Changeset - be2f7fe6b220
[Not reviewed]
0 8 1
Tom Bannink - 8 years ago 2017-06-10 18:36:59
tombannink@gmail.com
Move switchchain class to separate header file
9 files changed with 78 insertions and 800 deletions:
0 comments (0 inline, 0 general)
cpp/Makefile
Show inline comments
 
@@ -10,20 +10,18 @@ CXXFLAGS += $(INCLUDES)
 
CXXFLAGS += -DNDEBUG
 
CXXFLAGS += -Wno-int-in-bool-context
 

	
 
all: switchchain switchchain_exponent switchchain_initialtris switchchain_dsp
 

	
 

	
 
switchchain:
 

	
 

	
 
switchchain_exponent:
 

	
 

	
 
switchchain_initialtris:
 

	
 

	
 
switchchain_dsp:
 

	
 
TARGETS += switchchain
 
TARGETS += switchchain_dsp
 
TARGETS += switchchain_exponent
 
TARGETS += switchchain_initialtris
 
TARGETS += switchchain_mixingtime
 
TARGETS += switchchain_successrates
 
TARGETS += switchchain_timeevol
 

	
 
all: $(TARGETS)
 

	
 
clean:
 
	rm -f $(TARGETS)
 

	
 
# target : dep1 dep2 dep3
 
# 	$@ = target
cpp/switchchain.cpp
Show inline comments
 
@@ -2,6 +2,7 @@
 
#include "graph.hpp"
 
#include "powerlaw.hpp"
 
#include "graph_spectrum.hpp"
 
#include "switchchain.hpp"
 
#include <algorithm>
 
#include <array>
 
#include <fstream>
 
@@ -10,61 +11,6 @@
 
#include <random>
 
#include <vector>
 

	
 
// Its assumed that u,v are distinct.
 
// Check if all four vertices are distinct
 
bool edgeConflicts(const Edge& e1, const Edge& e2) {
 
    return (e1.u == e2.u || e1.u == e2.v || e1.v == e2.u || e1.v == e2.v);
 
}
 

	
 
class SwitchChain {
 
  public:
 
    SwitchChain()
 
        : mt(std::random_device{}()), permutationDistribution(0.5)
 
    // permutationDistribution(0, 2)
 
    {
 
        // random_device uses hardware entropy if available
 
        // std::random_device rd;
 
        // mt.seed(rd());
 
    }
 
    ~SwitchChain() {}
 

	
 
    bool initialize(const Graph& gstart) {
 
        if (gstart.edgeCount() == 0)
 
            return false;
 
        g = gstart;
 
        edgeDistribution.param(
 
            std::uniform_int_distribution<>::param_type(0, g.edgeCount() - 1));
 
        return true;
 
    }
 

	
 
    bool doMove() {
 
        int e1index, e2index;
 
        int timeout = 0;
 
        // Keep regenerating while conflicting edges
 
        do {
 
            e1index = edgeDistribution(mt);
 
            e2index = edgeDistribution(mt);
 
            if (++timeout % 100 == 0) {
 
                std::cerr << "Warning: sampled " << timeout
 
                          << " random edges but they keep conflicting.\n";
 
            }
 
        } while (edgeConflicts(g.getEdge(e1index), g.getEdge(e2index)));
 

	
 
        // Consider one of the three possible permutations
 
        // 1) e1.u - e1.v and e2.u - e2.v (original)
 
        // 2) e1.u - e2.u and e1.v - e2.v
 
        // 3) e1.u - e2.v and e1.v - e2.u
 
        bool switchType = permutationDistribution(mt);
 
        return g.exchangeEdges(e1index, e2index, switchType);
 
    }
 

	
 
    Graph g;
 
    std::mt19937 mt;
 
    std::uniform_int_distribution<> edgeDistribution;
 
    //std::uniform_int_distribution<> permutationDistribution;
 
    std::bernoulli_distribution permutationDistribution;
 
};
 

	
 
void getTriangleDegrees(const Graph& g) {
 
    std::vector<std::array<std::size_t,3>> trids;
 
    const auto& adj = g.getAdj();
cpp/switchchain.hpp
Show inline comments
 
new file 100644
 
#include "graph.hpp"
 
#include <iostream>
 
#include <random>
 

	
 
// Its assumed that u,v are distinct.
 
// Check if all four vertices are distinct
 
bool edgeConflicts(const Edge& e1, const Edge& e2) {
 
    return (e1.u == e2.u || e1.u == e2.v || e1.v == e2.u || e1.v == e2.v);
 
}
 

	
 
class SwitchChain {
 
  public:
 
    SwitchChain()
 
        : mt(std::random_device{}()), permutationDistribution(0.5)
 
    // permutationDistribution(0, 2)
 
    {
 
        // random_device uses hardware entropy if available
 
        // std::random_device rd;
 
        // mt.seed(rd());
 
    }
 
    ~SwitchChain() {}
 

	
 
    bool initialize(const Graph& gstart) {
 
        if (gstart.edgeCount() == 0)
 
            return false;
 
        g = gstart;
 
        edgeDistribution.param(
 
            std::uniform_int_distribution<>::param_type(0, g.edgeCount() - 1));
 
        return true;
 
    }
 

	
 
    bool doMove() {
 
        int e1index, e2index;
 
        int timeout = 0;
 
        // Keep regenerating while conflicting edges
 
        do {
 
            e1index = edgeDistribution(mt);
 
            e2index = edgeDistribution(mt);
 
            if (++timeout % 100 == 0) {
 
                std::cerr << "Warning: sampled " << timeout
 
                          << " random edges but they keep conflicting.\n";
 
            }
 
        } while (edgeConflicts(g.getEdge(e1index), g.getEdge(e2index)));
 

	
 
        // Consider one of the three possible permutations
 
        // 1) e1.u - e1.v and e2.u - e2.v (original)
 
        // 2) e1.u - e2.u and e1.v - e2.v
 
        // 3) e1.u - e2.v and e1.v - e2.u
 
        bool switchType = permutationDistribution(mt);
 
        return g.exchangeEdges(e1index, e2index, switchType);
 
    }
 

	
 
    Graph g;
 
    std::mt19937 mt;
 
    std::uniform_int_distribution<> edgeDistribution;
 
    //std::uniform_int_distribution<> permutationDistribution;
 
    std::bernoulli_distribution permutationDistribution;
 
};
 

	
cpp/switchchain_dsp.cpp
Show inline comments
 
#include "exports.hpp"
 
#include "graph.hpp"
 
#include "powerlaw.hpp"
 
#include "switchchain.hpp"
 
#include <algorithm>
 
#include <fstream>
 
#include <iostream>
 
@@ -8,61 +9,6 @@
 
#include <random>
 
#include <vector>
 

	
 
// Its assumed that u,v are distinct.
 
// Check if all four vertices are distinct
 
bool edgeConflicts(const Edge& e1, const Edge& e2) {
 
    return (e1.u == e2.u || e1.u == e2.v || e1.v == e2.u || e1.v == e2.v);
 
}
 

	
 
class SwitchChain {
 
  public:
 
    SwitchChain()
 
        : mt(std::random_device{}()), permutationDistribution(0.5)
 
    // permutationDistribution(0, 2)
 
    {
 
        // random_device uses hardware entropy if available
 
        // std::random_device rd;
 
        // mt.seed(rd());
 
    }
 
    ~SwitchChain() {}
 

	
 
    bool initialize(const Graph& gstart) {
 
        if (gstart.edgeCount() == 0)
 
            return false;
 
        g = gstart;
 
        edgeDistribution.param(
 
            std::uniform_int_distribution<>::param_type(0, g.edgeCount() - 1));
 
        return true;
 
    }
 

	
 
    bool doMove() {
 
        int e1index, e2index;
 
        int timeout = 0;
 
        // Keep regenerating while conflicting edges
 
        do {
 
            e1index = edgeDistribution(mt);
 
            e2index = edgeDistribution(mt);
 
            if (++timeout % 100 == 0) {
 
                std::cerr << "Warning: sampled " << timeout
 
                          << " random edges but they keep conflicting.\n";
 
            }
 
        } while (edgeConflicts(g.getEdge(e1index), g.getEdge(e2index)));
 

	
 
        // Consider one of the three possible permutations
 
        // 1) e1.u - e1.v and e2.u - e2.v (original)
 
        // 2) e1.u - e2.u and e1.v - e2.v
 
        // 3) e1.u - e2.v and e1.v - e2.u
 
        bool switchType = permutationDistribution(mt);
 
        return g.exchangeEdges(e1index, e2index, switchType);
 
    }
 

	
 
    Graph g;
 
    std::mt19937 mt;
 
    std::uniform_int_distribution<> edgeDistribution;
 
    //std::uniform_int_distribution<> permutationDistribution;
 
    std::bernoulli_distribution permutationDistribution;
 
};
 

	
 
double getProperty(const DegreeSequence& ds) {
 
    std::vector<std::vector<double>> vals(ds.size());
 
    for (auto& v : vals) {
 
@@ -104,8 +50,6 @@ int main() {
 
    float tauValues[] = {2.1f, 2.5f, 2.9f};
 

	
 
    Graph g;
 
    Graph g1;
 
    Graph g2;
 

	
 
    std::ofstream outfile("graphdata_dsp.m");
 
    outfile << '{';
cpp/switchchain_exponent.cpp
Show inline comments
 
#include "exports.hpp"
 
#include "graph.hpp"
 
#include "powerlaw.hpp"
 
#include "switchchain.hpp"
 
#include <algorithm>
 
#include <fstream>
 
#include <iostream>
 
@@ -8,61 +9,6 @@
 
#include <random>
 
#include <vector>
 

	
 
// Its assumed that u,v are distinct.
 
// Check if all four vertices are distinct
 
bool edgeConflicts(const Edge& e1, const Edge& e2) {
 
    return (e1.u == e2.u || e1.u == e2.v || e1.v == e2.u || e1.v == e2.v);
 
}
 

	
 
class SwitchChain {
 
  public:
 
    SwitchChain()
 
        : mt(std::random_device{}()), permutationDistribution(0.5)
 
    // permutationDistribution(0, 2)
 
    {
 
        // random_device uses hardware entropy if available
 
        // std::random_device rd;
 
        // mt.seed(rd());
 
    }
 
    ~SwitchChain() {}
 

	
 
    bool initialize(const Graph& gstart) {
 
        if (gstart.edgeCount() == 0)
 
            return false;
 
        g = gstart;
 
        edgeDistribution.param(
 
            std::uniform_int_distribution<>::param_type(0, g.edgeCount() - 1));
 
        return true;
 
    }
 

	
 
    bool doMove() {
 
        int e1index, e2index;
 
        int timeout = 0;
 
        // Keep regenerating while conflicting edges
 
        do {
 
            e1index = edgeDistribution(mt);
 
            e2index = edgeDistribution(mt);
 
            if (++timeout % 100 == 0) {
 
                std::cerr << "Warning: sampled " << timeout
 
                          << " random edges but they keep conflicting.\n";
 
            }
 
        } while (edgeConflicts(g.getEdge(e1index), g.getEdge(e2index)));
 

	
 
        // Consider one of the three possible permutations
 
        // 1) e1.u - e1.v and e2.u - e2.v (original)
 
        // 2) e1.u - e2.u and e1.v - e2.v
 
        // 3) e1.u - e2.v and e1.v - e2.u
 
        bool switchType = permutationDistribution(mt);
 
        return g.exchangeEdges(e1index, e2index, switchType);
 
    }
 

	
 
    Graph g;
 
    std::mt19937 mt;
 
    std::uniform_int_distribution<> edgeDistribution;
 
    //std::uniform_int_distribution<> permutationDistribution;
 
    std::bernoulli_distribution permutationDistribution;
 
};
 

	
 
int main() {
 
    // Generate a random degree sequence
 
    std::mt19937 rng(std::random_device{}());
 
@@ -75,8 +21,6 @@ int main() {
 
    float tauValues[] = {2.1f, 2.2f, 2.3f, 2.4f, 2.5f, 2.6f, 2.7f, 2.8f, 2.9f};
 

	
 
    Graph g;
 
    Graph g1;
 
    Graph g2;
 

	
 
    std::ofstream outfile("graphdata_exponent_hightau.m");
 
    outfile << '{';
cpp/switchchain_initialtris.cpp
Show inline comments
 
#include "exports.hpp"
 
#include "graph.hpp"
 
#include "powerlaw.hpp"
 
#include "switchchain.hpp"
 
#include <algorithm>
 
#include <fstream>
 
#include <iostream>
 
@@ -8,61 +9,6 @@
 
#include <random>
 
#include <vector>
 

	
 
// Its assumed that u,v are distinct.
 
// Check if all four vertices are distinct
 
bool edgeConflicts(const Edge& e1, const Edge& e2) {
 
    return (e1.u == e2.u || e1.u == e2.v || e1.v == e2.u || e1.v == e2.v);
 
}
 

	
 
class SwitchChain {
 
  public:
 
    SwitchChain()
 
        : mt(std::random_device{}()), permutationDistribution(0.5)
 
    // permutationDistribution(0, 2)
 
    {
 
        // random_device uses hardware entropy if available
 
        // std::random_device rd;
 
        // mt.seed(rd());
 
    }
 
    ~SwitchChain() {}
 

	
 
    bool initialize(const Graph& gstart) {
 
        if (gstart.edgeCount() == 0)
 
            return false;
 
        g = gstart;
 
        edgeDistribution.param(
 
            std::uniform_int_distribution<>::param_type(0, g.edgeCount() - 1));
 
        return true;
 
    }
 

	
 
    bool doMove() {
 
        int e1index, e2index;
 
        int timeout = 0;
 
        // Keep regenerating while conflicting edges
 
        do {
 
            e1index = edgeDistribution(mt);
 
            e2index = edgeDistribution(mt);
 
            if (++timeout % 100 == 0) {
 
                std::cerr << "Warning: sampled " << timeout
 
                          << " random edges but they keep conflicting.\n";
 
            }
 
        } while (edgeConflicts(g.getEdge(e1index), g.getEdge(e2index)));
 

	
 
        // Consider one of the three possible permutations
 
        // 1) e1.u - e1.v and e2.u - e2.v (original)
 
        // 2) e1.u - e2.u and e1.v - e2.v
 
        // 3) e1.u - e2.v and e1.v - e2.u
 
        bool switchType = permutationDistribution(mt);
 
        return g.exchangeEdges(e1index, e2index, switchType);
 
    }
 

	
 
    Graph g;
 
    std::mt19937 mt;
 
    std::uniform_int_distribution<> edgeDistribution;
 
    //std::uniform_int_distribution<> permutationDistribution;
 
    std::bernoulli_distribution permutationDistribution;
 
};
 

	
 
//
 
// Assumes degree sequence does NOT contain any zeroes!
 
//
cpp/switchchain_mixingtime.cpp
Show inline comments
 
#include "exports.hpp"
 
#include "graph.hpp"
 
#include "powerlaw.hpp"
 
#include "switchchain.hpp"
 
#include <algorithm>
 
#include <array>
 
#include <fstream>
 
@@ -9,192 +10,6 @@
 
#include <random>
 
#include <vector>
 

	
 
// Its assumed that u,v are distinct.
 
// Check if all four vertices are distinct
 
bool edgeConflicts(const Edge& e1, const Edge& e2) {
 
    return (e1.u == e2.u || e1.u == e2.v || e1.v == e2.u || e1.v == e2.v);
 
}
 

	
 
class SwitchChain {
 
  public:
 
    SwitchChain()
 
        : mt(std::random_device{}()), permutationDistribution(0.5)
 
    // permutationDistribution(0, 2)
 
    {
 
        // random_device uses hardware entropy if available
 
        // std::random_device rd;
 
        // mt.seed(rd());
 
    }
 
    ~SwitchChain() {}
 

	
 
    bool initialize(const Graph& gstart) {
 
        if (gstart.edgeCount() == 0)
 
            return false;
 
        g = gstart;
 
        edgeDistribution.param(
 
            std::uniform_int_distribution<>::param_type(0, g.edgeCount() - 1));
 
        return true;
 
    }
 

	
 
    bool doMove() {
 
        int e1index, e2index;
 
        int timeout = 0;
 
        // Keep regenerating while conflicting edges
 
        do {
 
            e1index = edgeDistribution(mt);
 
            e2index = edgeDistribution(mt);
 
            if (++timeout % 100 == 0) {
 
                std::cerr << "Warning: sampled " << timeout
 
                          << " random edges but they keep conflicting.\n";
 
            }
 
        } while (edgeConflicts(g.getEdge(e1index), g.getEdge(e2index)));
 

	
 
        // Consider one of the three possible permutations
 
        // 1) e1.u - e1.v and e2.u - e2.v (original)
 
        // 2) e1.u - e2.u and e1.v - e2.v
 
        // 3) e1.u - e2.v and e1.v - e2.u
 
        bool switchType = permutationDistribution(mt);
 
        return g.exchangeEdges(e1index, e2index, switchType);
 
    }
 

	
 
    Graph g;
 
    std::mt19937 mt;
 
    std::uniform_int_distribution<> edgeDistribution;
 
    //std::uniform_int_distribution<> permutationDistribution;
 
    std::bernoulli_distribution permutationDistribution;
 
};
 

	
 
void getTriangleDegrees(const Graph& g) {
 
    std::vector<std::array<std::size_t,3>> trids;
 
    const auto& adj = g.getAdj();
 
    int triangles = 0;
 
    for (auto& v : adj) {
 
        for (unsigned int i = 0; i < v.size(); ++i) {
 
            for (unsigned int j = i + 1; j < v.size(); ++j) {
 
                if (g.hasEdge({v[i], v[j]})) {
 
                    ++triangles;
 
                    std::array<std::size_t, 3> ds = {{v.size(), adj[v[i]].size(),
 
                                                     adj[v[j]].size()}};
 
                    std::sort(ds.begin(), ds.end());
 
                    trids.push_back(ds);
 
                }
 
            }
 
        }
 
    }
 
    assert(triangles % 3 == 0);
 
    return;
 
}
 

	
 
//
 
// Assumes degree sequence does NOT contain any zeroes!
 
//
 
// method2 = true  -> take highest degree and finish its pairing completely
 
// method2 = false -> take new highest degree after every pairing
 
template <typename RNG>
 
bool greedyConfigurationModel(DegreeSequence& ds, Graph& g, RNG& rng, bool method2) {
 
    // Similar to Havel-Hakimi but instead of pairing up with the highest ones
 
    // that remain, simply pair up with random ones
 
    unsigned int n = ds.size();
 

	
 
    // degree, vertex index
 
    std::vector<std::pair<unsigned int, unsigned int>> degrees(n);
 
    for (unsigned int i = 0; i < n; ++i) {
 
        degrees[i].first = ds[i];
 
        degrees[i].second = i;
 
    }
 

	
 
    std::vector<decltype(degrees.begin())> available;
 
    available.reserve(n);
 

	
 
    // Clear the graph
 
    g.reset(n);
 

	
 
    while (!degrees.empty()) {
 
        std::shuffle(degrees.begin(), degrees.end(), rng);
 
        // Get the highest degree:
 
        // If there are multiple highest ones, we pick a random one,
 
        // ensured by the shuffle.
 
        // The shuffle is needed anyway for the remaining part
 
        unsigned int dmax = 0;
 
        auto uIter = degrees.begin();
 
        for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) {
 
            if (iter->first >= dmax) {
 
                dmax = iter->first;
 
                uIter = iter;
 
            }
 
        }
 

	
 
        if (dmax > degrees.size() - 1)
 
            return false;
 

	
 
        if (dmax == 0) {
 
            std::cerr << "ERROR 1 in GCM.\n";
 
        }
 

	
 
        unsigned int u = uIter->second;
 

	
 
        if (method2) {
 
            // Take the highest degree out of the vector
 
            degrees.erase(uIter);
 

	
 
            // Now assign randomly to the remaining vertices
 
            // Since its shuffled, we can pick the first 'dmax' ones
 
            auto vIter = degrees.begin();
 
            while (dmax--) {
 
                if (vIter->first == 0)
 
                    std::cerr << "ERROR in GCM2.\n";
 
                if (!g.addEdge({u, vIter->second}))
 
                    std::cerr << "ERROR. Could not add edge in GCM2.\n";
 
                vIter->first--;
 
                if (vIter->first == 0)
 
                    vIter = degrees.erase(vIter);
 
                else
 
                    vIter++;
 
            }
 
        } else {
 
            // Pair with a random vertex that is not u itself and to which
 
            // u has not paired yet!
 
            available.clear();
 
            for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) {
 
                if (iter->second != u && !g.hasEdge({u, iter->second}))
 
                    available.push_back(iter);
 
            }
 
            if (available.empty())
 
                return false;
 
            std::uniform_int_distribution<> distr(0, available.size() - 1);
 
            auto vIter = available[distr(rng)];
 
            // pair u to v
 
            if (vIter->first == 0)
 
                std::cerr << "ERROR 2 in GCM1.\n";
 
            if (!g.addEdge({u, vIter->second}))
 
                std::cerr << "ERROR. Could not add edge in GCM1.\n";
 
            // Purge anything with degree zero
 
            // Be careful with invalidating the other iterator!
 
            // Degree of u is always greater or equal to the degree of v
 
            if (dmax == 1) {
 
                // Remove both
 
                // Erasure invalidates all iterators AFTER the erased one
 
                if (vIter > uIter) {
 
                    degrees.erase(vIter);
 
                    degrees.erase(uIter);
 
                } else {
 
                    degrees.erase(uIter);
 
                    degrees.erase(vIter);
 
                }
 
            } else {
 
                // Remove only v if it reaches zero
 
                uIter->first--;
 
                vIter->first--;
 
                if (vIter->first == 0)
 
                    degrees.erase(vIter);
 
            }
 
            //degrees.erase(std::remove_if(degrees.begin(), degrees.end(),
 
            //                             [](auto x) { return x.first == 0; }));
 
        }
 
    }
 
    return true;
 
}
 

	
 
int main(int argc, char* argv[]) {
 
    // Generate a random degree sequence
 
    std::mt19937 rng(std::random_device{}());
cpp/switchchain_successrates.cpp
Show inline comments
 
#include "exports.hpp"
 
#include "graph.hpp"
 
#include "powerlaw.hpp"
 
#include "switchchain.hpp"
 
#include <algorithm>
 
#include <array>
 
#include <fstream>
 
@@ -9,192 +10,6 @@
 
#include <random>
 
#include <vector>
 

	
 
// Its assumed that u,v are distinct.
 
// Check if all four vertices are distinct
 
bool edgeConflicts(const Edge& e1, const Edge& e2) {
 
    return (e1.u == e2.u || e1.u == e2.v || e1.v == e2.u || e1.v == e2.v);
 
}
 

	
 
class SwitchChain {
 
  public:
 
    SwitchChain()
 
        : mt(std::random_device{}()), permutationDistribution(0.5)
 
    // permutationDistribution(0, 2)
 
    {
 
        // random_device uses hardware entropy if available
 
        // std::random_device rd;
 
        // mt.seed(rd());
 
    }
 
    ~SwitchChain() {}
 

	
 
    bool initialize(const Graph& gstart) {
 
        if (gstart.edgeCount() == 0)
 
            return false;
 
        g = gstart;
 
        edgeDistribution.param(
 
            std::uniform_int_distribution<>::param_type(0, g.edgeCount() - 1));
 
        return true;
 
    }
 

	
 
    bool doMove() {
 
        int e1index, e2index;
 
        int timeout = 0;
 
        // Keep regenerating while conflicting edges
 
        do {
 
            e1index = edgeDistribution(mt);
 
            e2index = edgeDistribution(mt);
 
            if (++timeout % 100 == 0) {
 
                std::cerr << "Warning: sampled " << timeout
 
                          << " random edges but they keep conflicting.\n";
 
            }
 
        } while (edgeConflicts(g.getEdge(e1index), g.getEdge(e2index)));
 

	
 
        // Consider one of the three possible permutations
 
        // 1) e1.u - e1.v and e2.u - e2.v (original)
 
        // 2) e1.u - e2.u and e1.v - e2.v
 
        // 3) e1.u - e2.v and e1.v - e2.u
 
        bool switchType = permutationDistribution(mt);
 
        return g.exchangeEdges(e1index, e2index, switchType);
 
    }
 

	
 
    Graph g;
 
    std::mt19937 mt;
 
    std::uniform_int_distribution<> edgeDistribution;
 
    //std::uniform_int_distribution<> permutationDistribution;
 
    std::bernoulli_distribution permutationDistribution;
 
};
 

	
 
void getTriangleDegrees(const Graph& g) {
 
    std::vector<std::array<std::size_t,3>> trids;
 
    const auto& adj = g.getAdj();
 
    int triangles = 0;
 
    for (auto& v : adj) {
 
        for (unsigned int i = 0; i < v.size(); ++i) {
 
            for (unsigned int j = i + 1; j < v.size(); ++j) {
 
                if (g.hasEdge({v[i], v[j]})) {
 
                    ++triangles;
 
                    std::array<std::size_t, 3> ds = {{v.size(), adj[v[i]].size(),
 
                                                     adj[v[j]].size()}};
 
                    std::sort(ds.begin(), ds.end());
 
                    trids.push_back(ds);
 
                }
 
            }
 
        }
 
    }
 
    assert(triangles % 3 == 0);
 
    return;
 
}
 

	
 
//
 
// Assumes degree sequence does NOT contain any zeroes!
 
//
 
// method2 = true  -> take highest degree and finish its pairing completely
 
// method2 = false -> take new highest degree after every pairing
 
template <typename RNG>
 
bool greedyConfigurationModel(DegreeSequence& ds, Graph& g, RNG& rng, bool method2) {
 
    // Similar to Havel-Hakimi but instead of pairing up with the highest ones
 
    // that remain, simply pair up with random ones
 
    unsigned int n = ds.size();
 

	
 
    // degree, vertex index
 
    std::vector<std::pair<unsigned int, unsigned int>> degrees(n);
 
    for (unsigned int i = 0; i < n; ++i) {
 
        degrees[i].first = ds[i];
 
        degrees[i].second = i;
 
    }
 

	
 
    std::vector<decltype(degrees.begin())> available;
 
    available.reserve(n);
 

	
 
    // Clear the graph
 
    g.reset(n);
 

	
 
    while (!degrees.empty()) {
 
        std::shuffle(degrees.begin(), degrees.end(), rng);
 
        // Get the highest degree:
 
        // If there are multiple highest ones, we pick a random one,
 
        // ensured by the shuffle.
 
        // The shuffle is needed anyway for the remaining part
 
        unsigned int dmax = 0;
 
        auto uIter = degrees.begin();
 
        for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) {
 
            if (iter->first >= dmax) {
 
                dmax = iter->first;
 
                uIter = iter;
 
            }
 
        }
 

	
 
        if (dmax > degrees.size() - 1)
 
            return false;
 

	
 
        if (dmax == 0) {
 
            std::cerr << "ERROR 1 in GCM.\n";
 
        }
 

	
 
        unsigned int u = uIter->second;
 

	
 
        if (method2) {
 
            // Take the highest degree out of the vector
 
            degrees.erase(uIter);
 

	
 
            // Now assign randomly to the remaining vertices
 
            // Since its shuffled, we can pick the first 'dmax' ones
 
            auto vIter = degrees.begin();
 
            while (dmax--) {
 
                if (vIter->first == 0)
 
                    std::cerr << "ERROR in GCM2.\n";
 
                if (!g.addEdge({u, vIter->second}))
 
                    std::cerr << "ERROR. Could not add edge in GCM2.\n";
 
                vIter->first--;
 
                if (vIter->first == 0)
 
                    vIter = degrees.erase(vIter);
 
                else
 
                    vIter++;
 
            }
 
        } else {
 
            // Pair with a random vertex that is not u itself and to which
 
            // u has not paired yet!
 
            available.clear();
 
            for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) {
 
                if (iter->second != u && !g.hasEdge({u, iter->second}))
 
                    available.push_back(iter);
 
            }
 
            if (available.empty())
 
                return false;
 
            std::uniform_int_distribution<> distr(0, available.size() - 1);
 
            auto vIter = available[distr(rng)];
 
            // pair u to v
 
            if (vIter->first == 0)
 
                std::cerr << "ERROR 2 in GCM1.\n";
 
            if (!g.addEdge({u, vIter->second}))
 
                std::cerr << "ERROR. Could not add edge in GCM1.\n";
 
            // Purge anything with degree zero
 
            // Be careful with invalidating the other iterator!
 
            // Degree of u is always greater or equal to the degree of v
 
            if (dmax == 1) {
 
                // Remove both
 
                // Erasure invalidates all iterators AFTER the erased one
 
                if (vIter > uIter) {
 
                    degrees.erase(vIter);
 
                    degrees.erase(uIter);
 
                } else {
 
                    degrees.erase(uIter);
 
                    degrees.erase(vIter);
 
                }
 
            } else {
 
                // Remove only v if it reaches zero
 
                uIter->first--;
 
                vIter->first--;
 
                if (vIter->first == 0)
 
                    degrees.erase(vIter);
 
            }
 
            //degrees.erase(std::remove_if(degrees.begin(), degrees.end(),
 
            //                             [](auto x) { return x.first == 0; }));
 
        }
 
    }
 
    return true;
 
}
 

	
 
int main(int argc, char* argv[]) {
 
    // Generate a random degree sequence
 
    std::mt19937 rng(std::random_device{}());
 
@@ -208,8 +23,6 @@ int main(int argc, char* argv[]) {
 
    float tauValues[] = {2.1f, 2.2f, 2.3f, 2.4f, 2.5f, 2.6f, 2.7f, 2.8f, 2.9f};
 

	
 
    Graph g;
 
    Graph g1;
 
    Graph g2;
 

	
 
    std::ofstream outfile;
 

	
cpp/switchchain_timeevol.cpp
Show inline comments
 
#include "exports.hpp"
 
#include "graph.hpp"
 
#include "powerlaw.hpp"
 
#include "switchchain.hpp"
 
#include <algorithm>
 
#include <array>
 
#include <fstream>
 
@@ -9,192 +10,6 @@
 
#include <random>
 
#include <vector>
 

	
 
// Its assumed that u,v are distinct.
 
// Check if all four vertices are distinct
 
bool edgeConflicts(const Edge& e1, const Edge& e2) {
 
    return (e1.u == e2.u || e1.u == e2.v || e1.v == e2.u || e1.v == e2.v);
 
}
 

	
 
class SwitchChain {
 
  public:
 
    SwitchChain()
 
        : mt(std::random_device{}()), permutationDistribution(0.5)
 
    // permutationDistribution(0, 2)
 
    {
 
        // random_device uses hardware entropy if available
 
        // std::random_device rd;
 
        // mt.seed(rd());
 
    }
 
    ~SwitchChain() {}
 

	
 
    bool initialize(const Graph& gstart) {
 
        if (gstart.edgeCount() == 0)
 
            return false;
 
        g = gstart;
 
        edgeDistribution.param(
 
            std::uniform_int_distribution<>::param_type(0, g.edgeCount() - 1));
 
        return true;
 
    }
 

	
 
    bool doMove() {
 
        int e1index, e2index;
 
        int timeout = 0;
 
        // Keep regenerating while conflicting edges
 
        do {
 
            e1index = edgeDistribution(mt);
 
            e2index = edgeDistribution(mt);
 
            if (++timeout % 100 == 0) {
 
                std::cerr << "Warning: sampled " << timeout
 
                          << " random edges but they keep conflicting.\n";
 
            }
 
        } while (edgeConflicts(g.getEdge(e1index), g.getEdge(e2index)));
 

	
 
        // Consider one of the three possible permutations
 
        // 1) e1.u - e1.v and e2.u - e2.v (original)
 
        // 2) e1.u - e2.u and e1.v - e2.v
 
        // 3) e1.u - e2.v and e1.v - e2.u
 
        bool switchType = permutationDistribution(mt);
 
        return g.exchangeEdges(e1index, e2index, switchType);
 
    }
 

	
 
    Graph g;
 
    std::mt19937 mt;
 
    std::uniform_int_distribution<> edgeDistribution;
 
    //std::uniform_int_distribution<> permutationDistribution;
 
    std::bernoulli_distribution permutationDistribution;
 
};
 

	
 
void getTriangleDegrees(const Graph& g) {
 
    std::vector<std::array<std::size_t,3>> trids;
 
    const auto& adj = g.getAdj();
 
    int triangles = 0;
 
    for (auto& v : adj) {
 
        for (unsigned int i = 0; i < v.size(); ++i) {
 
            for (unsigned int j = i + 1; j < v.size(); ++j) {
 
                if (g.hasEdge({v[i], v[j]})) {
 
                    ++triangles;
 
                    std::array<std::size_t, 3> ds = {{v.size(), adj[v[i]].size(),
 
                                                     adj[v[j]].size()}};
 
                    std::sort(ds.begin(), ds.end());
 
                    trids.push_back(ds);
 
                }
 
            }
 
        }
 
    }
 
    assert(triangles % 3 == 0);
 
    return;
 
}
 

	
 
//
 
// Assumes degree sequence does NOT contain any zeroes!
 
//
 
// method2 = true  -> take highest degree and finish its pairing completely
 
// method2 = false -> take new highest degree after every pairing
 
template <typename RNG>
 
bool greedyConfigurationModel(DegreeSequence& ds, Graph& g, RNG& rng, bool method2) {
 
    // Similar to Havel-Hakimi but instead of pairing up with the highest ones
 
    // that remain, simply pair up with random ones
 
    unsigned int n = ds.size();
 

	
 
    // degree, vertex index
 
    std::vector<std::pair<unsigned int, unsigned int>> degrees(n);
 
    for (unsigned int i = 0; i < n; ++i) {
 
        degrees[i].first = ds[i];
 
        degrees[i].second = i;
 
    }
 

	
 
    std::vector<decltype(degrees.begin())> available;
 
    available.reserve(n);
 

	
 
    // Clear the graph
 
    g.reset(n);
 

	
 
    while (!degrees.empty()) {
 
        std::shuffle(degrees.begin(), degrees.end(), rng);
 
        // Get the highest degree:
 
        // If there are multiple highest ones, we pick a random one,
 
        // ensured by the shuffle.
 
        // The shuffle is needed anyway for the remaining part
 
        unsigned int dmax = 0;
 
        auto uIter = degrees.begin();
 
        for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) {
 
            if (iter->first >= dmax) {
 
                dmax = iter->first;
 
                uIter = iter;
 
            }
 
        }
 

	
 
        if (dmax > degrees.size() - 1)
 
            return false;
 

	
 
        if (dmax == 0) {
 
            std::cerr << "ERROR 1 in GCM.\n";
 
        }
 

	
 
        unsigned int u = uIter->second;
 

	
 
        if (method2) {
 
            // Take the highest degree out of the vector
 
            degrees.erase(uIter);
 

	
 
            // Now assign randomly to the remaining vertices
 
            // Since its shuffled, we can pick the first 'dmax' ones
 
            auto vIter = degrees.begin();
 
            while (dmax--) {
 
                if (vIter->first == 0)
 
                    std::cerr << "ERROR in GCM2.\n";
 
                if (!g.addEdge({u, vIter->second}))
 
                    std::cerr << "ERROR. Could not add edge in GCM2.\n";
 
                vIter->first--;
 
                if (vIter->first == 0)
 
                    vIter = degrees.erase(vIter);
 
                else
 
                    vIter++;
 
            }
 
        } else {
 
            // Pair with a random vertex that is not u itself and to which
 
            // u has not paired yet!
 
            available.clear();
 
            for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) {
 
                if (iter->second != u && !g.hasEdge({u, iter->second}))
 
                    available.push_back(iter);
 
            }
 
            if (available.empty())
 
                return false;
 
            std::uniform_int_distribution<> distr(0, available.size() - 1);
 
            auto vIter = available[distr(rng)];
 
            // pair u to v
 
            if (vIter->first == 0)
 
                std::cerr << "ERROR 2 in GCM1.\n";
 
            if (!g.addEdge({u, vIter->second}))
 
                std::cerr << "ERROR. Could not add edge in GCM1.\n";
 
            // Purge anything with degree zero
 
            // Be careful with invalidating the other iterator!
 
            // Degree of u is always greater or equal to the degree of v
 
            if (dmax == 1) {
 
                // Remove both
 
                // Erasure invalidates all iterators AFTER the erased one
 
                if (vIter > uIter) {
 
                    degrees.erase(vIter);
 
                    degrees.erase(uIter);
 
                } else {
 
                    degrees.erase(uIter);
 
                    degrees.erase(vIter);
 
                }
 
            } else {
 
                // Remove only v if it reaches zero
 
                uIter->first--;
 
                vIter->first--;
 
                if (vIter->first == 0)
 
                    degrees.erase(vIter);
 
            }
 
            //degrees.erase(std::remove_if(degrees.begin(), degrees.end(),
 
            //                             [](auto x) { return x.first == 0; }));
 
        }
 
    }
 
    return true;
 
}
 

	
 
int main(int argc, char* argv[]) {
 
    // Generate a random degree sequence
 
    std::mt19937 rng(std::random_device{}());
 
@@ -208,8 +23,6 @@ int main(int argc, char* argv[]) {
 
    float tauValues[] = {2.1f, 2.2f, 2.3f, 2.4f, 2.5f, 2.6f, 2.7f, 2.8f, 2.9f};
 

	
 
    Graph g;
 
    Graph g1;
 
    Graph g2;
 

	
 
    std::ofstream outfile;
 

	
0 comments (0 inline, 0 general)