Files
@ eba8261885e8
Branch filter:
Location: AENC/switchchain/triangle_successrate_correlation_plots.m - annotation
eba8261885e8
4.6 KiB
application/vnd.wolfram.mathematica.package
Change trimeevol plot for thesis
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a 91b906fd074a | (* ::Package:: *)
Needs["ErrorBarPlots`"]
(* ::Section:: *)
(*Plot successrate over time*)
gsraw=Import[NotebookDirectory[]<>"data/graphdata_successrates_timeevol.m"];
(* gsraw=SortBy[gsraw,{#[[1,1]]&,#[[1,2]]&}]; (* Sort by n and then by tau. The {} forces a *stable* sort because otherwise Mathematica sorts also on triangle count and other things. *) *)
gdata=GatherBy[gsraw,{#[[1,2]]&,#[[1,1]]&}];
(* Data format: *)
(* gdata[[ tau index, n index, run index , datatype index ]] *)
(* datatype index:
1: {n,tau}
2: avgtris
3: successrate
*)
nlabels=Map["n = "<>ToString[#]&,gdata[[1,All,1,1,1]]];
taulabels=Map["tau = "<>ToString[#]&,gdata[[All,1,1,1,2]]];
TwoAxisPlot[{f_, g_},{plotrange1_,plotrange2_}] :=
Module[{fgraph, ggraph, frange, grange, fticks, gticks, manualRanges},
manualRanges={plotrange1,plotrange2};
{fgraph, ggraph} =
MapIndexed[
ListPlot[#1, Axes -> True, Joined->True,ImageSize->300,
PlotRange->manualRanges[[#2[[1]]]],
DataRange->{0,measureSkip*maxTime}
(* PlotStyle -> ColorData[1][#2[[1]]] *)
] &, {f, g}];
{frange, grange} = (PlotRange /. AbsoluteOptions[#, PlotRange])[[2]] & /@ {fgraph, ggraph};
fticks = N@FindDivisions[frange, 10];
gticks = Quiet@Transpose@{fticks, ToString[NumberForm[#, 2], StandardForm] & /@ Rescale[fticks, frange, grange]};
Show[fgraph, ggraph /. Graphics[graph_, s___] :> Graphics[GeometricTransformation[graph, RescalingTransform[{{0, 1}, grange}, {{0, 1}, frange}]], s],
Axes -> False, Frame -> True,
(*FrameStyle -> {ColorData[1] /@ {1, 2}, {Automatic, Automatic}}, *)
FrameTicks -> {{fticks, gticks}, {Automatic, Automatic}}]]
(* Test of plot function *)
TwoAxisPlot[{gdata[[1,1,{1,3},2]],gdata[[1,1,{1,3},3]]},{{0,12000},{0,100}}]
MeanFilter
(* For export *)
selectedData=gdata[[2,1]][[{1,3,4,5}]];
measureSkip=100;
minCount=Min[Map[Min[#[[2]]]&,selectedData]];
maxCount=Max[Map[Max[#[[2]]]&,selectedData]];
maxCount=Max[Map[1.5*Max[#[[2,-100;;-1]]]&,selectedData]];
maxTime=Max[Map[Length[#[[2]]]&,selectedData]];
(* maxTime=Round[30000/measureSkip]; *)
skipPts=Max[1,Round[maxTime/5000]]; (* Plotting every point is slow. Plot only once per `skipPts` timesteps *)
maxTime=Round[50000/measureSkip];
coarseData=Map[#[[2,1;;maxTime;;skipPts]]&,selectedData];
coarseData2=Map[#[[3,1;;maxTime;;skipPts]]/100&,selectedData];
coarseData3=Map[MeanFilter[#[[3]],6]/100&,selectedData];
labels=Map["{n,tau} = "<>ToString[#[[1]]]&,selectedData]
TwoAxisPlot[{coarseData,coarseData2},{{0,maxCount},{0,1}}]
plotTimeEvol1=ListPlot[coarseData,Joined->True,PlotRange->{0*minCount,maxCount},DataRange->{0,measureSkip*maxTime},Frame->True,FrameLabel->{"timesteps","number of triangles"},PlotLabel->"n = 1000, \[Tau]=2.2",ImageSize->300]
plotTimeEvol2=ListPlot[coarseData2,Joined->True,PlotRange->{0,1},DataRange->{0,measureSkip*maxTime},Frame->True,FrameLabel->{"timesteps","successrate"},PlotLabel->"n = 1000, \[Tau]=2.2",ImageSize->300,PlotStyle->Opacity[0.5]];
plotTimeEvol3=ListPlot[coarseData3,Joined->True,PlotRange->{0,1},DataRange->{0,measureSkip*maxTime}];
plotTimeEvol4=Show[plotTimeEvol2,plotTimeEvol3]
(* Map[ListPlot[#,Joined->True,PlotRange\[Rule]{minCount,maxCount},DataRange\[Rule]{0,maxTime}]&,coarseData] *)
Export[NotebookDirectory[]<>"plots/timeevol_22_successrate_triangles.pdf",plotTimeEvol1]
Export[NotebookDirectory[]<>"plots/timeevol_22_successrate.pdf",plotTimeEvol4]
(* ::Section:: *)
(*Plot #trianges vs some successrate*)
gsraw=Import[NotebookDirectory[]<>"data/graphdata_successrates.m"];
(* gsraw=SortBy[gsraw,{#[[1,1]]&,#[[1,2]]&}]; (* Sort by n and then by tau. The {} forces a *stable* sort because otherwise Mathematica sorts also on triangle count and other things. *) *)
gdata=GatherBy[gsraw,{#[[1,2]]&,#[[1,1]]&}];
(* Data format: *)
(* gdata[[ tau index, n index, run index , datatype index ]] *)
(* datatype index:
1: {n,tau}
2: avgtris
3: successrate
*)
nlabels=Map["n = "<>ToString[#]&,gdata[[1,All,1,1,1]]];
taulabels=Map["\[Tau] = "<>ToString[#]&,gdata[[All,1,1,1,2]]];
allPlots=Map[Show[
ListPlot[#[[All,{3,2}]],
AxesOrigin->{0,0},
Frame->True,FrameLabel->{"successrate","average number of triangles"},
(*AspectRatio->Automatic,*)
PlotRange->{{0,1},Automatic},
ImageSize->Automatic,
PlotLabel->"n = "<>ToString[#[[1,1,1]]]<>" , \[Tau] = "<>ToString[#[[1,1,2]]],
PlotStyle->PointSize[0.0001]
],Plot[x,{x,1,10000}]]
&,gdata,{2}]
combiPlot=ListLogPlot[gdata[[{1,3,5,7,9},1,All,{3,2}]],
AxesOrigin->{0,0},
Frame->True,FrameLabel->{"successrate","average number of triangles"},
(*AspectRatio->Automatic,*)
PlotRange->Automatic,
ImageSize->300,
PlotLabel->"n = "<>ToString[gdata[[1,1]][[1,1,1]]],
PlotLegends->taulabels[[{1,3,5,7,9}]]
]
Export[NotebookDirectory[]<>"plots/successrate_correlations.pdf",combiPlot]
|