Changeset - 28b33414825e
[Not reviewed]
0 2 0
Tom Bannink - 8 years ago 2017-05-15 17:13:00
tombannink@gmail.com
Add initial code for degree-structure-plots
2 files changed with 26 insertions and 1 deletions:
0 comments (0 inline, 0 general)
cpp/graph.hpp
Show inline comments
 
@@ -47,24 +47,26 @@ class Graph {
 
            v.clear();
 
        badj.resize(n);
 
        for (auto &v : badj) {
 
            v.resize(n);
 
            v.assign(n, false);
 
        }
 
    }
 

	
 
    unsigned int edgeCount() const { return edges.size(); }
 

	
 
    const Edge &getEdge(unsigned int i) const { return edges[i].e; }
 

	
 
    const auto& getAdj() const { return adj; }
 

	
 
    // When the degree sequence is not graphics, the Graph can be
 
    // in any state, it is not neccesarily empty
 
    bool createFromDegreeSequence(const DegreeSequence &d) {
 
        // Havel-Hakimi algorithm
 
        // Based on Erdos-Gallai theorem
 

	
 
        unsigned int n = d.size();
 

	
 
        // degree, vertex index
 
        std::vector<std::pair<unsigned int, unsigned int>> degrees(n);
 
        for (unsigned int i = 0; i < n; ++i) {
 
            degrees[i].first = d[i];
cpp/switchchain.cpp
Show inline comments
 
#include "exports.hpp"
 
#include "graph.hpp"
 
#include "powerlaw.hpp"
 
#include <algorithm>
 
#include <array>
 
#include <fstream>
 
#include <iostream>
 
#include <numeric>
 
#include <random>
 
#include <vector>
 

	
 
// Its assumed that u,v are distinct.
 
// Check if all four vertices are distinct
 
bool edgeConflicts(const Edge& e1, const Edge& e2) {
 
    return (e1.u == e2.u || e1.u == e2.v || e1.v == e2.u || e1.v == e2.v);
 
}
 

	
 
@@ -54,24 +55,45 @@ class SwitchChain {
 
        // 3) e1.u - e2.v and e1.v - e2.u
 
        bool switchType = permutationDistribution(mt);
 
        return g.exchangeEdges(e1index, e2index, switchType);
 
    }
 

	
 
    Graph g;
 
    std::mt19937 mt;
 
    std::uniform_int_distribution<> edgeDistribution;
 
    //std::uniform_int_distribution<> permutationDistribution;
 
    std::bernoulli_distribution permutationDistribution;
 
};
 

	
 
void getTriangleDegrees(const Graph& g) {
 
    std::vector<std::array<std::size_t,3>> trids;
 
    const auto& adj = g.getAdj();
 
    int triangles = 0;
 
    for (auto& v : adj) {
 
        for (unsigned int i = 0; i < v.size(); ++i) {
 
            for (unsigned int j = i + 1; j < v.size(); ++j) {
 
                if (g.hasEdge({v[i], v[j]})) {
 
                    ++triangles;
 
                    std::array<std::size_t, 3> ds = {v.size(), adj[v[i]].size(),
 
                                                     adj[v[j]].size()};
 
                    std::sort(ds.begin(), ds.end());
 
                    trids.push_back(ds);
 
                }
 
            }
 
        }
 
    }
 
    assert(triangles % 3 == 0);
 
    return;
 
}
 

	
 
//
 
// Assumes degree sequence does NOT contain any zeroes!
 
//
 
// method2 = true  -> take highest degree and finish its pairing completely
 
// method2 = false -> take new highest degree after every pairing
 
bool greedyConfigurationModel(DegreeSequence& ds, Graph& g, auto& rng, bool method2) {
 
    // Similar to Havel-Hakimi but instead of pairing up with the highest ones
 
    // that remain, simply pair up with random ones
 
    unsigned int n = ds.size();
 

	
 
    // degree, vertex index
 
    std::vector<std::pair<unsigned int, unsigned int>> degrees(n);
 
@@ -192,25 +214,25 @@ int main() {
 
    bool outputComma = false;
 

	
 
    for (int numVertices = 200; numVertices <= 2000; numVertices += 400) {
 
        for (float tau : tauValues) {
 

	
 
            DegreeSequence ds(numVertices);
 
            powerlaw_distribution degDist(tau, 1, numVertices);
 
            //std::poisson_distribution<> degDist(12);
 

	
 
            // For a single n,tau take samples over several instances of
 
            // the degree distribution.
 
            // 500 samples seems to give reasonable results
 
            for (int degreeSample = 0; degreeSample < 200; ++degreeSample) {
 
            for (int degreeSample = 0; degreeSample < 1; ++degreeSample) {
 
                // Generate a graph
 
                // might require multiple tries
 
                for (int i = 1; ; ++i) {
 
                    std::generate(ds.begin(), ds.end(),
 
                                  [&degDist, &rng] { return degDist(rng); });
 
                    // First make the sum even
 
                    unsigned int sum = std::accumulate(ds.begin(), ds.end(), 0);
 
                    if (sum % 2) {
 
                        continue;
 
                        // Can we do this: ??
 
                        ds.back()++;
 
                    }
 
@@ -268,24 +290,25 @@ int main() {
 
                std::cout << "Running n = " << numVertices << ", tau = " << tau
 
                          << ". \t" << std::flush;
 

	
 
                //int mixingTime = (32.0f - 26.0f*(tau - 2.0f)) * numVertices; //40000;
 
                //constexpr int measurements = 50;
 
                //constexpr int measureSkip =
 
                //    200; // Take a sample every ... steps
 
                int mixingTime = 0;
 
                constexpr int measurements = 50000;
 
                constexpr int measureSkip = 1;
 

	
 

	
 

	
 
                int movesDone = 0;
 

	
 
                int triangles[measurements];
 

	
 
                for (int i = 0; i < mixingTime; ++i) {
 
                    if (chain.doMove())
 
                        ++movesDone;
 
                }
 
                for (int i = 0; i < measurements; ++i) {
 
                    for (int j = 0; j < measureSkip; ++j)
 
                        if (chain.doMove())
 
                            ++movesDone;
0 comments (0 inline, 0 general)