Files
@ fe19e0b0539b
Branch filter:
Location: AENC/switchchain/showgraphs.m - annotation
fe19e0b0539b
12.6 KiB
application/vnd.wolfram.mathematica.package
Add datafile with readme on the contents
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 | 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 59e3e241c8ea 59e3e241c8ea 59e3e241c8ea 59e3e241c8ea 59e3e241c8ea 59e3e241c8ea 59e3e241c8ea 59e3e241c8ea 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 3349f6d40bd8 3349f6d40bd8 9df034849ada 9df034849ada 2c2c8fc81176 2c2c8fc81176 cd465118bb78 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 cd465118bb78 cd465118bb78 cd465118bb78 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 9df034849ada cd465118bb78 cd465118bb78 6218fdc51593 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 9df034849ada 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 9df034849ada 2c2c8fc81176 2c2c8fc81176 59e3e241c8ea 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 3349f6d40bd8 3349f6d40bd8 2c2c8fc81176 2c2c8fc81176 9df034849ada 9df034849ada 9df034849ada 9df034849ada 0290e63ba024 0290e63ba024 0290e63ba024 2c2c8fc81176 2c2c8fc81176 9df034849ada 9df034849ada 9df034849ada 9df034849ada 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 efc6996e97a2 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 59e3e241c8ea 3349f6d40bd8 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 3349f6d40bd8 2c2c8fc81176 2c2c8fc81176 3349f6d40bd8 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 3349f6d40bd8 3349f6d40bd8 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 3349f6d40bd8 3349f6d40bd8 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 efc6996e97a2 2c2c8fc81176 d0cb8a9f1b0e 2c2c8fc81176 2c2c8fc81176 d0cb8a9f1b0e d0cb8a9f1b0e d0cb8a9f1b0e d0cb8a9f1b0e d0cb8a9f1b0e d0cb8a9f1b0e d0cb8a9f1b0e 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 d0cb8a9f1b0e d0cb8a9f1b0e 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 efc6996e97a2 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 efc6996e97a2 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 d0cb8a9f1b0e 2c2c8fc81176 2c2c8fc81176 d0cb8a9f1b0e d0cb8a9f1b0e d0cb8a9f1b0e d0cb8a9f1b0e d0cb8a9f1b0e d0cb8a9f1b0e d0cb8a9f1b0e 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 efc6996e97a2 2c2c8fc81176 2c2c8fc81176 d0cb8a9f1b0e d0cb8a9f1b0e d0cb8a9f1b0e d0cb8a9f1b0e d0cb8a9f1b0e d0cb8a9f1b0e 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 2c2c8fc81176 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 59e3e241c8ea 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 59e3e241c8ea 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 9df034849ada 9df034849ada 9df034849ada 3349f6d40bd8 3349f6d40bd8 3349f6d40bd8 9df034849ada 9df034849ada 9df034849ada 3349f6d40bd8 9df034849ada 9df034849ada 9df034849ada | (* ::Package:: *)
Needs["ErrorBarPlots`"]
(* ::Section:: *)
(*TODO*)
(* ::Text:: *)
(*- Triangle law exponent: gather more data*)
(**)
(*- Why does GCM-2 start with very low #triangles*)
(* Do not only consider number of standard deviations but also relative number of triangles.*)
(* Look at the following: for all triangles (v1, v2, v3) consider the degrees d1<d2<d3) and make a scatter plot of di vs dj. Make such a scatter plot for the initial GCM-2 graph and for a mixed graph and see how it changes.*)
(**)
(*- GCM success rates: for the degree sequences where it "always fails", look at the degree sequence. Does it have a low/high number of degree 1 nodes? Is the maximum degree very low/high?*)
(**)
(*- Use different starting point for switch chain that is closer to uniform:*)
(* Do configuration model, starting with the vertex with highest degree and keeping track of a "forbidden list" meaning dont pair something that is not allowed*)
(* (a) How close is this to uniform ? At least w.r.t. the measure of #triangles*)
(* (b) How often does this procedure work/fail. Might still be faster to do switchings from Erdos-Gallai.*)
(* (c) Compare two greedy ways: (c1) first take highest and finish all its pairings (c2) take new highest after every single pairing*)
(* (d) Time evolution for GCM on top of Erdos-Gallai time evolution.*)
(* The initial #triangles in GCM2 is somewhere between 0 and 5 standard deviations below the average #triangles, whereas the #triangles in Erdos-Gallai can be as high as 100 standard deviations above the average.*)
(* TODO: Not only compare number of standard deviations but also percentage above/below average.*)
(**)
(*- Count #moves that result in +-k triangles (one move could create many triangles at once!)*)
(**)
(*- For a graph snapshot: for all V shapes, compute the number of ways to make it into a triangle:*)
(* Let u1,u2 be the endpoints of the V. For all neighbors v1 of u1 and v2 of u2, see of v1,v2 has an edge. Meaning, if we were to select randomly an u1 edge and an u2 edge, then whats the probability that it can be used to switch the V into a triangle.*)
(**)
(*- Improve runtime*)
(* (a) Better direct triangle counting? (I doubt it)*)
(* (b) Better triangle counting by only keeping track of CHANGES in #triangles*)
(* ::Subsection:: *)
(*Done*)
(* ::Text:: *)
(*- Do a single very long run: nothing weird seems to happen with the triangle counts. Tried 10 million steps.*)
(**)
(*- Compute Sum over i<j<k of (1-Exp[- d_i d_j / (2E)]) * (1 - Exp[-d_j d_k / (2E)]) * (1 - Exp[-d_k d_i / (2E)]) .*)
(* Computing the f(i,j) = (1-Exp[..]) terms is fine, but then computing Sum[ f(i,j) f(j,k) f(i,k) ) ] over n^3 entries is very slow.*)
(* *)
(*- Improve runtime*)
(* (a) Don't remove/add edges from the std::vector. Simply replace them. Done, is way faster for large n.*)
(* (b) Do not choose the three permutations with 1/3 probability: choose the "staying" one with zero probability. Should still be a valid switch chain?*)
(* *)
(*- Experimental mixing time as function of n. At (n,tau)=(1000,2.5) it seems to be between 10.000 and 20.000 steps.*)
(* Done. Seems to be something like (1/2)(32-26(tau-2))n so we run it for that time without the factor (1/2).*)
(**)
(*- GCM1: Greedy Configuration Model 1: take highest degree and completely do all its pairings (at random)*)
(*- GCM2: Greedy Configuration Model 2: take highest degree and do a single pairing, then take new highest degree. So this matters mostly if there are multiple high degree nodes*)
(*The success rates, conditioned on the degree sequence being graphical, is almost always higher using GCM2. For certain degree sequences the success rate of GCM2 can be 0.9 higher than that of GCM1. (i.e. amost always works vs almost always fails).*)
(*For tau > ~2.3 the success rate of GCM2 seems to be higher than 80% for most sequences.*)
(*For tau < ~2.3 the success rate of GCM2 can drop to less than 10% for some sequences but for many sequences it is still larger than 80%.*)
(**)
(**)
(* *)
(* ::Section:: *)
(*Visualize graphs*)
gsraw=Import[NotebookDirectory[]<>"graphdata.m"];
ListPlot[gsraw[[2]],Joined->True,PlotRange->All,AxesLabel->{"Step","Triangles"}]
gs=Map[Graph[#,GraphLayout->"CircularEmbedding"]&,gsraw[[1]]];
gs2=Map[Graph[#,GraphLayout->Automatic]&,gsraw[[1]]];
Grid[Partition[gs,10],Frame->All]
(* ::Section:: *)
(*Data import*)
gsraw=Import[NotebookDirectory[]<>"data/graphdata.m"];
gsraw=SortBy[gsraw,#[[1,1]]&]; (* Sort by n *)
gdata=GatherBy[gsraw,{#[[1,2]]&,#[[1,1]]&}];
(* gdata[[ tau index, n index, run index , {ntau, #tris, ds} ]] *)
nlabels=Map["n = "<>ToString[#]&,gdata[[1,All,1,1,1]]];
taulabels=Map["tau = "<>ToString[#]&,gdata[[All,1,1,1,2]]];
(* ::Subsection:: *)
(*Merge data*)
newData=Import[NotebookDirectory[]<>"data/graphdata_3.m"];
mergedData=Import[NotebookDirectory[]<>"data/graphdata_merged.m"];
Export[NotebookDirectory[]<>"data/graphdata_merged_new.m",Join[mergedData,newData]]
(* ::Section:: *)
(*Plot triangle counts*)
(* ::Subsection:: *)
(*Plot empirical distribution of maximum degree*)
maxDegrees=Map[{#[[1]],Max[#[[3]]]}&,gsraw];
maxDegrees=GatherBy[maxDegrees,{#[[1,2]]&,#[[1,1]]&}];
(* maxDegrees[[ tau index, n index, run index, ntau or dmax ]] *)
Histogram[maxDegrees[[1,-1,All,2]],PlotRange->{{0,2000},{0,100}},AxesLabel->{"d_max","frequency"}]
Histogram[maxDegrees[[2,-1,All,2]],PlotRange->{{0,2000},{0,100}},AxesLabel->{"d_max","frequency"}]
Histogram[maxDegrees[[3,-1,All,2]],PlotRange->{{0,2000},{0,100}},AxesLabel->{"d_max","frequency"}]
(* ::Subsection:: *)
(*Plot #trianges vs some degree-sequence-property*)
getProperty[ds1_]:=Module[{ds,n=Length[ds1],tmp=ConstantArray[0,{Length[ds1],Length[ds1]}]},
ds=N[ds1/Sqrt[N[Total[ds1]]]]; (* scale degrees by 1/Sqrt[total] *)
(* The next table contains unneeded entries, but its faster to have a square table for the sum *)
tmp=Table[1.-Exp[-ds[[i]]ds[[j]]],{i,1,n},{j,1,n}];
Sum[tmp[[i,j]]*tmp[[j,k]]*tmp[[i,k]],{i,3,n},{j,2,i-1},{k,1,j-1}] (* somehow i>j>k is about 60x faster than doing i<j<k !!! *)
(* This sparser table is slower
tmp=Table[1.-Exp[-ds[[i]]ds[[j]]],{i,1,n-1},{j,i+1,n}];
(* tmp[[a,b]] is now with ds[[a]]*ds[[a+b]] *)
Sum[tmp[[i,j-i]]*tmp[[j,k-j]]*tmp[[i,k-i]],{i,1,n-2},{j,i+1,n-1},{k,j+1,n}]
*)
];
(* gdata[[ tau index, n index, run index , {ntau, #tris, ds} ]] *)
avgAndProp=ParallelMap[{getProperty[#[[3]]],Mean[#[[2,1;;-1]]]}&,gdata[[2,2,1;;100]]];
Show[ListPlot[avgAndProp,AxesOrigin->{0,0},AxesLabel->{"degree-sequence-property","<#triangles>"},AspectRatio->1],Plot[x,{x,1,1000}]]
(* ::Subsection:: *)
(*Plot triangle count over "time" in Markov chain instances*)
numPlots=20;
selectedData=gdata[[1,-1]][[-numPlots;;-1]];
measureSkip=1;
minCount=Min[Map[Min[#[[2]]]&,selectedData]];
maxCount=Max[Map[Max[#[[2]]]&,selectedData]];
maxTime=Max[Map[Length[#[[2]]]&,selectedData]];
skipPts=Max[1,Round[maxTime/200]]; (* Plotting every point is slow. Plot only once per `skipPts` timesteps *)
coarseData=Map[#[[2,1;;-1;;skipPts]]&,selectedData];
labels=Map["{n,tau} = "<>ToString[#[[1]]]&,selectedData];
ListPlot[coarseData,Joined->True,PlotRange->{minCount,maxCount},DataRange->{0,measureSkip*maxTime},PlotLegends->labels]
(* Map[ListPlot[#,Joined->True,PlotRange\[Rule]{minCount,maxCount},DataRange\[Rule]{0,maxTime}]&,coarseData] *)
(* ::Subsection:: *)
(*Compute 'mixing time'*)
(* Compute average of last part and check when the value drops below that for the first time *)
getMixingTime[values_]:=Module[{avg},
(* average over the last 20 percent *)
avg=Mean[values[[-Round[Length[values]/5];;-1]]];
FirstPosition[values,_?(#<=avg&)][[1]]
]
(* gdata[[ tau index, n index, run index , {ntau, #tris, ds} ]] *)
measureSkip=1;
mixingTimes=Map[{#[[1,1]],(1/#[[1,1]])measureSkip * getMixingTime[#[[2]]]}&,gdata,{3}];
mixingTimesBars=Map[
{{#[[1,1]],Mean[#[[All,2]]]},ErrorBar[StandardDeviation[#[[All,2]]]/Sqrt[Length[#]]]}&
,mixingTimes,{2}];
ErrorListPlot[mixingTimesBars,Joined->True,PlotMarkers->Automatic,AxesLabel->{"n","~~mixing time divided by n"},PlotLegends->taulabels]
(* For n fixed, look at function of tau *)
measureSkip=1;
mixingTimes=Map[{#[[1,2]],(1/#[[1,1]])measureSkip * getMixingTime[#[[2]]]}&,gdata,{3}];
mixingTimesBars=Map[
{{#[[1,1]],Mean[#[[All,2]]]},ErrorBar[StandardDeviation[#[[All,2]]]]}&
,mixingTimes[[All,-1]],{1}];
Show[
ErrorListPlot[mixingTimesBars,Joined->True,PlotMarkers->Automatic,AxesLabel->{"tau","~~mixing time divided by n, for n = 1000"},PlotRange->{{2,3},{0,30}}]
,Plot[(32-26(tau-2)),{tau,2,3}]]
(* ::Subsection:: *)
(*Triangle exponent: Plot average #triangles vs n*)
(* When importing from exponent-only-data file *)
gsraw=Import[NotebookDirectory[]<>"data/graphdata_partial.m"];
gsraw=SortBy[gsraw,#[[1,1]]&]; (* Sort by n *)
averagesGrouped=GatherBy[gsraw,{#[[1,2]]&,#[[1,1]]&}];
(* When importing from general file *)
averages=Map[{#[[1]],Mean[#[[2,1;;-1]]]}&,gsraw];
(* averages=SortBy[averages,#[[1,1]]&]; (* Sort by n *) *)
averagesGrouped=GatherBy[averages,{#[[1,2]]&,#[[1,1]]&}]; (* Split by n,tau *)
(* averagesGrouped[[ tau index, n index, run index , {ntau, avgtri} ]] *)
nlabels=Map["n = "<>ToString[#]&,averagesGrouped[[1,All,1,1,1]]];
taulabels=Map["tau = "<>ToString[#]&,averagesGrouped[[All,1,1,1,2]]];
averagesErrorBars=Map[
{{#[[1,1,1]],Mean[#[[All,2]]]},
ErrorBar[StandardDeviation[#[[All,2]]]]
}&,averagesGrouped,{2}];
ErrorListPlot[averagesErrorBars,Joined->True,PlotMarkers->Automatic,PlotRange->All,AxesLabel->{"n","\[LeftAngleBracket]triangles\[RightAngleBracket]"},PlotLegends->taulabels]
ListLogLogPlot[averagesErrorBars[[All,All,1]],Joined->True,PlotMarkers->Automatic,AxesLabel->{"n","\[LeftAngleBracket]triangles\[RightAngleBracket]"},PlotLegends->taulabels]
(* ::Subsection:: *)
(*Fitting the log-log-plot*)
loglogdata=Log[averagesErrorBars[[All,All,1]]];
fits=Map[Fit[#,{1,logn},logn]&,loglogdata];
fitsExtra=Map[LinearModelFit[#,logn,logn]&,loglogdata];
fitsExtra[[1]]["ParameterConfidenceIntervalTable"]
fitsExtra[[1]]["BestFitParameters"]
fitsExtra[[1]]["ParameterErrors"]
fitsExtra[[1]]["ParameterConfidenceIntervals"]
Show[ListLogLogPlot[averagesErrorBars[[All,All,1]],Joined->True,PlotMarkers->Automatic,AxesLabel->{"n","\[LeftAngleBracket]triangles\[RightAngleBracket]"},PlotLegends->taulabels],Plot[fits,{logn,1,2000}]]
tauValues=averagesGrouped[[All,1,1,1,2]];
exponents=Transpose[{tauValues,fits[[All,2,1]]}];
Show[ListPlot[exponents,Joined->True,PlotMarkers->Automatic,AxesLabel->{"tau","triangle-law-exponent"},PlotRange->{{2,3},{0,1.6}}],Plot[3/2(3-tau),{tau,2,3}]]
tauValues=averagesGrouped[[All,1,1,1,2]];
exponentsErrorBars=Map[{{#[[1]],#[[2]]["BestFitParameters"][[2]]},ErrorBar[#[[2]]["ParameterConfidenceIntervals"][[2]]-#[[2]]["BestFitParameters"][[2]]]}&,
Transpose[{tauValues,fitsExtra}]];
Show[ErrorListPlot[exponentsErrorBars,Joined->True,PlotMarkers->Automatic,AxesLabel->{"tau","triangle-law-exponent"},PlotRange->{{2,3},{0,1.6}}],Plot[3/2(3-tau),{tau,2,3}]]
(* ::Subsection:: *)
(*Plot #triangles distribution for specific (n,tau)*)
plotRangeByTau[tau_]:=Piecewise[{{{0,30000},tau<2.3},{{0,4000},2.3<tau<2.7},{{0,800},tau>2.7}},Automatic]
histograms=Map[Histogram[#[[All,2]],PlotRange->{plotRangeByTau[#[[1,1,2]]],Automatic}]&,averagesGrouped,{2}];
(* TableForm[histograms,TableHeadings->{taulabels,nlabels}] *)
TableForm[Transpose[histograms],TableHeadings->{nlabels,taulabels}]
(* ::Section:: *)
(*Greedy configuration model*)
(* ::Subsection:: *)
(*#triangles(GCM) distribution vs #triangles(SwitchChain)*)
timeWindow=Round[Length[gdata[[1,1,1,2]]]/10];
getStats[run_]:=Module[{avg,stddev},
avg=N[Mean[run[[2,-timeWindow;;-1]]]];
stddev=N[StandardDeviation[run[[2,timeWindow;;-1]]]];
{run[[1]],stddev/avg,(run[[2,1]])/avg,Map[N[#/avg]&,run[[4]]]}
]
stats=Map[getStats,gdata,{3}];
histograms=Map[Histogram[{#[[1,4]]},PlotRange->{{0,2},Automatic},PlotLabel->"ErdosGallai="<>ToString[NumberForm[#[[1,3]],3]]<>"\[Cross]average. stddev="<>ToString[NumberForm[#[[1,2]],3]]<>"\[Cross]average"]&,stats,{2}];
TableForm[histograms,TableHeadings->{taulabels,nlabels}]
(* ::Subsection:: *)
(*Greedy CM success rates*)
(* gdata[[ tau index, n index, run index , {ntau, #tris, ds, greedyTriangles} ]] *)
successrates=Map[{Length[#[[4]]],Length[#[[5]]]}&,gdata,{3}];
successrates=Map[Transpose,successrates,{2}];
successratesDelta=Map[Length[#[[5]]]-Length[#[[4]]]&,gdata,{3}];
rateHistograms=Map[Histogram[#,{10},PlotRange->{{0,100},Automatic}]&,successrates,{2}];
TableForm[rateHistograms,TableHeadings->{taulabels,nlabels}]
rateHistograms=Map[Histogram[#,{10},PlotRange->{{-100,100},Automatic}]&,successratesDelta,{2}];
TableForm[rateHistograms,TableHeadings->{taulabels,nlabels}]
(*TableForm[Transpose[rateHistograms],TableHeadings->{nlabels,taulabels}]*)
|