Changeset - 28b33414825e
[Not reviewed]
0 2 0
Tom Bannink - 8 years ago 2017-05-15 17:13:00
tombannink@gmail.com
Add initial code for degree-structure-plots
2 files changed with 26 insertions and 1 deletions:
0 comments (0 inline, 0 general)
cpp/graph.hpp
Show inline comments
 
@@ -53,12 +53,14 @@ class Graph {
 
    }
 

	
 
    unsigned int edgeCount() const { return edges.size(); }
 

	
 
    const Edge &getEdge(unsigned int i) const { return edges[i].e; }
 

	
 
    const auto& getAdj() const { return adj; }
 

	
 
    // When the degree sequence is not graphics, the Graph can be
 
    // in any state, it is not neccesarily empty
 
    bool createFromDegreeSequence(const DegreeSequence &d) {
 
        // Havel-Hakimi algorithm
 
        // Based on Erdos-Gallai theorem
 

	
cpp/switchchain.cpp
Show inline comments
 
#include "exports.hpp"
 
#include "graph.hpp"
 
#include "powerlaw.hpp"
 
#include <algorithm>
 
#include <array>
 
#include <fstream>
 
#include <iostream>
 
#include <numeric>
 
#include <random>
 
#include <vector>
 

	
 
@@ -60,12 +61,33 @@ class SwitchChain {
 
    std::mt19937 mt;
 
    std::uniform_int_distribution<> edgeDistribution;
 
    //std::uniform_int_distribution<> permutationDistribution;
 
    std::bernoulli_distribution permutationDistribution;
 
};
 

	
 
void getTriangleDegrees(const Graph& g) {
 
    std::vector<std::array<std::size_t,3>> trids;
 
    const auto& adj = g.getAdj();
 
    int triangles = 0;
 
    for (auto& v : adj) {
 
        for (unsigned int i = 0; i < v.size(); ++i) {
 
            for (unsigned int j = i + 1; j < v.size(); ++j) {
 
                if (g.hasEdge({v[i], v[j]})) {
 
                    ++triangles;
 
                    std::array<std::size_t, 3> ds = {v.size(), adj[v[i]].size(),
 
                                                     adj[v[j]].size()};
 
                    std::sort(ds.begin(), ds.end());
 
                    trids.push_back(ds);
 
                }
 
            }
 
        }
 
    }
 
    assert(triangles % 3 == 0);
 
    return;
 
}
 

	
 
//
 
// Assumes degree sequence does NOT contain any zeroes!
 
//
 
// method2 = true  -> take highest degree and finish its pairing completely
 
// method2 = false -> take new highest degree after every pairing
 
bool greedyConfigurationModel(DegreeSequence& ds, Graph& g, auto& rng, bool method2) {
 
@@ -198,13 +220,13 @@ int main() {
 
            powerlaw_distribution degDist(tau, 1, numVertices);
 
            //std::poisson_distribution<> degDist(12);
 

	
 
            // For a single n,tau take samples over several instances of
 
            // the degree distribution.
 
            // 500 samples seems to give reasonable results
 
            for (int degreeSample = 0; degreeSample < 200; ++degreeSample) {
 
            for (int degreeSample = 0; degreeSample < 1; ++degreeSample) {
 
                // Generate a graph
 
                // might require multiple tries
 
                for (int i = 1; ; ++i) {
 
                    std::generate(ds.begin(), ds.end(),
 
                                  [&degDist, &rng] { return degDist(rng); });
 
                    // First make the sum even
 
@@ -274,12 +296,13 @@ int main() {
 
                //    200; // Take a sample every ... steps
 
                int mixingTime = 0;
 
                constexpr int measurements = 50000;
 
                constexpr int measureSkip = 1;
 

	
 

	
 

	
 
                int movesDone = 0;
 

	
 
                int triangles[measurements];
 

	
 
                for (int i = 0; i < mixingTime; ++i) {
 
                    if (chain.doMove())
0 comments (0 inline, 0 general)