Changeset - 3ee9a77f1735
[Not reviewed]
0 1 1
Tom Bannink - 8 years ago 2017-06-02 20:54:42
tombannink@gmail.com
Add cpp file for computing degree-sequence-property
2 files changed with 205 insertions and 1 deletions:
0 comments (0 inline, 0 general)
cpp/Makefile
Show inline comments
 
@@ -5,7 +5,7 @@ INCLUDES += -I.
 
CXXFLAGS += -std=c++14 -O3 -Wall -Wextra -Wfatal-errors -Werror -pedantic -Wno-deprecated-declarations $(INCLUDES)
 

	
 

	
 
all: switchchain switchchain_exponent switchchain_initialtris
 
all: switchchain switchchain_exponent switchchain_initialtris switchchain_dsp
 

	
 

	
 
switchchain:
 
@@ -17,6 +17,9 @@ switchchain_exponent:
 
switchchain_initialtris:
 

	
 

	
 
switchchain_dsp:
 

	
 

	
 
# target : dep1 dep2 dep3
 
# 	$@ = target
 
# 	$< = dep1
cpp/switchchain_dsp.cpp
Show inline comments
 
new file 100644
 
#include "exports.hpp"
 
#include "graph.hpp"
 
#include "powerlaw.hpp"
 
#include <algorithm>
 
#include <fstream>
 
#include <iostream>
 
#include <numeric>
 
#include <random>
 
#include <vector>
 

	
 
// Its assumed that u,v are distinct.
 
// Check if all four vertices are distinct
 
bool edgeConflicts(const Edge& e1, const Edge& e2) {
 
    return (e1.u == e2.u || e1.u == e2.v || e1.v == e2.u || e1.v == e2.v);
 
}
 

	
 
class SwitchChain {
 
  public:
 
    SwitchChain()
 
        : mt(std::random_device{}()), permutationDistribution(0.5)
 
    // permutationDistribution(0, 2)
 
    {
 
        // random_device uses hardware entropy if available
 
        // std::random_device rd;
 
        // mt.seed(rd());
 
    }
 
    ~SwitchChain() {}
 

	
 
    bool initialize(const Graph& gstart) {
 
        if (gstart.edgeCount() == 0)
 
            return false;
 
        g = gstart;
 
        edgeDistribution.param(
 
            std::uniform_int_distribution<>::param_type(0, g.edgeCount() - 1));
 
        return true;
 
    }
 

	
 
    bool doMove() {
 
        int e1index, e2index;
 
        int timeout = 0;
 
        // Keep regenerating while conflicting edges
 
        do {
 
            e1index = edgeDistribution(mt);
 
            e2index = edgeDistribution(mt);
 
            if (++timeout % 100 == 0) {
 
                std::cerr << "Warning: sampled " << timeout
 
                          << " random edges but they keep conflicting.\n";
 
            }
 
        } while (edgeConflicts(g.getEdge(e1index), g.getEdge(e2index)));
 

	
 
        // Consider one of the three possible permutations
 
        // 1) e1.u - e1.v and e2.u - e2.v (original)
 
        // 2) e1.u - e2.u and e1.v - e2.v
 
        // 3) e1.u - e2.v and e1.v - e2.u
 
        bool switchType = permutationDistribution(mt);
 
        return g.exchangeEdges(e1index, e2index, switchType);
 
    }
 

	
 
    Graph g;
 
    std::mt19937 mt;
 
    std::uniform_int_distribution<> edgeDistribution;
 
    //std::uniform_int_distribution<> permutationDistribution;
 
    std::bernoulli_distribution permutationDistribution;
 
};
 

	
 
double getProperty(const DegreeSequence& ds) {
 
    std::vector<std::vector<double>> vals(ds.size());
 
    for (auto& v : vals) {
 
        v.resize(ds.size(), 0);
 
    }
 

	
 
    auto D = 0u;
 
    for (auto d : ds)
 
        D += d;
 

	
 
    double factor = 1.0 / double(D);
 

	
 
    for (auto i = 0u; i < ds.size(); ++i) {
 
        for (auto j = i + 1; j < ds.size(); ++j) {
 
            vals[i][j] = 1.0 - std::exp(-ds[i] * ds[j] * factor);
 
        }
 
    }
 

	
 
    double result = 0.0;
 
    for (auto i = 0u; i < ds.size(); ++i) {
 
        for (auto j = i + 1; j < ds.size(); ++j) {
 
            for (auto k = j + 1; k < ds.size(); ++k) {
 
                result += vals[i][j] * vals[j][k] * vals[i][k];
 
            }
 
        }
 
    }
 
    return result;
 
}
 

	
 
int main() {
 
    // Generate a random degree sequence
 
    std::mt19937 rng(std::random_device{}());
 

	
 
    // Goal:
 
    // Degrees follow a power-law distribution with some parameter tau
 
    // Expect:  #tri = const * n^{ something }
 
    // The goal is to find the 'something' by finding the number of triangles
 
    // for different values of n and tau
 
    float tauValues[] = {2.1f, 2.5f, 2.9f};
 

	
 
    Graph g;
 
    Graph g1;
 
    Graph g2;
 

	
 
    std::ofstream outfile("graphdata_dsp.m");
 
    outfile << '{';
 
    bool outputComma = false;
 

	
 
    for (int numVertices = 1000; numVertices <= 1000; numVertices += 1000) {
 
        for (float tau : tauValues) {
 

	
 
            DegreeSequence ds(numVertices);
 
            powerlaw_distribution degDist(tau, 1, numVertices);
 
            //std::poisson_distribution<> degDist(12);
 

	
 
            // For a single n,tau take samples over several instances of
 
            // the degree distribution.
 
            // 500 samples seems to give reasonable results
 
            for (int degreeSample = 0; degreeSample < 2000; ++degreeSample) {
 
                // Generate a graph
 
                // might require multiple tries
 
                for (int i = 1; ; ++i) {
 
                    std::generate(ds.begin(), ds.end(),
 
                                  [&degDist, &rng] { return degDist(rng); });
 
                    // First make the sum even
 
                    unsigned int sum = std::accumulate(ds.begin(), ds.end(), 0);
 
                    if (sum % 2) {
 
                        continue;
 
                        // Can we do this: ??
 
                        ds.back()++;
 
                    }
 

	
 
                    if (g.createFromDegreeSequence(ds))
 
                        break;
 

	
 
                    // When 10 tries have not worked, output a warning
 
                    if (i % 10 == 0) {
 
                        std::cerr << "Warning: could not create graph from "
 
                                     "degree sequence. Trying again...\n";
 
                    }
 
                }
 

	
 
                SwitchChain chain;
 
                if (!chain.initialize(g)) {
 
                    std::cerr << "Could not initialize Markov chain.\n";
 
                    return 1;
 
                }
 

	
 
                std::cout << "Running n = " << numVertices << ", tau = " << tau
 
                          << ". \t" << std::flush;
 

	
 
                int mixingTime = 32*(32.0f - 10.0f*(tau - 2.0f)) * numVertices; //40000;
 
                constexpr int measurements = 50;
 
                constexpr int measureSkip =
 
                    200; // Take a sample every ... steps
 

	
 
                int movesDone = 0;
 

	
 
                long long trianglesTotal = 0;
 

	
 
                for (int i = 0; i < mixingTime; ++i) {
 
                    if (chain.doMove())
 
                        ++movesDone;
 
                }
 
                for (int i = 0; i < measurements; ++i) {
 
                    for (int j = 0; j < measureSkip; ++j)
 
                        if (chain.doMove())
 
                            ++movesDone;
 
                    trianglesTotal += chain.g.countTriangles();
 
                }
 

	
 
                std::cout << movesDone << '/' << mixingTime + measurements * measureSkip
 
                          << " moves succeeded ("
 
                          << 100.0f * float(movesDone) /
 
                                 float(mixingTime + measurements * measureSkip)
 
                          << "%).";
 
                std::cout << std::flush;
 
                //std::cout << std::endl;
 

	
 
                if (outputComma)
 
                    outfile << ',' << '\n';
 
                outputComma = true;
 

	
 
                float avgTriangles =
 
                    float(trianglesTotal) / float(measurements);
 
                outfile << '{' << '{' << numVertices << ',' << tau << '}';
 
                outfile << ',' << avgTriangles;
 
                outfile << ',' << getProperty(ds) << '}' << std::flush;
 

	
 
                std::cout << std::endl;
 
            }
 
        }
 
    }
 
    outfile << '}';
 
    return 0;
 
}
0 comments (0 inline, 0 general)