#include "exports.hpp" #include "graph.hpp" #include "graph_ccm.hpp" #include "graph_powerlaw.hpp" #include "switchchain.hpp" #include #include #include #include #include #include int main(int argc, char* argv[]) { // Simulation parameters const int numVerticesMin = 1000; const int numVerticesMax = 1000; const int numVerticesStep = 1000; //float tauValues[] = {2.1f, 2.2f, 2.3f, 2.4f, 2.5f, 2.6f, 2.7f, 2.8f, 2.9f}; float tauValues[] = {2.1f, 2.3f, 2.5f, 2.7f, 2.9f}; //const int totalDegreeSamples = 10; const int totalDegreeSamples = 1; auto getMixingTime = [](int n, float tau) { return int(1.0f * (50.0f - 10.0f * (tau - 2.0f)) * n); }; // Output file std::ofstream outfile; if (argc >= 2) outfile.open(argv[1]); else outfile.open("graphdata_ccm_timeevol.m"); if (!outfile.is_open()) { std::cout << "ERROR: Could not open output file.\n"; return 1; } // Output Mathematica-style comment to indicate file contents outfile << "(*\n"; outfile << "n from " << numVerticesMin << " to " << numVerticesMax << " step " << numVerticesStep << std::endl; outfile << "tauValues: " << tauValues << std::endl; //outfile << "degreeSamples: " << totalDegreeSamples << std::endl; outfile << "canonical ds" << std::endl; outfile << "mixingTime: 0.5 * (50 - 10 (tau - 2)) n\n"; outfile << "measurements: full time evol\n"; outfile << "data:\n"; outfile << "1: {n,tau}\n"; outfile << "2: edges\n"; outfile << "3: HH triangle seq\n"; outfile << "4: {ccm1 failed attempts, triangle seq}\n"; outfile << "5: {ccm2 failed attempts, triangle seq}\n"; outfile << "*)" << std::endl; // Mathematica does not accept normal scientific notation outfile << std::fixed; outfile << '{' << '\n'; bool outputComma = false; std::mt19937 rng(std::random_device{}()); Graph g; for (int numVertices = numVerticesMin; numVertices <= numVerticesMax; numVertices += numVerticesStep) { for (float tau : tauValues) { int mixingTime = getMixingTime(numVertices, tau); // For a single n,tau take samples over several instances of // the degree distribution. for (int degreeSample = 0; degreeSample < totalDegreeSamples; ++degreeSample) { DegreeSequence ds; //generatePowerlawGraph(numVertices, tau, g, ds, rng); generateCanonicalPowerlawGraph(numVertices, tau, g, ds); std::cout << "Running (n,tau) = (" << numVertices << ',' << tau << "). " << std::flush; SwitchChain chain; if (!chain.initialize(g, true)) { std::cerr << "Could not initialize Markov chain.\n"; return 1; } std::vector triangleSeq(mixingTime); for (int i = 0; i < mixingTime; ++i) { chain.doMove(true); triangleSeq[i] = chain.g.getTrackedTriangles(); } std::cout << " Finished HH time evol." << std::flush; if (outputComma) outfile << ',' << '\n'; outputComma = true; outfile << '{'; outfile << '{' << numVertices << ',' << tau << '}'; outfile << ',' << g.edgeCount(); outfile << ',' << triangleSeq; for (int ccmType = 1; ccmType <= 2; ++ccmType) { bool ccmMethod = (ccmType == 1 ? false : true); #if 0 outfile << ',' << '{'; for (int i = 0; i < 10; ++i) { if (i != 0) outfile << ','; Graph gtemp; if (constrainedConfigurationModel(ds, gtemp, rng, ccmMethod)) { chain.initialize(gtemp, true); for (int i = 0; i < mixingTime; ++i) { chain.doMove(true); triangleSeq[i] = chain.g.getTrackedTriangles(); } outfile << triangleSeq; } else { outfile << '{' << '}'; } } outfile << '}'; #endif bool failed = true; for (int i = 0; i < 1000; ++i) { Graph gtemp; if (constrainedConfigurationModel(ds, gtemp, rng, ccmMethod)) { chain.initialize(gtemp, true); for (int i = 0; i < mixingTime; ++i) { chain.doMove(true); triangleSeq[i] = chain.g.getTrackedTriangles(); } outfile << ',' << '{' << i << ',' << triangleSeq << '}'; failed = false; break; } } if (failed) outfile << ",{1000,{}}"; } outfile << '}' << std::flush; std::cout << " Finished CCM time evols." << std::flush; std::cout << std::endl; } } } outfile << '\n' << '}'; return 0; }