Changeset - 28b33414825e
[Not reviewed]
0 2 0
Tom Bannink - 8 years ago 2017-05-15 17:13:00
tombannink@gmail.com
Add initial code for degree-structure-plots
2 files changed with 26 insertions and 1 deletions:
0 comments (0 inline, 0 general)
cpp/graph.hpp
Show inline comments
 
#pragma once
 
#include <algorithm>
 
#include <cassert>
 
#include <numeric>
 
#include <vector>
 
#include <iostream>
 

	
 
class Edge {
 
  public:
 
    unsigned int u, v;
 

	
 
    bool operator==(const Edge &e) const { return u == e.u && v == e.v; }
 
};
 

	
 
class StoredEdge {
 
  public:
 
    Edge e;
 
    // indices into adjacency lists
 
    // adj[u][u2vindex] = v;
 
    // adj[v][v2uindex] = u;
 
    unsigned int u2vindex, v2uindex;
 
};
 

	
 
class DiDegree {
 
  public:
 
    unsigned int in;
 
    unsigned int out;
 
};
 

	
 
typedef std::vector<unsigned int> DegreeSequence;
 
typedef std::vector<DiDegree> DiDegreeSequence;
 

	
 
class Graph {
 
  public:
 
    Graph() {}
 

	
 
    Graph(unsigned int n) { reset(n); }
 

	
 
    ~Graph() {}
 

	
 
    // Clears any previous edges and create
 
    // an empty graph on n vertices
 
    void reset(unsigned int n) {
 
        edges.clear();
 
        adj.resize(n);
 
        for (auto &v : adj)
 
            v.clear();
 
        badj.resize(n);
 
        for (auto &v : badj) {
 
            v.resize(n);
 
            v.assign(n, false);
 
        }
 
    }
 

	
 
    unsigned int edgeCount() const { return edges.size(); }
 

	
 
    const Edge &getEdge(unsigned int i) const { return edges[i].e; }
 

	
 
    const auto& getAdj() const { return adj; }
 

	
 
    // When the degree sequence is not graphics, the Graph can be
 
    // in any state, it is not neccesarily empty
 
    bool createFromDegreeSequence(const DegreeSequence &d) {
 
        // Havel-Hakimi algorithm
 
        // Based on Erdos-Gallai theorem
 

	
 
        unsigned int n = d.size();
 

	
 
        // degree, vertex index
 
        std::vector<std::pair<unsigned int, unsigned int>> degrees(n);
 
        for (unsigned int i = 0; i < n; ++i) {
 
            degrees[i].first = d[i];
 
            degrees[i].second = i;
 
        }
 

	
 
        // Clear the graph
 
        reset(n);
 

	
 
        while (!degrees.empty()) {
 
            std::sort(degrees.begin(), degrees.end());
 
            // Highest degree is at back of the vector
 
            // Take it out
 
            unsigned int degree = degrees.back().first;
 
            unsigned int u = degrees.back().second;
 
            degrees.pop_back();
 
            if (degree > degrees.size()) {
 
                return false;
 
            }
 
            // Now loop over the last 'degree' entries of degrees
 
            auto rit = degrees.rbegin();
 
            for (unsigned int i = 0; i < degree; ++i) {
 
                if (rit->first == 0 || !addEdge({u, rit->second})) {
 
                    return false;
 
                }
 
                rit->first--;
 
                ++rit;
 
            }
 
        }
 
        return true;
 
    }
 

	
 
    DegreeSequence getDegreeSequence() const {
 
        DegreeSequence d(adj.size());
 
        std::transform(adj.begin(), adj.end(), d.begin(),
 
                       [](const auto &u) { return u.size(); });
 
        return d;
 
    }
 

	
 
    // Assumes valid vertex indices
 
    bool hasEdge(const Edge& e_) const {
 
        return badj[e_.u][e_.v];
 
        //Edge e;
 
        //if (adj[e_.u].size() <= adj[e_.v].size()) {
 
        //    e = e_;
 
        //} else {
 
        //    e.u = e_.v;
 
        //    e.v = e_.u;
 
        //}
 
        //for (unsigned int v : adj[e.u]) {
 
        //    if (v == e.v)
 
        //        return true;
 
        //}
 
        //return false;
 
    }
 

	
 
    bool addEdge(const Edge &e) {
 
        if (e.u >= adj.size() || e.v >= adj.size())
 
            return false;
 
        if (hasEdge(e))
 
            return false;
 
        StoredEdge se;
 
        se.e = e;
 
        se.u2vindex = adj[e.u].size();
 
        se.v2uindex = adj[e.v].size();
 
        adj[e.u].push_back(e.v);
 
        adj[e.v].push_back(e.u);
 
        edges.push_back(se);
 
        badj[e.u][e.v] = 1;
 
        badj[e.v][e.u] = 1;
 
        return true;
 
    }
 

	
 
    // There are two possible edge exchanges
 
    // switchType indicates which one is desired
 
    // Returns false if the switch is not possible
 
    bool exchangeEdges(unsigned int e1index, unsigned int e2index, bool switchType) {
 
        StoredEdge &se1 = edges[e1index];
 
        StoredEdge &se2 = edges[e2index];
 
        const Edge &e1 = se1.e;
 
        const Edge &e2 = se2.e;
 

	
 
        // The new edges configuration is one of these two
 
        // A) e1.u - e2.u and e1.v - e2.v
 
        // B) e1.u - e2.v and e2.u - e1.v
 
        // Note that to do (B) instead of (A), simply swap e2.u <-> e2.v
 
        // Now we can just consider switch type (A)
 
        if (switchType) {
 
            std::swap(se2.e.u, se2.e.v);
 
            std::swap(se2.u2vindex, se2.v2uindex);
 
        }
 

	
 
        // First check if the move is possible
 
        if (hasEdge({e1.u, e2.u}) || hasEdge({e1.v, e2.v}))
 
            return false; // conflicting edges
 

	
 
        // Clear old edges
 
        badj[e1.u][e1.v] = false;
 
        badj[e1.v][e1.u] = false;
 
        badj[e2.u][e2.v] = false;
 
        badj[e2.v][e2.u] = false;
 

	
 
        adj[e1.u][se1.u2vindex] = e2.u;
 
        adj[e1.v][se1.v2uindex] = e2.v;
 
        adj[e2.u][se2.u2vindex] = e1.u;
 
        adj[e2.v][se2.v2uindex] = e1.v;
 
        // Carefull: when updating se1,se2 also e1 and 2e change
 
        std::swap(se1.e.v, se2.e.u);
 
        std::swap(se1.v2uindex, se2.u2vindex);
 
        // e1 and e2 now contain the NEW edges!!
 
        badj[e1.u][e1.v] = true;
 
        badj[e1.v][e1.u] = true;
 
        badj[e2.u][e2.v] = true;
 
        badj[e2.v][e2.u] = true;
 
        return true;
 
    }
 

	
 
    int countTriangles() const {
 
        int triangles = 0;
 
        for (auto& v : adj) {
 
            for (unsigned int i = 0; i < v.size(); ++i) {
 
                for (unsigned int j = i + 1; j < v.size(); ++j) {
 
                    if (hasEdge({v[i], v[j]})) {
 
                        ++triangles;
 
                    }
 
                }
 
            }
 
        }
 
        assert(triangles % 3 == 0);
 
        return triangles / 3;
 
    }
 

	
 
    // Should return zero
 
    int consistencyCheck() const {
 
        // Check if info in 'edges' is present
 
        // in adj and badj
 
        for (auto &se : edges) {
 
            if (se.e.u >= adj.size() || se.e.v >= adj.size())
 
                return 1;
 
            if (!badj[se.e.u][se.e.v])
 
                return 2;
 
            if (!badj[se.e.v][se.e.u])
 
                return 3;
 
            if (se.u2vindex >= adj[se.e.u].size())
 
                return 4;
 
            if (se.v2uindex >= adj[se.e.v].size())
 
                return 5;
 
            if (adj[se.e.u][se.u2vindex] != se.e.v)
 
                return 6;
 
            if (adj[se.e.v][se.v2uindex] != se.e.u)
 
                return 7;
 
        }
 
        // Check if info in 'adj' is present
 
        // in badj and edges
 
        for (unsigned int u = 0; u < adj.size(); ++u) {
 
            for (unsigned int v : adj[u]) {
 
                if (!badj[u][v])
 
                    return 8;
 
                if (!badj[v][u])
 
                    return 9;
 
                // Check if it appears in edges
 
                bool found = false;
 
                for (auto &se : edges) {
 
                    if ((se.e.u == u && se.e.v == v) ||
 
                        (se.e.u == v && se.e.v == u)) {
 
                        found = true;
 
                        break;
 
                    }
 
                }
 
                if (!found)
 
                    return 10;
 
            }
 
        }
 
        // Check if info in 'badj' is present
 
        // in adj and edges
 
        // TODO
 
        return 0;
 
    }
 

	
 
  private:
 
    // Graph is saved in three formats for speed
 
    // They should be kept consistent at all times
 
    std::vector<std::vector<unsigned int>> adj;
cpp/switchchain.cpp
Show inline comments
 
#include "exports.hpp"
 
#include "graph.hpp"
 
#include "powerlaw.hpp"
 
#include <algorithm>
 
#include <array>
 
#include <fstream>
 
#include <iostream>
 
#include <numeric>
 
#include <random>
 
#include <vector>
 

	
 
// Its assumed that u,v are distinct.
 
// Check if all four vertices are distinct
 
bool edgeConflicts(const Edge& e1, const Edge& e2) {
 
    return (e1.u == e2.u || e1.u == e2.v || e1.v == e2.u || e1.v == e2.v);
 
}
 

	
 
class SwitchChain {
 
  public:
 
    SwitchChain()
 
        : mt(std::random_device{}()), permutationDistribution(0.5)
 
    // permutationDistribution(0, 2)
 
    {
 
        // random_device uses hardware entropy if available
 
        // std::random_device rd;
 
        // mt.seed(rd());
 
    }
 
    ~SwitchChain() {}
 

	
 
    bool initialize(const Graph& gstart) {
 
        if (gstart.edgeCount() == 0)
 
            return false;
 
        g = gstart;
 
        edgeDistribution.param(
 
            std::uniform_int_distribution<>::param_type(0, g.edgeCount() - 1));
 
        return true;
 
    }
 

	
 
    bool doMove() {
 
        int e1index, e2index;
 
        int timeout = 0;
 
        // Keep regenerating while conflicting edges
 
        do {
 
            e1index = edgeDistribution(mt);
 
            e2index = edgeDistribution(mt);
 
            if (++timeout % 100 == 0) {
 
                std::cerr << "Warning: sampled " << timeout
 
                          << " random edges but they keep conflicting.\n";
 
            }
 
        } while (edgeConflicts(g.getEdge(e1index), g.getEdge(e2index)));
 

	
 
        // Consider one of the three possible permutations
 
        // 1) e1.u - e1.v and e2.u - e2.v (original)
 
        // 2) e1.u - e2.u and e1.v - e2.v
 
        // 3) e1.u - e2.v and e1.v - e2.u
 
        bool switchType = permutationDistribution(mt);
 
        return g.exchangeEdges(e1index, e2index, switchType);
 
    }
 

	
 
    Graph g;
 
    std::mt19937 mt;
 
    std::uniform_int_distribution<> edgeDistribution;
 
    //std::uniform_int_distribution<> permutationDistribution;
 
    std::bernoulli_distribution permutationDistribution;
 
};
 

	
 
void getTriangleDegrees(const Graph& g) {
 
    std::vector<std::array<std::size_t,3>> trids;
 
    const auto& adj = g.getAdj();
 
    int triangles = 0;
 
    for (auto& v : adj) {
 
        for (unsigned int i = 0; i < v.size(); ++i) {
 
            for (unsigned int j = i + 1; j < v.size(); ++j) {
 
                if (g.hasEdge({v[i], v[j]})) {
 
                    ++triangles;
 
                    std::array<std::size_t, 3> ds = {v.size(), adj[v[i]].size(),
 
                                                     adj[v[j]].size()};
 
                    std::sort(ds.begin(), ds.end());
 
                    trids.push_back(ds);
 
                }
 
            }
 
        }
 
    }
 
    assert(triangles % 3 == 0);
 
    return;
 
}
 

	
 
//
 
// Assumes degree sequence does NOT contain any zeroes!
 
//
 
// method2 = true  -> take highest degree and finish its pairing completely
 
// method2 = false -> take new highest degree after every pairing
 
bool greedyConfigurationModel(DegreeSequence& ds, Graph& g, auto& rng, bool method2) {
 
    // Similar to Havel-Hakimi but instead of pairing up with the highest ones
 
    // that remain, simply pair up with random ones
 
    unsigned int n = ds.size();
 

	
 
    // degree, vertex index
 
    std::vector<std::pair<unsigned int, unsigned int>> degrees(n);
 
    for (unsigned int i = 0; i < n; ++i) {
 
        degrees[i].first = ds[i];
 
        degrees[i].second = i;
 
    }
 

	
 
    std::vector<decltype(degrees.begin())> available;
 
    available.reserve(n);
 

	
 
    // Clear the graph
 
    g.reset(n);
 

	
 
    while (!degrees.empty()) {
 
        std::shuffle(degrees.begin(), degrees.end(), rng);
 
        // Get the highest degree:
 
        // If there are multiple highest ones, we pick a random one,
 
        // ensured by the shuffle.
 
        // The shuffle is needed anyway for the remaining part
 
        unsigned int dmax = 0;
 
        auto uIter = degrees.begin();
 
        for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) {
 
            if (iter->first >= dmax) {
 
                dmax = iter->first;
 
                uIter = iter;
 
            }
 
        }
 

	
 
        if (dmax > degrees.size() - 1)
 
            return false;
 

	
 
        if (dmax == 0) {
 
            std::cerr << "ERROR 1 in GCM.\n";
 
        }
 

	
 
        unsigned int u = uIter->second;
 

	
 
        if (method2) {
 
            // Take the highest degree out of the vector
 
            degrees.erase(uIter);
 

	
 
            // Now assign randomly to the remaining vertices
 
            // Since its shuffled, we can pick the first 'dmax' ones
 
            auto vIter = degrees.begin();
 
            while (dmax--) {
 
                if (vIter->first == 0)
 
                    std::cerr << "ERROR in GCM2.\n";
 
                if (!g.addEdge({u, vIter->second}))
 
                    std::cerr << "ERROR. Could not add edge in GCM2.\n";
 
                vIter->first--;
 
                if (vIter->first == 0)
 
                    vIter = degrees.erase(vIter);
 
                else
 
                    vIter++;
 
            }
 
        } else {
 
            // Pair with a random vertex that is not u itself and to which
 
            // u has not paired yet!
 
            available.clear();
 
            for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) {
 
                if (iter->second != u && !g.hasEdge({u, iter->second}))
 
                    available.push_back(iter);
 
            }
 
            if (available.empty())
 
                return false;
 
            std::uniform_int_distribution<> distr(0, available.size() - 1);
 
            auto vIter = available[distr(rng)];
 
            // pair u to v
 
            if (vIter->first == 0)
 
                std::cerr << "ERROR 2 in GCM1.\n";
 
            if (!g.addEdge({u, vIter->second}))
 
                std::cerr << "ERROR. Could not add edge in GCM1.\n";
 
            // Purge anything with degree zero
 
            // Be careful with invalidating the other iterator!
 
            // Degree of u is always greater or equal to the degree of v
 
            if (dmax == 1) {
 
                // Remove both
 
                // Erasure invalidates all iterators AFTER the erased one
 
                if (vIter > uIter) {
 
                    degrees.erase(vIter);
 
                    degrees.erase(uIter);
 
                } else {
 
                    degrees.erase(uIter);
 
                    degrees.erase(vIter);
 
                }
 
            } else {
 
                // Remove only v if it reaches zero
 
                uIter->first--;
 
                vIter->first--;
 
                if (vIter->first == 0)
 
                    degrees.erase(vIter);
 
            }
 
            //degrees.erase(std::remove_if(degrees.begin(), degrees.end(),
 
            //                             [](auto x) { return x.first == 0; }));
 
        }
 
    }
 
    return true;
 
}
 

	
 
int main() {
 
    // Generate a random degree sequence
 
    std::mt19937 rng(std::random_device{}());
 

	
 
    // Goal:
 
    // Degrees follow a power-law distribution with some parameter tau
 
    // Expect:  #tri = const * n^{ something }
 
    // The goal is to find the 'something' by finding the number of triangles
 
    // for different values of n and tau
 
    float tauValues[] = {2.1f, 2.2f, 2.3f, 2.4f, 2.5f, 2.6f, 2.7f, 2.8f, 2.9f};
 

	
 
    Graph g;
 
    Graph g1;
 
    Graph g2;
 

	
 
    std::ofstream outfile("graphdata.m");
 
    outfile << '{';
 
    bool outputComma = false;
 

	
 
    for (int numVertices = 200; numVertices <= 2000; numVertices += 400) {
 
        for (float tau : tauValues) {
 

	
 
            DegreeSequence ds(numVertices);
 
            powerlaw_distribution degDist(tau, 1, numVertices);
 
            //std::poisson_distribution<> degDist(12);
 

	
 
            // For a single n,tau take samples over several instances of
 
            // the degree distribution.
 
            // 500 samples seems to give reasonable results
 
            for (int degreeSample = 0; degreeSample < 200; ++degreeSample) {
 
            for (int degreeSample = 0; degreeSample < 1; ++degreeSample) {
 
                // Generate a graph
 
                // might require multiple tries
 
                for (int i = 1; ; ++i) {
 
                    std::generate(ds.begin(), ds.end(),
 
                                  [&degDist, &rng] { return degDist(rng); });
 
                    // First make the sum even
 
                    unsigned int sum = std::accumulate(ds.begin(), ds.end(), 0);
 
                    if (sum % 2) {
 
                        continue;
 
                        // Can we do this: ??
 
                        ds.back()++;
 
                    }
 

	
 
                    if (g.createFromDegreeSequence(ds))
 
                        break;
 

	
 
                    // When 10 tries have not worked, output a warning
 
                    if (i % 10 == 0) {
 
                        std::cerr << "Warning: could not create graph from "
 
                                     "degree sequence. Trying again...\n";
 
                    }
 
                }
 

	
 
                //
 
                // Test the GCM1 and GCM2 success rate
 
                //
 
                std::vector<int> greedyTriangles1;
 
                std::vector<int> greedyTriangles2;
 
                int successrate1 = 0;
 
                int successrate2 = 0;
 
                for (int i = 0; i < 100; ++i) {
 
                    Graph gtemp;
 
                    // Take new highest degree every time
 
                    if (greedyConfigurationModel(ds, gtemp, rng, false)) {
 
                        ++successrate1;
 
                        greedyTriangles1.push_back(gtemp.countTriangles());
 
                        g1 = gtemp;
 
                    }
 
                    // Finish all pairings of highest degree first
 
                    if (greedyConfigurationModel(ds, gtemp, rng, true)) {
 
                        ++successrate2;
 
                        greedyTriangles2.push_back(gtemp.countTriangles());
 
                        g2 = gtemp;
 
                    }
 
                }
 

	
 
                SwitchChain chain;
 
                if (!chain.initialize(g)) {
 
                    std::cerr << "Could not initialize Markov chain.\n";
 
                    return 1;
 
                }
 

	
 
                SwitchChain chain1, chain2;
 
                bool do1 = true, do2 = true;
 
                if (!chain1.initialize(g1)) {
 
                    std::cerr << "Could not initialize Markov chain.\n";
 
                    do1 = false;
 
                }
 
                if (!chain2.initialize(g2)) {
 
                    std::cerr << "Could not initialize Markov chain.\n";
 
                    do2 = false;
 
                }
 

	
 
                std::cout << "Running n = " << numVertices << ", tau = " << tau
 
                          << ". \t" << std::flush;
 

	
 
                //int mixingTime = (32.0f - 26.0f*(tau - 2.0f)) * numVertices; //40000;
 
                //constexpr int measurements = 50;
 
                //constexpr int measureSkip =
 
                //    200; // Take a sample every ... steps
 
                int mixingTime = 0;
 
                constexpr int measurements = 50000;
 
                constexpr int measureSkip = 1;
 

	
 

	
 

	
 
                int movesDone = 0;
 

	
 
                int triangles[measurements];
 

	
 
                for (int i = 0; i < mixingTime; ++i) {
 
                    if (chain.doMove())
 
                        ++movesDone;
 
                }
 
                for (int i = 0; i < measurements; ++i) {
 
                    for (int j = 0; j < measureSkip; ++j)
 
                        if (chain.doMove())
 
                            ++movesDone;
 
                    triangles[i] = chain.g.countTriangles();
 
                }
 

	
 
                std::cout << movesDone << '/' << mixingTime + measurements * measureSkip
 
                          << " moves succeeded ("
 
                          << 100.0f * float(movesDone) /
 
                                 float(mixingTime + measurements * measureSkip)
 
                          << "%).";
 
                //std::cout << std::endl;
 

	
 
                if (outputComma)
 
                    outfile << ',' << '\n';
 
                outputComma = true;
 

	
 
                std::sort(ds.begin(), ds.end());
 
                outfile << '{' << '{' << numVertices << ',' << tau << '}';
 
                outfile << ',' << triangles;
 
                outfile << ',' << ds;
 
                outfile << ',' << greedyTriangles1;
 
                outfile << ',' << greedyTriangles2;
 

	
 
                if (do1) {
 
                    movesDone = 0;
 
                    SwitchChain& c = chain1;
 
                    for (int i = 0; i < mixingTime; ++i) {
 
                        if (c.doMove())
 
                            ++movesDone;
 
                    }
 
                    for (int i = 0; i < measurements; ++i) {
 
                        for (int j = 0; j < measureSkip; ++j)
 
                            if (c.doMove())
 
                                ++movesDone;
 
                        triangles[i] = c.g.countTriangles();
 
                    }
 

	
 
                    std::cout << movesDone << '/' << mixingTime + measurements * measureSkip
 
                        << " moves succeeded ("
 
                        << 100.0f * float(movesDone) /
 
                        float(mixingTime + measurements * measureSkip)
 
                        << "%).";
 

	
 
                    outfile << ',' << triangles;
 
                }
 
                if (do2) {
 
                    movesDone = 0;
 
                    SwitchChain& c = chain2;
 
                    for (int i = 0; i < mixingTime; ++i) {
 
                        if (c.doMove())
 
                            ++movesDone;
 
                    }
 
                    for (int i = 0; i < measurements; ++i) {
 
                        for (int j = 0; j < measureSkip; ++j)
 
                            if (c.doMove())
 
                                ++movesDone;
 
                        triangles[i] = c.g.countTriangles();
 
                    }
 

	
 
                    std::cout << movesDone << '/' << mixingTime + measurements * measureSkip
 
                        << " moves succeeded ("
 
                        << 100.0f * float(movesDone) /
 
                        float(mixingTime + measurements * measureSkip)
 
                        << "%).";
 

	
 
                    outfile << ',' << triangles;
 
                }
 

	
 
                outfile << '}' << std::flush;
 

	
 
                std::cout << std::endl;
 
            }
 
        }
 
    }
 
    outfile << '}';
 
    return 0;
 
}
0 comments (0 inline, 0 general)