Files
@ eba8261885e8
Branch filter:
Location: AENC/switchchain/triangle_ecm_initialtris.m - annotation
eba8261885e8
7.3 KiB
application/vnd.wolfram.mathematica.package
Change trimeevol plot for thesis
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 | aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 a4477a81d96d aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 a4477a81d96d a4477a81d96d a4477a81d96d a4477a81d96d aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 d99b1ddf4d24 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 aa727817ffa5 | (* ::Package:: *)
Quit[]
Needs["ErrorBarPlots`"]
(* ::Section:: *)
(*Data import*)
gsraw=Import[NotebookDirectory[]<>"data/graphdata_ecm_initialtris.m"];
gsraw2=Import[NotebookDirectory[]<>"data/graphdata_ecm_initialtris_extra.m"];
(* gsraw=SortBy[gsraw,{#[[1,1]]&,#[[1,2]]&}]; (* Sort by n and then by tau. The {} forces a *stable* sort because otherwise Mathematica sorts also on triangle count and other things. *) *)
gdata=GatherBy[gsraw,{#[[1,2]]&}];
(* Data format: *)
(* gdata[[ tau index, n index, datatype index ]] *)
(* datatype index:
1: {n,tau}
2: {uniform triangle samples}
3: {ECM triangle samples}
*)
(* ::Section:: *)
(*Erased configuration model*)
(* ::Subsection:: *)
(*Distribution of initial #triangles for ECM compared to uniform triangle distribution*)
getHistogram[run_]:=Histogram[{run[[2]],run[[3]]},Automatic,"Probability",
ChartLegends->Placed[{"Uniform","ECM"},Bottom],
ImageSize->250,
Frame->True,
FrameLabel->{"Triangles","Probability"},
PlotLabel->("n = "<>ToString[run[[1,1]]]<>", \[Tau] = "<>ToString[run[[1,2]]])
];
histograms=Map[getHistogram,gdata,{2}];
TableForm[histograms]
(* ::Subsubsection:: *)
(*Exporting plots*)
Needs["MaTeX`"]
getHistogram[run_,bins_,plotrange_,paddings_,tickDelta_,bottomTicks_,textpos_,framelabel_]:=Histogram[{run[[3]],run[[2]]},bins,"Probability",
ImageSize->150+paddings[[1,1]]+paddings[[1,2]],
ImagePadding->paddings,
AspectRatio->4/6,
PlotRange->plotrange,
Frame->True,
FrameLabel->framelabel,
FrameTicks->{{{#,NumberForm[#,{2,2}]}&/@Range[0,1,tickDelta],Automatic},{bottomTicks,Automatic}},
Epilog->Text[MaTeX["n = "<>ToString[run[[1,1]]]<>",\\; \\tau = "<>ToString[run[[1,2]]]],textpos],
ChartStyle->{ColorData[97][1],ColorData[97][2]}
];
textpos=Scaled[{0.65,0.90}];
ticks1={#,ToString[#]}&/@Range[800,5000,800];
ticks2={#*10^4,ToString[#\[CenterDot]Superscript[10,4],TraditionalForm]}&/@Range[2,10,2];
{h1,h2,h3}={
getHistogram[gdata[[2,1]],{50},{0,0.25},{{40,0},{12,0}},0.10,ticks1,textpos,{None,"Probability"}],
getHistogram[gdata[[6,1]], {3},{0,0.10},{{40,0},{12,0}},0.05,Automatic,textpos,{None,"Probability"}],
getHistogram[gdata[[10,1]],{1},{0,0.18},{{40,0},{32,0}},0.05,Automatic,textpos,{"Triangles","Probability"}]
};
(*plotgrid1=Column[{h1,h2,h3}]*)
{h4,h5,h6}={
getHistogram[gdata[[2,-1]],{800},{0,0.50},{{20,5},{12,0}},0.10,ticks2,textpos,None],
getHistogram[gdata[[6,-1]], {10},{0,0.10},{{20,5},{12,0}},0.05,Automatic,textpos,None],
getHistogram[gdata[[10,-1]], {1},{0,0.10},{{20,5},{32,0}},0.05,Automatic,textpos,{"Triangles"}]
};
(*SwatchLegend[{ColorData[97][1],ColorData[97][2]},{"ECM","Uniform"},LegendLayout\[Rule]"Row"]*)
plotgrid2=Grid[Transpose[{{SwatchLegend[{ColorData[97][1]},{"ECM"}],h1,h2,h3},{SwatchLegend[{ColorData[97][2]},{"Uniform"}],h4,h5,h6}}]]
Export[NotebookDirectory[]<>"plots/ecm_initialtris2.pdf",plotgrid2]
(* Dataset with extra samples *)
getHistogram[gsraw2[[1]], {10},{0,0.10},{{20,5},{12,0}},0.05,Automatic,textpos,None]
(* ::Section:: *)
(*As function of n*)
dataPointsUniform=Map[{#[[1,1]],Mean[#[[2]]]}&,gdata,{2}];
dataPointsECM=Map[{#[[1,1]],Mean[#[[3]]]}&,gdata,{2}];
taulabels=Map["\[Tau] = "<>ToString[#[[1,1,2]]]&,gdata];
(* Standard Deviation with division by N instead of N-1 *)
mySD[xs_]:=Sqrt[Total[(xs-Mean[xs])^2]/Length[xs]];
(* { {x,y}, ErrorBar[err] } *)
getErrorBars[run_]:=Module[{n,tau,avgUni,avgECM,sdUni,sdECM},
{n,tau}=run[[1]];
avgUni=Mean[run[[2]]];
sdUni=mySD[run[[2]]];
avgECM=Mean[run[[3]]];
sdECM=mySD[run[[3]]];
{
{{n,avgUni},ErrorBar[sdUni]},
{{n,avgECM},ErrorBar[sdECM]}
}
]
allErrorBars=Map[getErrorBars,gdata,{2}];
Map[ErrorListPlot[Transpose[#],
ImageSize->500,
Frame->True,
PlotMarkers->Automatic
]&,allErrorBars[[{1,6,11}]]]
(* ::Subsection:: *)
(*Fitting the log-log-plot*)
nRange=All;
(* Weight: 1/err^2 *)
(* Weight: N/Total[(xs-Mean[xs])^2] *)
getWeight[xs_]:=1/(Log[Mean[xs]]-Log[Mean[xs]-Sqrt[Total[(xs-Mean[xs])^2]/Length[xs]]])^2;
(* Several runs for fixed tau but different n *)
getFitData[runs_,index_]:=Map[{Log[#[[1,1]]],Log[Mean[#[[index]]]],getWeight[#[[index]]]}&,runs];
uniformFitData=Map[getFitData[#,2]&,gdata[[All,nRange]]];
ECMFitData=Map[getFitData[#,3]&,gdata[[All,nRange]]];
uniformFits=Map[LinearModelFit[#[[All,{1,2}]],logn,logn(*,Weights\[Rule]#[[All,3]]*)]&,uniformFitData];
ECMFits= Map[LinearModelFit[#[[All,{1,2}]],logn,logn(*,Weights\[Rule]#[[All,3]]*)]&,ECMFitData];
(*
uniformloglog=Log[dataPointsUniform[[All,nRange]]];
ECMloglog=Log[dataPointsECM[[All,nRange]]];
uniformFits=Map[LinearModelFit[#,logn,logn]&,uniformloglog];
ECMFits=Map[LinearModelFit[#,logn,logn]&,ECMloglog];
*)
uniformFuncs=Map[#[logn]&,uniformFits];
ECMFuncs=Map[#[logn]&,ECMFits];
uniformFits[[1]]["ParameterTable"] (* Get `Standard Error' by "ParameterErrors" *)
uniformFits[[1]]["ParameterConfidenceIntervalTable"] (* Get confidence by "ParameterConfidenceIntervals *)
(* estimate +- standard error *)
uniformFits[[1]]["BestFitParameters"]-uniformFits[[1]]["ParameterErrors"]
uniformFits[[1]]["BestFitParameters"]+uniformFits[[1]]["ParameterErrors"]
tauChoices={1,4,6,8,11};
taulabels=Map["\[Tau] = "<>ToString[NumberForm[#[[1,1,2]],{3,2}]]&,gdata[[tauChoices]]];
repeatColors[n_,k_]:=Table[ColorData[97][Mod[i,k,1]],{i,1,n}]
plot1=Show[ListLogLogPlot[Evaluate[dataPointsUniform[[tauChoices]]~Join~dataPointsECM[[tauChoices]]],
Frame->True,
FrameTicks->{{Table[{10^k,Superscript[10,k]},{k,0,6}],Automatic},{{1000,2000,5000,10000},Automatic}},
FrameLabel->{"n","triangles"},
ImageSize->250,
PlotMarkers->Automatic,
PlotLegends->taulabels,
PlotStyle->repeatColors[10,5]
],
Plot[Evaluate[uniformFuncs[[tauChoices]]],{logn,1,20000}],
Plot[Evaluate[ECMFuncs[[tauChoices]]],{logn,1,20000}]
]
Export[NotebookDirectory[]<>"plots/avgtris_n.pdf",plot1]
(* ::Subsection:: *)
(*T(\[Tau]) including error bars*)
gsraw2=Import[NotebookDirectory[]<>"data/graphdata_exponent_hightau.m"];
gsraw2=SortBy[gsraw2,#[[1,1]]&]; (* Sort by n *)
averagesGrouped=GatherBy[gsraw2,{#[[1,2]]&,#[[1,1]]&}];
averagesLoglogdata=Map[{Log[#[[1,1,1]]],Log[Mean[#[[All,2]]]]}&,averagesGrouped[[All,nRange]],{2}];
averagesFitsExtra=Map[LinearModelFit[#,logn,logn]&,averagesLoglogdata];
avgTauValues=averagesGrouped[[All,1,1,1,2]];
averagesExponentsErrorBars=Map[{{#[[1]],#[[2]]["BestFitParameters"][[2]]},ErrorBar[#[[2]]["ParameterConfidenceIntervals"][[2]]-#[[2]]["BestFitParameters"][[2]]]}&,
Transpose[{avgTauValues-0.000,averagesFitsExtra}]];
tauValues=gdata[[All,1,1,2]];
(* For visual, shift the tau values slightly left or right to distinguish the two datasets *)
uniformExponents=Map[{{#[[1]],#[[2]]["BestFitParameters"][[2]]},ErrorBar[#[[2]]["ParameterConfidenceIntervals"][[2]]-#[[2]]["BestFitParameters"][[2]]]}&, Transpose[{tauValues+0.000,uniformFits}]];
ECMExponents =Map[{{#[[1]],#[[2]]["BestFitParameters"][[2]]},ErrorBar[#[[2]]["ParameterConfidenceIntervals"][[2]]-#[[2]]["BestFitParameters"][[2]]]}&, Transpose[{tauValues+0.000,ECMFits}]];
Needs["MaTeX`"]
plot2=Show[
ErrorListPlot[{ECMExponents,uniformExponents,averagesExponentsErrorBars},
Joined->True,PlotMarkers->Automatic,
PlotLegends->Placed[{"ECM","canonical","average"},{Left,Bottom}],
Frame->True,FrameLabel->{MaTeX["\\tau"],"triangle powerlaw exponent"},
PlotRange->{{2,3},{0,1.6}},
ImageSize->300],
Plot[3/2(3-tau),{tau,2,3},PlotStyle->{Black,Dashed},PlotLegends->Placed[LineLegend[{MaTeX["\\frac{3}{2}(3-\\tau)"]},LegendMarkerSize->20],{Left,Bottom}]]]
Export[NotebookDirectory[]<>"plots/triangle_exponent.pdf",plot2]
|