#include "exports.hpp" #include "graph.hpp" #include "powerlaw.hpp" #include #include #include #include #include #include #include // Its assumed that u,v are distinct. // Check if all four vertices are distinct bool edgeConflicts(const Edge& e1, const Edge& e2) { return (e1.u == e2.u || e1.u == e2.v || e1.v == e2.u || e1.v == e2.v); } class SwitchChain { public: SwitchChain() : mt(std::random_device{}()), permutationDistribution(0.5) // permutationDistribution(0, 2) { // random_device uses hardware entropy if available // std::random_device rd; // mt.seed(rd()); } ~SwitchChain() {} bool initialize(const Graph& gstart) { if (gstart.edgeCount() == 0) return false; g = gstart; edgeDistribution.param( std::uniform_int_distribution<>::param_type(0, g.edgeCount() - 1)); return true; } bool doMove() { int e1index, e2index; int timeout = 0; // Keep regenerating while conflicting edges do { e1index = edgeDistribution(mt); e2index = edgeDistribution(mt); if (++timeout % 100 == 0) { std::cerr << "Warning: sampled " << timeout << " random edges but they keep conflicting.\n"; } } while (edgeConflicts(g.getEdge(e1index), g.getEdge(e2index))); // Consider one of the three possible permutations // 1) e1.u - e1.v and e2.u - e2.v (original) // 2) e1.u - e2.u and e1.v - e2.v // 3) e1.u - e2.v and e1.v - e2.u bool switchType = permutationDistribution(mt); return g.exchangeEdges(e1index, e2index, switchType); } Graph g; std::mt19937 mt; std::uniform_int_distribution<> edgeDistribution; //std::uniform_int_distribution<> permutationDistribution; std::bernoulli_distribution permutationDistribution; }; void getTriangleDegrees(const Graph& g) { std::vector> trids; const auto& adj = g.getAdj(); int triangles = 0; for (auto& v : adj) { for (unsigned int i = 0; i < v.size(); ++i) { for (unsigned int j = i + 1; j < v.size(); ++j) { if (g.hasEdge({v[i], v[j]})) { ++triangles; std::array ds = {{v.size(), adj[v[i]].size(), adj[v[j]].size()}}; std::sort(ds.begin(), ds.end()); trids.push_back(ds); } } } } assert(triangles % 3 == 0); return; } // // Assumes degree sequence does NOT contain any zeroes! // // method2 = true -> take highest degree and finish its pairing completely // method2 = false -> take new highest degree after every pairing template bool greedyConfigurationModel(DegreeSequence& ds, Graph& g, RNG& rng, bool method2) { // Similar to Havel-Hakimi but instead of pairing up with the highest ones // that remain, simply pair up with random ones unsigned int n = ds.size(); // degree, vertex index std::vector> degrees(n); for (unsigned int i = 0; i < n; ++i) { degrees[i].first = ds[i]; degrees[i].second = i; } std::vector available; available.reserve(n); // Clear the graph g.reset(n); while (!degrees.empty()) { std::shuffle(degrees.begin(), degrees.end(), rng); // Get the highest degree: // If there are multiple highest ones, we pick a random one, // ensured by the shuffle. // The shuffle is needed anyway for the remaining part unsigned int dmax = 0; auto uIter = degrees.begin(); for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) { if (iter->first >= dmax) { dmax = iter->first; uIter = iter; } } if (dmax > degrees.size() - 1) return false; if (dmax == 0) { std::cerr << "ERROR 1 in GCM.\n"; } unsigned int u = uIter->second; if (method2) { // Take the highest degree out of the vector degrees.erase(uIter); // Now assign randomly to the remaining vertices // Since its shuffled, we can pick the first 'dmax' ones auto vIter = degrees.begin(); while (dmax--) { if (vIter->first == 0) std::cerr << "ERROR in GCM2.\n"; if (!g.addEdge({u, vIter->second})) std::cerr << "ERROR. Could not add edge in GCM2.\n"; vIter->first--; if (vIter->first == 0) vIter = degrees.erase(vIter); else vIter++; } } else { // Pair with a random vertex that is not u itself and to which // u has not paired yet! available.clear(); for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) { if (iter->second != u && !g.hasEdge({u, iter->second})) available.push_back(iter); } if (available.empty()) return false; std::uniform_int_distribution<> distr(0, available.size() - 1); auto vIter = available[distr(rng)]; // pair u to v if (vIter->first == 0) std::cerr << "ERROR 2 in GCM1.\n"; if (!g.addEdge({u, vIter->second})) std::cerr << "ERROR. Could not add edge in GCM1.\n"; // Purge anything with degree zero // Be careful with invalidating the other iterator! // Degree of u is always greater or equal to the degree of v if (dmax == 1) { // Remove both // Erasure invalidates all iterators AFTER the erased one if (vIter > uIter) { degrees.erase(vIter); degrees.erase(uIter); } else { degrees.erase(uIter); degrees.erase(vIter); } } else { // Remove only v if it reaches zero uIter->first--; vIter->first--; if (vIter->first == 0) degrees.erase(vIter); } //degrees.erase(std::remove_if(degrees.begin(), degrees.end(), // [](auto x) { return x.first == 0; })); } } return true; } int main(int argc, char* argv[]) { // Generate a random degree sequence std::mt19937 rng(std::random_device{}()); // Goal: // Degrees follow a power-law distribution with some parameter tau // Expect: #tri = const * n^{ something } // The goal is to find the 'something' by finding the number of triangles // for different values of n and tau //float tauValues[] = {2.5f}; float tauValues[] = {2.1f, 2.2f, 2.3f, 2.4f, 2.5f, 2.6f, 2.7f, 2.8f, 2.9f}; Graph g; Graph g1; Graph g2; std::ofstream outfile; if (argc >= 2) outfile.open(argv[1]); else outfile.open("graphdata_successrates.m"); if (!outfile.is_open()) { std::cout << "ERROR: Could not open output file.\n"; return 1; } outfile << '{'; bool outputComma = false; for (int numVertices = 1000; numVertices <= 1000; numVertices += 1000) { for (float tau : tauValues) { DegreeSequence ds(numVertices); powerlaw_distribution degDist(tau, 1, numVertices); //std::poisson_distribution<> degDist(12); // For a single n,tau take samples over several instances of // the degree distribution. // 500 samples seems to give reasonable results for (int degreeSample = 0; degreeSample < 2000; ++degreeSample) { // Generate a graph // might require multiple tries for (int i = 1; ; ++i) { std::generate(ds.begin(), ds.end(), [°Dist, &rng] { return degDist(rng); }); // First make the sum even unsigned int sum = std::accumulate(ds.begin(), ds.end(), 0); if (sum % 2) { continue; // Can we do this: ?? ds.back()++; } if (g.createFromDegreeSequence(ds)) break; // When 10 tries have not worked, output a warning if (i % 10 == 0) { std::cerr << "Warning: could not create graph from " "degree sequence. Trying again...\n"; } } SwitchChain chain; if (!chain.initialize(g)) { std::cerr << "Could not initialize Markov chain.\n"; return 1; } std::cout << "Running n = " << numVertices << ", tau = " << tau << ". \t" << std::flush; // Non time evol int mixingTime = 32*(32.0f - 15.0f*(tau - 2.0f)) * numVertices; //40000; constexpr int measurements = 50; constexpr int measureSkip = 200; // Take a sample every ... steps // Time Evol //int mixingTime = 0; //constexpr int measurements = 500; //constexpr int measureSkip = 100; int movesTotal = 0; int movesSuccess = 0; int triangles[measurements]; for (int i = 0; i < mixingTime; ++i) { ++movesTotal; if (chain.doMove()) { ++movesSuccess; } } // Time Evol //std::vector successRates; //successRates.reserve(measurements); //int successrate = 0; for (int i = 0; i < measurements; ++i) { for (int j = 0; j < measureSkip; ++j) { ++movesTotal; if (chain.doMove()) { ++movesSuccess; //++successrate; } } triangles[i] = chain.g.countTriangles(); //successRates.push_back(successrate); //successrate = 0; } std::cout << '(' << 100.0f * float(movesSuccess) / float(movesTotal) << "% successrate). " << std::flush; // std::cout << std::endl; if (outputComma) outfile << ',' << '\n'; outputComma = true; long long trianglesTotal = 0; for (int i = 0; i < measurements; ++i) trianglesTotal += triangles[i]; float avgTriangles = float(trianglesTotal) / float(measurements); outfile << '{' << '{' << numVertices << ',' << tau << '}'; outfile << ',' << avgTriangles; //outfile << ',' << successRates; outfile << ',' << float(movesSuccess) / float(movesTotal); outfile << '}' << std::flush; std::cout << std::endl; } } } outfile << '}'; return 0; }