]/10];
skipPts=Max[1,Round[timeWindow/100]];
getAverage[run_]:=Module[{avg,stddev},
avg=N[Mean[run[[2,-timeWindow;;-1]]]];
{
Mean[run[[4]]]/avg,(* GCM1 counts *)
Mean[run[[5]]]/avg, (* GCM2 counts *)
(run[[2,1]])/avg, (* EG starting point *)
}
]
getTotalStats[runs_]:=Transpose[Map[getAverage,runs]];
totalStats=Map[getTotalStats,gdata,{2}];
(* Yellow: GCM1 (take new highest everytime *)
(* Blue: GCM2 (finish highest first, more similar to EG) *)
histogramsTotal=Map[Histogram[#,{0.1},PlotRange->{{0,5},Automatic},ImageSize->300]&,totalStats,{2}];
TableForm[histogramsTotal,TableHeadings->{taulabels,nlabels}]
(* ::Subsection:: *)
(*GCM1 vs GCM2 success rates*)
(* gdata[[ tau index, n index, run index , {ntau, #tris, ds, greedyTriangles} ]] *)
successrates=Map[{Length[#[[4]]],Length[#[[5]]]}&,gdata,{3}];
successrates=Map[Transpose,successrates,{2}];
successratesDelta=Map[Length[#[[5]]]-Length[#[[4]]]&,gdata,{3}];
rateHistograms=Map[Histogram[#,{10},PlotRange->{{0,100},Automatic}]&,successrates,{2}];
TableForm[rateHistograms,TableHeadings->{taulabels,nlabels}]
rateHistograms=Map[Histogram[#,{10},PlotRange->{{-100,100},Automatic}]&,successratesDelta,{2}];
TableForm[rateHistograms,TableHeadings->{taulabels,nlabels}]
(*TableForm[Transpose[rateHistograms],TableHeadings->{nlabels,taulabels}]*)
(* ::Subsection:: *)
(*Compare success rate with mixing time*)
successrates2=Map[{Length[#[[4]]],Length[#[[5]]],getMixingTime[#[[2]]]}&,gdata,{3}];
(* { GCM1 rate, GCM2 rate, mixing time from ErdosGallai } *)
scatterPlots=Map[ListPlot[#[[All,{1,3}]],PlotRange->{All,All},PlotStyle->PointSize[Large]]&,successrates2,{2}];
TableForm[scatterPlots,TableHeadings->{taulabels,nlabels}]
|