#include "exports.hpp" #include "graph.hpp" #include "graph_powerlaw.hpp" #include "graph_spectrum.hpp" #include "switchchain.hpp" #include #include #include #include #include #include int main(int argc, char* argv[]) { // Simulation parameters const int numVerticesMin = 200; const int numVerticesMax = 1000; const int numVerticesStep = 200; float tauValues[] = {2.1f, 2.3f, 2.5f, 2.7f, 2.9f}; auto getMixingTime = [](int n, float tau) { return int(50.0f * (50.0f - 5.0f * (tau - 2.0f)) * n); }; auto getMeasurements = [](int n, float tau) { (void)n; (void)tau; return 10000; }; auto getMeasureSkip = [](int n, float tau) { (void)tau; return 30 * n; // Take a sample every ... steps }; // Output file std::ofstream outfile; if (argc >= 2) outfile.open(argv[1]); else outfile.open("graphdata_canonical_mixingtime.m"); if (!outfile.is_open()) { std::cout << "ERROR: Could not open output file.\n"; return 1; } // Output Mathematica-style comment to indicate file contents outfile << "(*\n"; outfile << "n from " << numVerticesMin << " to " << numVerticesMax << " step " << numVerticesStep << std::endl; outfile << "tauValues: " << tauValues << std::endl; outfile << "Canonical degree sequence.\n"; outfile << "max time: 20 n\n"; outfile << "samples per time: 1000\n"; outfile << "time skip: n\n"; outfile << "For uniform samples:\n"; outfile << "mixingTime: 50 * (50 - 5 (tau - 2)) n\n"; outfile << "measurements: 10000\n"; outfile << "measureSkip: 30 n\n"; outfile << "data:\n"; outfile << "1: {n,tau}\n"; outfile << "2: { {timestamp 1, {samples}}, {timestamp 2, {samples}} }\n"; outfile << "3: {uniform samples}}\n"; outfile << "*)" << std::endl; // Mathematica does not accept normal scientific notation outfile << std::fixed; outfile << '{' << '\n'; bool outputComma = false; SwitchChain chain; Graph g; for (int numVertices = numVerticesMin; numVertices <= numVerticesMax; numVertices += numVerticesStep) { for (float tau : tauValues) { DegreeSequence ds; generateCanonicalPowerlawGraph(numVertices, tau, g, ds); std::cout << "Running (n,tau) = (" << numVertices << ',' << tau << "). " << std::flush; if (outputComma) outfile << ',' << '\n'; outputComma = true; outfile << '{' << '{' << numVertices << ',' << tau << '}'; #if 0 std::vector samples; outfile << ',' << '{'; for (int maxTime = numVertices; maxTime <= 20 * numVertices; maxTime += numVertices) { samples.clear(); for (int sample = 0; sample < 1000; ++sample) { chain.initialize(g, true); for (int i = 0; i < maxTime; ++i) chain.doMove(true); samples.push_back(chain.g.getTrackedTriangles()); } if (maxTime != numVertices) outfile << ','; outfile << '{' << maxTime << ',' << samples << '}'; std::cout << "t=" << maxTime << ' ' << std::flush; } outfile << '}'; #else std::vector>> samples; for (int maxTime = numVertices; maxTime <= 20 * numVertices; maxTime += numVertices) { samples.push_back(make_pair(maxTime, std::vector())); } for (int sample = 0; sample < 5000; ++sample) { chain.initialize(g, true); int curTime = 0; for (auto &piv : samples) { for (; curTime < piv.first; ++curTime) chain.doMove(true); piv.second.push_back(chain.g.getTrackedTriangles()); } } outfile << ',' << samples; #endif std::cout << "\nTaking uniform samples." << std::flush; // Uniform samples chain.initialize(g); int mixingTime = getMixingTime(numVertices, tau); for (int i = 0; i < mixingTime; ++i) { chain.doMove(); } chain.g.getTrackedTriangles() = chain.g.countTriangles(); int measurements = getMeasurements(numVertices, tau); int measureSkip = getMeasureSkip(numVertices, tau); std::vector usamples; for (int i = 0; i < measurements; ++i) { for (int j = 0; j < measureSkip; ++j) chain.doMove(true); usamples.push_back(chain.g.getTrackedTriangles()); } outfile << ',' << usamples; outfile << '}' << std::flush; std::cout << std::endl; } } outfile << '\n' << '}'; return 0; }