Files
@ f1904d0b9ecb
Branch filter:
Location: AENC/switchchain/powerlaw_info.tex - annotation
f1904d0b9ecb
1.2 KiB
text/x-tex
Update ccm timeevol plot
42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d 42dadc398e7d | \documentclass{article}
\begin{document}
\section{Continuous powerlaw with minimum cut-off}
Exponent $\tau > 1$.
\subsection{Also maximum cut-off}
Let $m$ be the minimum, $M$ be the maximum.\\
PDF: $$f(x) = \frac{\tau-1}{m^{-(\tau-1)} - M^{-(\tau-1)}} x^{-\tau}$$
CDF: $$F(x) = \frac{m^{-(\tau-1)} - x^{-(\tau-1)}}{m^{-(\tau-1)} - M^{-(\tau-1)}}$$
Inverse: $$F^{-1}(y) = \left( (1-y) m^{-(\tau-1)} + y M^{-(\tau-1)} \right)^{\frac{-1}{\tau-1}}$$
i.e. linear interpolate between $M^{-(\tau-1)} < m^{-(\tau-1)}$.\\
$F^{-1}(0) = m$ and $F^{-1}(1) = M$.\\
For $m=1$ and $M$ steps of interpolation:\\
$F^{-1}(1/M) = \left( 1-M^{-1} + M^{-\tau} \right)^{\frac{-1}{\tau-1}}$\\
$F^{-1}(1-1/M) = \left( M^{-1} + M^{-(\tau-1)} - M^{-\tau} \right)^{\frac{-1}{\tau-1}}$
\subsection{No maximum cut-off}
For $M=\infty$ we have:\\
PDF: $$f(x) = \frac{\tau-1}{m^{-(\tau-1)}} x^{-\tau} = \frac{\tau-1}{m} \left(\frac{x}{m}\right)^{-\tau}$$
CDF: $$F(x) = \frac{m^{-(\tau-1)} - x^{-(\tau-1)}}{m^{-(\tau-1)}} = 1 - \left(\frac{x}{m}\right)^{-(\tau-1)}$$
Inverse: $$F^{-1}(y) = \left( (1-y) m^{-(\tau-1)} \right)^{\frac{-1}{\tau-1}} = m \; \left( 1-y \right)^{\frac{-1}{\tau-1}}$$
For interpolation:\\
$F^{-1}(0) = m$\\
$F^{-1}(1-\frac{1}{n}) = m\cdot n^{\frac{1}{\tau-1}}$
\end{document}
|