Changeset - 32c10aa21482
[Not reviewed]
0 2 1
Tom Bannink - 8 years ago 2017-06-10 20:51:44
tombannink@gmail.com
Move GCM construction to separate file
3 files changed with 121 insertions and 222 deletions:
0 comments (0 inline, 0 general)
cpp/graph_gcm.hpp
Show inline comments
 
new file 100644
 
#include "graph.hpp"
 
#include <algorithm>
 
#include <iostream>
 
#include <random>
 
#include <vector>
 

	
 
//
 
// Assumes degree sequence does NOT contain any zeroes!
 
//
 
// method2 = true  -> take highest degree and finish its pairing completely
 
// method2 = false -> take new highest degree after every pairing
 
template <typename RNG>
 
bool greedyConfigurationModel(DegreeSequence& ds, Graph& g, RNG& rng, bool method2) {
 
    // Similar to Havel-Hakimi but instead of pairing up with the highest ones
 
    // that remain, simply pair up with random ones
 
    unsigned int n = ds.size();
 

	
 
    // degree, vertex index
 
    std::vector<std::pair<unsigned int, unsigned int>> degrees(n);
 
    for (unsigned int i = 0; i < n; ++i) {
 
        degrees[i].first = ds[i];
 
        degrees[i].second = i;
 
    }
 

	
 
    std::vector<decltype(degrees.begin())> available;
 
    available.reserve(n);
 

	
 
    // Clear the graph
 
    g.reset(n);
 

	
 
    while (!degrees.empty()) {
 
        std::shuffle(degrees.begin(), degrees.end(), rng);
 
        // Get the highest degree:
 
        // If there are multiple highest ones, we pick a random one,
 
        // ensured by the shuffle.
 
        // The shuffle is needed anyway for the remaining part
 
        unsigned int dmax = 0;
 
        auto uIter = degrees.begin();
 
        for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) {
 
            if (iter->first >= dmax) {
 
                dmax = iter->first;
 
                uIter = iter;
 
            }
 
        }
 

	
 
        if (dmax > degrees.size() - 1)
 
            return false;
 

	
 
        if (dmax == 0) {
 
            std::cerr << "ERROR 1 in GCM.\n";
 
        }
 

	
 
        unsigned int u = uIter->second;
 

	
 
        if (method2) {
 
            // Take the highest degree out of the vector
 
            degrees.erase(uIter);
 

	
 
            // Now assign randomly to the remaining vertices
 
            // Since its shuffled, we can pick the first 'dmax' ones
 
            auto vIter = degrees.begin();
 
            while (dmax--) {
 
                if (vIter->first == 0)
 
                    std::cerr << "ERROR in GCM2.\n";
 
                if (!g.addEdge({u, vIter->second}))
 
                    std::cerr << "ERROR. Could not add edge in GCM2.\n";
 
                vIter->first--;
 
                if (vIter->first == 0)
 
                    vIter = degrees.erase(vIter);
 
                else
 
                    vIter++;
 
            }
 
        } else {
 
            // Pair with a random vertex that is not u itself and to which
 
            // u has not paired yet!
 
            available.clear();
 
            for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) {
 
                if (iter->second != u && !g.hasEdge({u, iter->second}))
 
                    available.push_back(iter);
 
            }
 
            if (available.empty())
 
                return false;
 
            std::uniform_int_distribution<> distr(0, available.size() - 1);
 
            auto vIter = available[distr(rng)];
 
            // pair u to v
 
            if (vIter->first == 0)
 
                std::cerr << "ERROR 2 in GCM1.\n";
 
            if (!g.addEdge({u, vIter->second}))
 
                std::cerr << "ERROR. Could not add edge in GCM1.\n";
 
            // Purge anything with degree zero
 
            // Be careful with invalidating the other iterator!
 
            // Degree of u is always greater or equal to the degree of v
 
            if (dmax == 1) {
 
                // Remove both
 
                // Erasure invalidates all iterators AFTER the erased one
 
                if (vIter > uIter) {
 
                    degrees.erase(vIter);
 
                    degrees.erase(uIter);
 
                } else {
 
                    degrees.erase(uIter);
 
                    degrees.erase(vIter);
 
                }
 
            } else {
 
                // Remove only v if it reaches zero
 
                uIter->first--;
 
                vIter->first--;
 
                if (vIter->first == 0)
 
                    degrees.erase(vIter);
 
            }
 
            //degrees.erase(std::remove_if(degrees.begin(), degrees.end(),
 
            //                             [](auto x) { return x.first == 0; }));
 
        }
 
    }
 
    return true;
 
}
 

	
 

	
cpp/switchchain.cpp
Show inline comments
 
#include "switchchain.hpp"
 
#include "exports.hpp"
 
#include "graph.hpp"
 
#include "powerlaw.hpp"
 
#include "graph_gcm.hpp"
 
#include "graph_spectrum.hpp"
 
#include "switchchain.hpp"
 
#include "powerlaw.hpp"
 
#include <algorithm>
 
#include <array>
 
#include <fstream>
 
@@ -32,116 +33,6 @@ void getTriangleDegrees(const Graph& g) {
 
    return;
 
}
 

	
 
//
 
// Assumes degree sequence does NOT contain any zeroes!
 
//
 
// method2 = true  -> take highest degree and finish its pairing completely
 
// method2 = false -> take new highest degree after every pairing
 
template <typename RNG>
 
bool greedyConfigurationModel(DegreeSequence& ds, Graph& g, RNG& rng, bool method2) {
 
    // Similar to Havel-Hakimi but instead of pairing up with the highest ones
 
    // that remain, simply pair up with random ones
 
    unsigned int n = ds.size();
 

	
 
    // degree, vertex index
 
    std::vector<std::pair<unsigned int, unsigned int>> degrees(n);
 
    for (unsigned int i = 0; i < n; ++i) {
 
        degrees[i].first = ds[i];
 
        degrees[i].second = i;
 
    }
 

	
 
    std::vector<decltype(degrees.begin())> available;
 
    available.reserve(n);
 

	
 
    // Clear the graph
 
    g.reset(n);
 

	
 
    while (!degrees.empty()) {
 
        std::shuffle(degrees.begin(), degrees.end(), rng);
 
        // Get the highest degree:
 
        // If there are multiple highest ones, we pick a random one,
 
        // ensured by the shuffle.
 
        // The shuffle is needed anyway for the remaining part
 
        unsigned int dmax = 0;
 
        auto uIter = degrees.begin();
 
        for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) {
 
            if (iter->first >= dmax) {
 
                dmax = iter->first;
 
                uIter = iter;
 
            }
 
        }
 

	
 
        if (dmax > degrees.size() - 1)
 
            return false;
 

	
 
        if (dmax == 0) {
 
            std::cerr << "ERROR 1 in GCM.\n";
 
        }
 

	
 
        unsigned int u = uIter->second;
 

	
 
        if (method2) {
 
            // Take the highest degree out of the vector
 
            degrees.erase(uIter);
 

	
 
            // Now assign randomly to the remaining vertices
 
            // Since its shuffled, we can pick the first 'dmax' ones
 
            auto vIter = degrees.begin();
 
            while (dmax--) {
 
                if (vIter->first == 0)
 
                    std::cerr << "ERROR in GCM2.\n";
 
                if (!g.addEdge({u, vIter->second}))
 
                    std::cerr << "ERROR. Could not add edge in GCM2.\n";
 
                vIter->first--;
 
                if (vIter->first == 0)
 
                    vIter = degrees.erase(vIter);
 
                else
 
                    vIter++;
 
            }
 
        } else {
 
            // Pair with a random vertex that is not u itself and to which
 
            // u has not paired yet!
 
            available.clear();
 
            for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) {
 
                if (iter->second != u && !g.hasEdge({u, iter->second}))
 
                    available.push_back(iter);
 
            }
 
            if (available.empty())
 
                return false;
 
            std::uniform_int_distribution<> distr(0, available.size() - 1);
 
            auto vIter = available[distr(rng)];
 
            // pair u to v
 
            if (vIter->first == 0)
 
                std::cerr << "ERROR 2 in GCM1.\n";
 
            if (!g.addEdge({u, vIter->second}))
 
                std::cerr << "ERROR. Could not add edge in GCM1.\n";
 
            // Purge anything with degree zero
 
            // Be careful with invalidating the other iterator!
 
            // Degree of u is always greater or equal to the degree of v
 
            if (dmax == 1) {
 
                // Remove both
 
                // Erasure invalidates all iterators AFTER the erased one
 
                if (vIter > uIter) {
 
                    degrees.erase(vIter);
 
                    degrees.erase(uIter);
 
                } else {
 
                    degrees.erase(uIter);
 
                    degrees.erase(vIter);
 
                }
 
            } else {
 
                // Remove only v if it reaches zero
 
                uIter->first--;
 
                vIter->first--;
 
                if (vIter->first == 0)
 
                    degrees.erase(vIter);
 
            }
 
            //degrees.erase(std::remove_if(degrees.begin(), degrees.end(),
 
            //                             [](auto x) { return x.first == 0; }));
 
        }
 
    }
 
    return true;
 
}
 

	
 
int main(int argc, char* argv[]) {
 
    // Generate a random degree sequence
 
    std::mt19937 rng(std::random_device{}());
cpp/switchchain_initialtris.cpp
Show inline comments
 
#include "exports.hpp"
 
#include "graph.hpp"
 
#include "graph_gcm.hpp"
 
#include "powerlaw.hpp"
 
#include "switchchain.hpp"
 
#include <algorithm>
 
@@ -9,116 +10,6 @@
 
#include <random>
 
#include <vector>
 

	
 
//
 
// Assumes degree sequence does NOT contain any zeroes!
 
//
 
// method2 = true  -> take highest degree and finish its pairing completely
 
// method2 = false -> take new highest degree after every pairing
 
template <typename RNG>
 
bool greedyConfigurationModel(DegreeSequence& ds, Graph& g, RNG& rng, bool method2) {
 
    // Similar to Havel-Hakimi but instead of pairing up with the highest ones
 
    // that remain, simply pair up with random ones
 
    unsigned int n = ds.size();
 

	
 
    // degree, vertex index
 
    std::vector<std::pair<unsigned int, unsigned int>> degrees(n);
 
    for (unsigned int i = 0; i < n; ++i) {
 
        degrees[i].first = ds[i];
 
        degrees[i].second = i;
 
    }
 

	
 
    std::vector<decltype(degrees.begin())> available;
 
    available.reserve(n);
 

	
 
    // Clear the graph
 
    g.reset(n);
 

	
 
    while (!degrees.empty()) {
 
        std::shuffle(degrees.begin(), degrees.end(), rng);
 
        // Get the highest degree:
 
        // If there are multiple highest ones, we pick a random one,
 
        // ensured by the shuffle.
 
        // The shuffle is needed anyway for the remaining part
 
        unsigned int dmax = 0;
 
        auto uIter = degrees.begin();
 
        for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) {
 
            if (iter->first >= dmax) {
 
                dmax = iter->first;
 
                uIter = iter;
 
            }
 
        }
 

	
 
        if (dmax > degrees.size() - 1)
 
            return false;
 

	
 
        if (dmax == 0) {
 
            std::cerr << "ERROR 1 in GCM.\n";
 
        }
 

	
 
        unsigned int u = uIter->second;
 

	
 
        if (method2) {
 
            // Take the highest degree out of the vector
 
            degrees.erase(uIter);
 

	
 
            // Now assign randomly to the remaining vertices
 
            // Since its shuffled, we can pick the first 'dmax' ones
 
            auto vIter = degrees.begin();
 
            while (dmax--) {
 
                if (vIter->first == 0)
 
                    std::cerr << "ERROR in GCM2.\n";
 
                if (!g.addEdge({u, vIter->second}))
 
                    std::cerr << "ERROR. Could not add edge in GCM2.\n";
 
                vIter->first--;
 
                if (vIter->first == 0)
 
                    vIter = degrees.erase(vIter);
 
                else
 
                    vIter++;
 
            }
 
        } else {
 
            // Pair with a random vertex that is not u itself and to which
 
            // u has not paired yet!
 
            available.clear();
 
            for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) {
 
                if (iter->second != u && !g.hasEdge({u, iter->second}))
 
                    available.push_back(iter);
 
            }
 
            if (available.empty())
 
                return false;
 
            std::uniform_int_distribution<> distr(0, available.size() - 1);
 
            auto vIter = available[distr(rng)];
 
            // pair u to v
 
            if (vIter->first == 0)
 
                std::cerr << "ERROR 2 in GCM1.\n";
 
            if (!g.addEdge({u, vIter->second}))
 
                std::cerr << "ERROR. Could not add edge in GCM1.\n";
 
            // Purge anything with degree zero
 
            // Be careful with invalidating the other iterator!
 
            // Degree of u is always greater or equal to the degree of v
 
            if (dmax == 1) {
 
                // Remove both
 
                // Erasure invalidates all iterators AFTER the erased one
 
                if (vIter > uIter) {
 
                    degrees.erase(vIter);
 
                    degrees.erase(uIter);
 
                } else {
 
                    degrees.erase(uIter);
 
                    degrees.erase(vIter);
 
                }
 
            } else {
 
                // Remove only v if it reaches zero
 
                uIter->first--;
 
                vIter->first--;
 
                if (vIter->first == 0)
 
                    degrees.erase(vIter);
 
            }
 
            //degrees.erase(std::remove_if(degrees.begin(), degrees.end(),
 
            //                             [](auto x) { return x.first == 0; }));
 
        }
 
    }
 
    return true;
 
}
 

	
 
int main() {
 
    // Generate a random degree sequence
 
    std::mt19937 rng(std::random_device{}());
0 comments (0 inline, 0 general)