Changeset - cd465118bb78
[Not reviewed]
0 1 0
Tom Bannink - 8 years ago 2017-03-13 13:10:40
tom.bannink@cwi.nl
Update TODO list in Mathematica notebook
1 file changed with 10 insertions and 8 deletions:
0 comments (0 inline, 0 general)
showgraphs.m
Show inline comments
 
@@ -5,38 +5,40 @@ Needs["ErrorBarPlots`"]
 

	
 
(* ::Section:: *)
 
(*TODO*)
 

	
 

	
 
(* ::Text:: *)
 
(*- Experimental mixing time as function of n. At (n,tau)=(1000,2.5) it seems to be between 10.000 and 20.000 steps.*)
 
(**)
 
(*- Use different starting point for switch chain that is closer to uniform:*)
 
(*   Do configuration model, starting with the vertex with highest degree and keeping track of a "forbidden list" meaning dont pair something that is not allowed*)
 
(*   (a) How close is this to uniform ? At least w.r.t. the measure of #triangles*)
 
(*   (b) How often does this procedure work/fail. Might still be faster to do switchings from Erdos-Gallai.*)
 
(**)
 
(*- Improve runtime*)
 
(*   (a) Don't remove/add edges from the std::vector. Simply replace them*)
 
(*   (b) Better direct triangle counting? (I doubt it)*)
 
(*   (b') Better triangle counting by only keeping track of CHANGES in #triangles*)
 
(*   (c) Do not choose the three permutations with 1/3 probability: choose the "staying" one with zero probability. Should still be a valid switch chain?*)
 
(**)
 
(*- Experimental mixing time as function of n. At (n,tau)=(1000,2.5) it seems to be between 10.000 and 20.000 steps.*)
 
(**)
 
(*- Count #moves that result in +-k triangles (one move could create many triangles at once!)*)
 
(**)
 
(*- Improve runtime*)
 
(*   (a) Better direct triangle counting? (I doubt it)*)
 
(*   (b) Better triangle counting by only keeping track of CHANGES in #triangles*)
 

	
 

	
 
(* ::Subsection:: *)
 
(*Done*)
 

	
 

	
 
(* ::Text:: *)
 
(*- Do a single very long run: nothing weird seems to happen with the triangle counts. Tried 10 million steps.*)
 
(**)
 
(*- Compute  Sum over i<j<k  of  (1-Exp[- d_i d_j / (2E)]) * (1 - Exp[-d_j d_k / (2E)]) * (1 - Exp[-d_k d_i / (2E)]) .*)
 
(*  Computing the f(i,j) = (1-Exp[..]) terms is fine, but then computing Sum[ f(i,j) f(j,k) f(i,k) ) ] over n^3 entries is very slow.*)
 
(*  *)
 
(*  - Improve runtime*)
 
(*   (a) Don't remove/add edges from the std::vector. Simply replace them. Done, is way faster for large n.*)
 
(*   (b) Do not choose the three permutations with 1/3 probability: choose the "staying" one with zero probability. Should still be a valid switch chain?*)
 
(*  *)
 
(*  *)
 

	
 

	
 
(* ::Section:: *)
 
(*Visualize graphs*)
 

	
0 comments (0 inline, 0 general)