Files
@ eba8261885e8
Branch filter:
Location: AENC/switchchain/triangle_autocorrelations.m - annotation
eba8261885e8
1.5 KiB
application/vnd.wolfram.mathematica.package
Change trimeevol plot for thesis
3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec 3e67925ef7ec | (* ::Package:: *)
(* ::Section:: *)
(*Data import*)
gsraw=Import[NotebookDirectory[]<>"data/graphdata_timeevol.m"];
(* gsraw=SortBy[gsraw,{#[[1,1]]&,#[[1,2]]&}]; (* Sort by n and then by tau. The {} forces a *stable* sort because otherwise Mathematica sorts also on triangle count and other things. *) *)
gdata=GatherBy[gsraw,{#[[1,2]]&,#[[1,1]]&}];
(* Data format: *)
(* gdata[[ tau index, n index, run index , datatype index ]] *)
(* datatype index:
1: {n,tau}
2: #triangles time sequence
3: degree sequence
4: GCM1 starting triangle counts
5: GCM2 starting triangle counts
6: GCM1 time sequence
7: GCM2 time sequence
*)
nlabels=Map["n = "<>ToString[#]&,gdata[[1,All,1,1,1]]];
taulabels=Map["tau = "<>ToString[#]&,gdata[[All,1,1,1,2]]];
(* ::Section:: *)
(*Triangle counts autocorrelation*)
doAutoCorrelate[dataset_,maxlag_]:=Module[{avg,data2,result},
avg=Mean[dataset];
data2=dataset-avg;
result=ParallelTable[Mean[data2[[1+lag;;]]*data2[[;;-1-lag]]],{lag,0,maxlag}];
result=result/result[[1]]
]
doPeriodicAutocorrelate[dataset_,maxlag_]:=Module[{f,result},
f=Fourier[dataset-Mean[dataset]];
result=InverseFourier[f*Conjugate[f]];
result=result[[1;;Min[Floor[Length[result]/2],maxlag]]];
result=Chop[result];
result=result/result[[1]]
]
dataX=gdata[[1,1]][[3,2]];
ListPlot[dataX,Joined->True,PlotRange->All]
dataX=dataX[[15000;;50000]];
cor1=doAutoCorrelate[dataX,2000];
cor2=doPeriodicAutocorrelate[dataX,20000];
ListPlot[{cor1,cor2},Joined->True,PlotRange->{-0.5,1}]
|