#include "switchchain.hpp" #include "exports.hpp" #include "graph.hpp" #include "graph_ccm.hpp" #include "graph_spectrum.hpp" #include "graph_powerlaw.hpp" #include #include #include #include #include #include #include int main(int argc, char* argv[]) { // Simulation parameters const int numVerticesMin = 100; const int numVerticesMax = 500; const int numVerticesStep = 100; float tauValues[] = {2.1f, 2.2f, 2.3f, 2.4f, 2.5f, 2.6f, 2.7f, 2.8f, 2.9f}; const int totalDegreeSamples = 5; auto getMixingTime = [](int n, float tau) { return int(30.0f * (50.0f - 30.0f * (tau - 2.0f)) * n); }; constexpr int measurements = 50; constexpr int measureSkip = 200; // Take a sample every ... steps // Output file std::ofstream outfile; if (argc >= 2) outfile.open(argv[1]); else outfile.open("graphdata_spectrum.m"); if (!outfile.is_open()) { std::cout << "ERROR: Could not open output file.\n"; return 1; } // Output Mathematica-style comment to indicate file contents outfile << "(*\n"; outfile << "n from " << numVerticesMin << " to " << numVerticesMax << " step " << numVerticesStep << std::endl; outfile << "tauValues: " << tauValues << std::endl; outfile << "degreeSamples: " << totalDegreeSamples << std::endl; outfile << "mixingTime: 30 * (50 - 30 (tau - 2)) n\n"; outfile << "data:\n"; outfile << "1: {n,tau}\n"; outfile << "2: triangleSeq\n"; outfile << "3: edges\n"; outfile << "4: start adj spectrum\n"; outfile << "5: start laplacian spectrum\n"; outfile << "6: end adj spectrum\n"; outfile << "7: end laplacian spectrum\n"; outfile << "*)" << std::endl; // Mathematica does not accept things of the form 1.23e-5 // (instead it would write that as 1.23*^-5) // so simply use normal notation up to 6 decimals outfile << std::fixed; outfile << '{'; bool outputComma = false; std::mt19937 rng(std::random_device{}()); Graph g; for (int numVertices = numVerticesMin; numVertices <= numVerticesMax; numVertices += numVerticesStep) { for (float tau : tauValues) { // For a single n,tau take samples over several instances of // the degree distribution. for (int degreeSample = 0; degreeSample < totalDegreeSamples; ++degreeSample) { DegreeSequence ds; generatePowerlawGraph(numVertices, tau, g, ds, rng); SwitchChain chain; if (!chain.initialize(g)) { std::cerr << "Could not initialize Markov chain.\n"; return 1; } std::cout << "Running n = " << numVertices << ", tau = " << tau << ". \t" << std::flush; int mixingTime = getMixingTime(numVertices,tau);; int movesTotal = 0; int movesSuccess = 0; int triangles[measurements]; for (int i = 0; i < mixingTime; ++i) { ++movesTotal; if (chain.doMove()) { ++movesSuccess; } } for (int i = 0; i < measurements; ++i) { for (int j = 0; j < measureSkip; ++j) { ++movesTotal; if (chain.doMove()) { ++movesSuccess; } } triangles[i] = chain.g.countTriangles(); } std::cout << '(' << 100.0f * float(movesSuccess) / float(movesTotal) << "% successrate). " << std::flush; // std::cout << std::endl; GraphSpectrum gs_start(g); GraphSpectrum gs_end(chain.g); if (outputComma) outfile << ',' << '\n'; outputComma = true; //std::sort(ds.begin(), ds.end()); outfile << '{' << '{' << numVertices << ',' << tau << '}'; outfile << ',' << triangles; outfile << ',' << g.edgeCount(); outfile << ',' << gs_start.computeAdjacencySpectrum(); outfile << ',' << gs_start.computeLaplacianSpectrum(); outfile << ',' << gs_end.computeAdjacencySpectrum(); outfile << ',' << gs_end.computeLaplacianSpectrum(); outfile << '}' << std::flush; std::cout << std::endl; } } } outfile << '}'; return 0; }