Changeset - a79267af1717
[Not reviewed]
0 1 1
Tom Bannink - 9 years ago 2017-01-27 16:09:48
tom.bannink@cwi.nl
Add Havel-Hakimi algorithm and mathematica output
2 files changed with 113 insertions and 44 deletions:
0 comments (0 inline, 0 general)
cpp/showgraphs.m
Show inline comments
 
new file 100644
 
(* ::Package:: *)
 

	
 
gsraw=Import[NotebookDirectory[]<>"graphdata.m"];
 

	
 

	
 
gs=Graph/@gsraw;
 

	
 

	
 
Grid[Partition[gs,10],Frame->All]
cpp/switchchain.cpp
Show inline comments
 
#include <algorithm>
 
#include <fstream>
 
#include <iostream>
 
#include <numeric>
 
#include <random>
 
@@ -6,7 +7,7 @@
 

	
 
class Edge {
 
  public:
 
    int u, v;
 
    unsigned int u, v;
 

	
 
    bool operator==(const Edge &e) const { return u == e.u && v == e.v; }
 
};
 
@@ -24,30 +25,72 @@ std::ostream &operator<<(std::ostream &s, const Edge &e) {
 

	
 
class DiDegree {
 
  public:
 
    int in;
 
    int out;
 
    unsigned int in;
 
    unsigned int out;
 
};
 

	
 
typedef std::vector<int> DegreeSequence;
 
typedef std::vector<unsigned int> DegreeSequence;
 
typedef std::vector<DiDegree> DiDegreeSequence;
 

	
 
class Graph {
 
  public:
 
    Graph() {}
 

	
 
    Graph(int n) { adj.resize(n); }
 
    Graph(unsigned int n) { adj.resize(n); }
 

	
 
    ~Graph() {}
 

	
 
    void resize(unsigned int n) {
 
        if (n < adj.size()) {
 
            edges.clear();
 
        }
 
        adj.resize(n);
 
    }
 

	
 
    unsigned int edgeCount() const { return edges.size(); }
 

	
 
    Edge &getEdge(unsigned int i) { return edges[i]; }
 
    const Edge &getEdge(unsigned int i) const { return edges[i]; }
 

	
 
    bool createFromDegreeSequence(const DegreeSequence &d) {
 
        //
 
        // TODO
 
        //
 
        // See
 
        // http://stackoverflow.com/questions/13102738/creating-graphs-using-a-degree-sequence
 
        // See https://en.wikipedia.org/wiki/Havel%E2%80%93Hakimi_algorithm
 
        (void)d;
 
        return false;
 
        // Havel-Hakimi algorithm
 

	
 
        unsigned int n = d.size();
 

	
 
        // degree, vertex index
 
        std::vector<std::pair<unsigned int, unsigned int>> degrees(n);
 
        for (unsigned int i = 0; i < n; ++i) {
 
            degrees[i].first = d[i];
 
            degrees[i].second = i;
 
        }
 

	
 
        edges.clear();
 
        adj.resize(n);
 
        while (!degrees.empty()) {
 
            std::sort(degrees.begin(), degrees.end());
 
            // Highest degree is at back of the vector
 
            // Take it out
 
            unsigned int degree = degrees.back().first;
 
            unsigned int u = degrees.back().second;
 
            degrees.pop_back();
 
            if (degree > degrees.size()) {
 
                edges.clear();
 
                adj.clear();
 
                return false;
 
            }
 
            // Now loop over the last 'degree' entries of degrees
 
            auto rit = degrees.rbegin();
 
            for (unsigned int i = 0; i < degree; ++i) {
 
                if (rit->first == 0 || !addEdge({u, rit->second})) {
 
                    edges.clear();
 
                    adj.clear();
 
                    return false;
 
                }
 
                rit->first--;
 
                ++rit;
 
            }
 
        }
 
        return true;
 
    }
 

	
 
    DegreeSequence getDegreeSequence() const {
 
@@ -57,8 +100,9 @@ class Graph {
 
        return d;
 
    }
 

	
 
    // Assumes valid vertex indices
 
    bool hasEdge(const Edge &e) const {
 
        for (int v : adj[e.u]) {
 
        for (unsigned int v : adj[e.u]) {
 
            if (v == e.v)
 
                return true;
 
        }
 
@@ -66,6 +110,8 @@ class Graph {
 
    }
 

	
 
    bool addEdge(const Edge &e) {
 
        if (e.u >= adj.size() || e.v >= adj.size())
 
            return false;
 
        if (hasEdge(e))
 
            return false;
 
        edges.push_back(e);
 
@@ -91,20 +137,20 @@ class Graph {
 
        }
 

	
 
        // Find the edges in the adjacency lists
 
        int i1, j1, i2, j2;
 
        for (i1 = 0; i1 < (int)adj[e1.u].size(); ++i1) {
 
        unsigned int i1, j1, i2, j2;
 
        for (i1 = 0; i1 < adj[e1.u].size(); ++i1) {
 
            if (adj[e1.u][i1] == e1.v)
 
                break;
 
        }
 
        for (j1 = 0; j1 < (int)adj[e1.v].size(); ++j1) {
 
        for (j1 = 0; j1 < adj[e1.v].size(); ++j1) {
 
            if (adj[e1.v][j1] == e1.u)
 
                break;
 
        }
 
        for (i2 = 0; i2 < (int)adj[e2.u].size(); ++i2) {
 
        for (i2 = 0; i2 < adj[e2.u].size(); ++i2) {
 
            if (adj[e2.u][i2] == e2.v)
 
                break;
 
        }
 
        for (j2 = 0; j2 < (int)adj[e2.v].size(); ++j2) {
 
        for (j2 = 0; j2 < adj[e2.v].size(); ++j2) {
 
            if (adj[e2.v][j2] == e2.u)
 
                break;
 
        }
 
@@ -146,12 +192,28 @@ class Graph {
 
        return true;
 
    }
 

	
 
  private:
 
    // Graph is saved in two formats for speed
 
    // The two should be kept consistent at all times
 
    std::vector<std::vector<int>> adj;
 
    std::vector<std::vector<unsigned int>> adj;
 
    std::vector<Edge> edges;
 
};
 

	
 
// Mathematica style export
 
std::ostream &operator<<(std::ostream &s, const Graph &g) {
 
    if (g.edgeCount() == 0) {
 
        s << '{' << '}';
 
        return s;
 
    }
 
    s << '{' << g.getEdge(0).u << '<' << '-' << '>' << g.getEdge(0).v;
 
    for (unsigned int i = 1; i < g.edgeCount(); ++i) {
 
        const Edge &e = g.getEdge(i);
 
        s << ',' << e.u << '<' << '-' << '>' << e.v;
 
    }
 
    s << '}';
 
    return s;
 
}
 

	
 
class SwitchChain {
 
  public:
 
    SwitchChain() : mt(std::random_device{}()), permutationDistribution(0, 2) {
 
@@ -161,31 +223,23 @@ class SwitchChain {
 
    }
 
    ~SwitchChain() {}
 

	
 
    bool initialize(const DegreeSequence &d) {
 
        if (!g.createFromDegreeSequence(d))
 
            return false;
 
        edgeDistribution.param(
 
            std::uniform_int_distribution<>::param_type(0, g.edges.size() - 1));
 
        return true;
 
    }
 

	
 
    bool initialize(const Graph &gstart) {
 
        if (gstart.edges.size() == 0)
 
        if (gstart.edgeCount() == 0)
 
            return false;
 
        g = gstart;
 
        edgeDistribution.param(
 
            std::uniform_int_distribution<>::param_type(0, g.edges.size() - 1));
 
            std::uniform_int_distribution<>::param_type(0, g.edgeCount() - 1));
 
        return true;
 
    }
 

	
 
    bool doMove() {
 
        Edge e1 = g.edges[edgeDistribution(mt)];
 
        Edge e2 = g.edges[edgeDistribution(mt)];
 
        Edge e1 = g.getEdge(edgeDistribution(mt));
 
        Edge e2 = g.getEdge(edgeDistribution(mt));
 
        // Keep regenerating while conflicting edges
 
        int timeout = 0;
 
        while (edgeConflicts(e1, e2)) {
 
            e1 = g.edges[edgeDistribution(mt)];
 
            e2 = g.edges[edgeDistribution(mt)];
 
            e1 = g.getEdge(edgeDistribution(mt));
 
            e2 = g.getEdge(edgeDistribution(mt));
 
            ++timeout;
 
            if (timeout % 100 == 0) {
 
                std::cerr << "Warning: sampled " << timeout
 
@@ -214,13 +268,11 @@ class SwitchChain {
 
};
 

	
 
int main() {
 
    Graph g(6);
 
    g.addEdge({0, 1});
 
    g.addEdge({0, 2});
 
    g.addEdge({0, 3});
 
    g.addEdge({2, 3});
 
    g.addEdge({3, 4});
 
    g.addEdge({3, 5});
 
    Graph g;
 
    if (!g.createFromDegreeSequence({1, 2, 2, 2, 3, 3, 3})) {
 
        std::cerr << "Could not create graph from degree sequence.\n";
 
        return 1;
 
    }
 

	
 
    SwitchChain chain;
 
    if (!chain.initialize(g)) {
 
@@ -228,14 +280,22 @@ int main() {
 
        return 1;
 
    }
 

	
 
    std::ofstream outfile("graphdata.m");
 
    outfile << '{' << g;
 

	
 
    std::cout << "Starting switch Markov chain" << std::endl;
 
    int movesDone = 0;
 
    int movesTotal = 10000;
 
    for (int i = 0; i < movesTotal; ++i)
 
    int movesTotal = 100000;
 
    for (int i = 0; i < movesTotal; ++i) {
 
        if (chain.doMove())
 
            ++movesDone;
 
        if (i % (movesTotal / 100) == (movesTotal / 100 - 1))
 
            outfile << ',' << chain.g;
 
    }
 
    outfile << '}';
 

	
 
    std::cout << movesDone << '/' << movesTotal << " moves succeeded." << std::endl;
 
    std::cout << movesDone << '/' << movesTotal << " moves succeeded."
 
              << std::endl;
 

	
 
    return 0;
 
}
0 comments (0 inline, 0 general)