#include "exports.hpp" #include "graph.hpp" #include "powerlaw.hpp" #include "switchchain.hpp" #include #include #include #include #include #include // // Assumes degree sequence does NOT contain any zeroes! // // method2 = true -> take highest degree and finish its pairing completely // method2 = false -> take new highest degree after every pairing template bool greedyConfigurationModel(DegreeSequence& ds, Graph& g, RNG& rng, bool method2) { // Similar to Havel-Hakimi but instead of pairing up with the highest ones // that remain, simply pair up with random ones unsigned int n = ds.size(); // degree, vertex index std::vector> degrees(n); for (unsigned int i = 0; i < n; ++i) { degrees[i].first = ds[i]; degrees[i].second = i; } std::vector available; available.reserve(n); // Clear the graph g.reset(n); while (!degrees.empty()) { std::shuffle(degrees.begin(), degrees.end(), rng); // Get the highest degree: // If there are multiple highest ones, we pick a random one, // ensured by the shuffle. // The shuffle is needed anyway for the remaining part unsigned int dmax = 0; auto uIter = degrees.begin(); for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) { if (iter->first >= dmax) { dmax = iter->first; uIter = iter; } } if (dmax > degrees.size() - 1) return false; if (dmax == 0) { std::cerr << "ERROR 1 in GCM.\n"; } unsigned int u = uIter->second; if (method2) { // Take the highest degree out of the vector degrees.erase(uIter); // Now assign randomly to the remaining vertices // Since its shuffled, we can pick the first 'dmax' ones auto vIter = degrees.begin(); while (dmax--) { if (vIter->first == 0) std::cerr << "ERROR in GCM2.\n"; if (!g.addEdge({u, vIter->second})) std::cerr << "ERROR. Could not add edge in GCM2.\n"; vIter->first--; if (vIter->first == 0) vIter = degrees.erase(vIter); else vIter++; } } else { // Pair with a random vertex that is not u itself and to which // u has not paired yet! available.clear(); for (auto iter = degrees.begin(); iter != degrees.end(); ++iter) { if (iter->second != u && !g.hasEdge({u, iter->second})) available.push_back(iter); } if (available.empty()) return false; std::uniform_int_distribution<> distr(0, available.size() - 1); auto vIter = available[distr(rng)]; // pair u to v if (vIter->first == 0) std::cerr << "ERROR 2 in GCM1.\n"; if (!g.addEdge({u, vIter->second})) std::cerr << "ERROR. Could not add edge in GCM1.\n"; // Purge anything with degree zero // Be careful with invalidating the other iterator! // Degree of u is always greater or equal to the degree of v if (dmax == 1) { // Remove both // Erasure invalidates all iterators AFTER the erased one if (vIter > uIter) { degrees.erase(vIter); degrees.erase(uIter); } else { degrees.erase(uIter); degrees.erase(vIter); } } else { // Remove only v if it reaches zero uIter->first--; vIter->first--; if (vIter->first == 0) degrees.erase(vIter); } //degrees.erase(std::remove_if(degrees.begin(), degrees.end(), // [](auto x) { return x.first == 0; })); } } return true; } int main() { // Generate a random degree sequence std::mt19937 rng(std::random_device{}()); // Goal: // Degrees follow a power-law distribution with some parameter tau // Expect: #tri = const * n^{ something } // The goal is to find the 'something' by finding the number of triangles // for different values of n and tau float tauValues[] = {2.1f, 2.2f, 2.3f, 2.4f, 2.5f, 2.6f, 2.7f, 2.8f, 2.9f}; Graph g; std::ofstream outfile("graphdata_initialtris.m"); outfile << '{'; bool outputComma = false; for (int numVertices = 200; numVertices <= 2000; numVertices += 400) { for (float tau : tauValues) { DegreeSequence ds(numVertices); powerlaw_distribution degDist(tau, 1, numVertices); //std::poisson_distribution<> degDist(12); // For a single n,tau take samples over several instances of // the degree distribution. // 500 samples seems to give reasonable results for (int degreeSample = 0; degreeSample < 200; ++degreeSample) { // Generate a graph // might require multiple tries for (int i = 1; ; ++i) { std::generate(ds.begin(), ds.end(), [°Dist, &rng] { return degDist(rng); }); // First make the sum even unsigned int sum = std::accumulate(ds.begin(), ds.end(), 0); if (sum % 2) { continue; // Can we do this: ?? ds.back()++; } if (g.createFromDegreeSequence(ds)) break; // When 10 tries have not worked, output a warning if (i % 10 == 0) { std::cerr << "Warning: could not create graph from " "degree sequence. Trying again...\n"; } } std::cout << "Running n = " << numVertices << ", tau = " << tau << "." << std::flush; // // Test the GCM1 and GCM2 success rate // long long gcmTris1 = 0; long long gcmTris2 = 0; int successrate1 = 0; int successrate2 = 0; for (int i = 0; i < 100; ++i) { Graph gtemp; // Take new highest degree every time if (greedyConfigurationModel(ds, gtemp, rng, false)) { ++successrate1; gcmTris1 += gtemp.countTriangles(); } // Finish all pairings of highest degree first if (greedyConfigurationModel(ds, gtemp, rng, true)) { ++successrate2; gcmTris2 += gtemp.countTriangles(); } } SwitchChain chain; if (!chain.initialize(g)) { std::cerr << "Could not initialize Markov chain.\n"; return 1; } int mixingTime = (32.0f - 20.0f * (tau - 2.0f)) * numVertices; constexpr int measurements = 20; constexpr int measureSkip = 200; int movesDone = 0; long long trianglesTotal = 0; std::cout << " .. \t" << std::flush; for (int i = 0; i < mixingTime; ++i) { if (chain.doMove()) ++movesDone; } for (int i = 0; i < measurements; ++i) { for (int j = 0; j < measureSkip; ++j) if (chain.doMove()) ++movesDone; trianglesTotal += chain.g.countTriangles(); } std::cout << movesDone << '/' << mixingTime + measurements * measureSkip << " moves succeeded (" << 100.0f * float(movesDone) / float(mixingTime + measurements * measureSkip) << "%)."; //std::cout << std::endl; if (outputComma) outfile << ',' << '\n'; outputComma = true; float avgTriangles = float(trianglesTotal) / float(measurements); outfile << '{'; outfile << '{' << numVertices << ',' << tau << '}'; outfile << ',' << avgTriangles; outfile << ',' << '{' << gcmTris1 << ',' << successrate1 << '}'; outfile << ',' << '{' << gcmTris2 << ',' << successrate2 << '}'; outfile << '}' << std::flush; std::cout << std::endl; } } } outfile << '}'; return 0; }