#include "switchchain.hpp" #include "exports.hpp" #include "graph.hpp" #include "graph_ecm.hpp" #include "graph_powerlaw.hpp" #include #include #include #include #include #include int main(int argc, char *argv[]) { // Simulation parameters const int numVerticesMin = 10000; //const int numVerticesMin = 1000; const int numVerticesMax = 10000; const int numVerticesStep = 1000; //float tauValues[] = {2.05f, 2.1f, 2.2f, 2.3f, 2.4f, 2.5f, // 2.6f, 2.7f, 2.8f, 2.9f, 2.95f}; float tauValues[] = {2.5f}; auto getMixingTime = [](int n, float tau) { return int(50.0f * (50.0f - 5.0f * (tau - 2.0f)) * n); }; auto getMeasurements = [](int n, float tau) { (void)n; (void)tau; return 20000; }; auto getMeasureSkip = [](int n, float tau) { (void)tau; return 30 * n; // Take a sample every ... steps }; // Output file std::ofstream outfile; if (argc >= 2) outfile.open(argv[1]); else outfile.open("graphdata_ecm_initialtris.m"); if (!outfile.is_open()) { std::cout << "ERROR: Could not open output file.\n"; return 1; } // Output Mathematica-style comment to indicate file contents outfile << "(*\n"; outfile << "n from " << numVerticesMin << " to " << numVerticesMax << " step " << numVerticesStep << std::endl; outfile << "tauValues: " << tauValues << std::endl; outfile << "Canonical degree sequence.\n"; outfile << "mixingTime: 50 * (50 - 5 (tau - 2)) n\n"; outfile << "measurements: 20000\n"; outfile << "measureSkip: 30 n\n"; outfile << "data:\n"; outfile << "1: {n,tau}\n"; outfile << "2: {uniform tri samples}\n"; outfile << "3: {ECM initial tri samples} \n"; outfile << "*)" << std::endl; // Mathematica does not accept normal scientific notation outfile << std::fixed; outfile << '{' << '\n'; bool outputComma = false; std::mt19937 rng(std::random_device{}()); Graph g; for (int numVertices = numVerticesMin; numVertices <= numVerticesMax; numVertices += numVerticesStep) { for (float tau : tauValues) { int mixingTime = getMixingTime(numVertices, tau); int measurements = getMeasurements(numVertices, tau); int measureSkip = getMeasureSkip(numVertices, tau); // For a single n,tau take samples over several instances of // the degree distribution. DegreeSequence ds; generateCanonicalPowerlawGraph(numVertices, tau, g, ds); std::cout << "Running (n,tau) = (" << numVertices << ',' << tau << ")." << std::flush; // // ECM triangles // std::vector ECMtris; for (int i = 0; i < measurements; ++i) { Graph gtemp; if (erasedConfigurationModel(ds, gtemp, rng)) { ECMtris.push_back(gtemp.countTriangles()); } if ((i+1) % 1000 == 0) { std::cout << '.' << std::flush; } } std::cout << " Finished ECM samples." << std::flush; // Uniform triangles std::vector uniformTris; SwitchChain chain; if (!chain.initialize(g)) { std::cerr << "Could not initialize Markov chain.\n"; return 1; } for (int i = 0; i < mixingTime; ++i) { chain.doMove(); } chain.g.getTrackedTriangles() = chain.g.countTriangles(); for (int i = 0; i < measurements; ++i) { for (int j = 0; j < measureSkip; ++j) chain.doMove(true); uniformTris.push_back(chain.g.getTrackedTriangles()); if ((i+1) % 1000 == 0) { std::cout << '.' << std::flush; } } std::cout << " Finished uniform samples." << std::flush; if (outputComma) outfile << ',' << '\n'; outputComma = true; outfile << '{'; outfile << '{' << numVertices << ',' << tau << '}'; outfile << ',' << uniformTris; outfile << ',' << ECMtris; outfile << '}' << std::flush; std::cout << std::endl; } } outfile << '\n' << '}'; return 0; }