#include "exports.hpp" #include "graph.hpp" #include "powerlaw.hpp" #include "switchchain.hpp" #include #include #include #include #include #include #include int main(int argc, char* argv[]) { // Generate a random degree sequence std::mt19937 rng(std::random_device{}()); // Goal: // Degrees follow a power-law distribution with some parameter tau // Expect: #tri = const * n^{ something } // The goal is to find the 'something' by finding the number of triangles // for different values of n and tau //float tauValues[] = {2.5f}; float tauValues[] = {2.1f, 2.2f, 2.3f, 2.4f, 2.5f, 2.6f, 2.7f, 2.8f, 2.9f}; Graph g; std::ofstream outfile; if (argc >= 2) outfile.open(argv[1]); else outfile.open("graphdata_timeevol.m"); if (!outfile.is_open()) { std::cout << "ERROR: Could not open output file.\n"; return 1; } outfile << '{'; bool outputComma = false; for (int numVertices = 1000; numVertices <= 1000; numVertices += 1000) { for (float tau : tauValues) { DegreeSequence ds(numVertices); powerlaw_distribution degDist(tau, 1, numVertices); //std::poisson_distribution<> degDist(12); // For a single n,tau take samples over several instances of // the degree distribution. // 500 samples seems to give reasonable results for (int degreeSample = 0; degreeSample < 5; ++degreeSample) { // Generate a graph // might require multiple tries for (int i = 1; ; ++i) { std::generate(ds.begin(), ds.end(), [°Dist, &rng] { return degDist(rng); }); // First make the sum even unsigned int sum = std::accumulate(ds.begin(), ds.end(), 0); if (sum % 2) { continue; // Can we do this: ?? ds.back()++; } if (g.createFromDegreeSequence(ds)) break; // When 10 tries have not worked, output a warning if (i % 10 == 0) { std::cerr << "Warning: could not create graph from " "degree sequence. Trying again...\n"; } } // Multiple runs from the same degree sequence for (int i = 0; i < 5; ++i) { SwitchChain chain; if (!chain.initialize(g)) { std::cerr << "Could not initialize Markov chain.\n"; return 1; } std::cout << "Running n = " << numVertices << ", tau = " << tau << ". \t" << std::flush; //int mixingTime = (32.0f - 26.0f*(tau - 2.0f)) * numVertices; //40000; //constexpr int measurements = 50; //constexpr int measureSkip = // 200; // Take a sample every ... steps int mixingTime = 0; constexpr int measurements = 50000; constexpr int measureSkip = 1; int movesTotal = 0; int movesSuccess = 0; int triangles[measurements]; for (int i = 0; i < mixingTime; ++i) { ++movesTotal; if (chain.doMove()) { ++movesSuccess; } } for (int i = 0; i < measurements; ++i) { for (int j = 0; j < measureSkip; ++j) { ++movesTotal; if (chain.doMove()) { ++movesSuccess; } } triangles[i] = chain.g.countTriangles(); } std::cout << '(' << 100.0f * float(movesSuccess) / float(movesTotal) << "% successrate). " << std::flush; // std::cout << std::endl; if (outputComma) outfile << ',' << '\n'; outputComma = true; std::sort(ds.begin(), ds.end()); outfile << '{' << '{' << numVertices << ',' << tau << '}'; outfile << ',' << triangles; outfile << ',' << ds; outfile << '}' << std::flush; std::cout << std::endl; } } } } outfile << '}'; return 0; }