#include #include #include #include #include #include class Edge { public: unsigned int u, v; bool operator==(const Edge &e) const { return u == e.u && v == e.v; } }; // Its assumed that u,v are distinct. // Check if all four vertices are distinct bool edgeConflicts(const Edge &e1, const Edge &e2) { return (e1.u == e2.u || e1.u == e2.v || e1.v == e2.u || e1.v == e2.v); } std::ostream &operator<<(std::ostream &s, const Edge &e) { s << '{' << e.u << ',' << e.v << '}'; return s; } class DiDegree { public: unsigned int in; unsigned int out; }; typedef std::vector DegreeSequence; typedef std::vector DiDegreeSequence; class Graph { public: Graph() {} Graph(unsigned int n) { adj.resize(n); } ~Graph() {} void resize(unsigned int n) { if (n < adj.size()) { edges.clear(); } adj.resize(n); } unsigned int edgeCount() const { return edges.size(); } Edge &getEdge(unsigned int i) { return edges[i]; } const Edge &getEdge(unsigned int i) const { return edges[i]; } bool createFromDegreeSequence(const DegreeSequence &d) { // Havel-Hakimi algorithm unsigned int n = d.size(); // degree, vertex index std::vector> degrees(n); for (unsigned int i = 0; i < n; ++i) { degrees[i].first = d[i]; degrees[i].second = i; } edges.clear(); adj.resize(n); while (!degrees.empty()) { std::sort(degrees.begin(), degrees.end()); // Highest degree is at back of the vector // Take it out unsigned int degree = degrees.back().first; unsigned int u = degrees.back().second; degrees.pop_back(); if (degree > degrees.size()) { edges.clear(); adj.clear(); return false; } // Now loop over the last 'degree' entries of degrees auto rit = degrees.rbegin(); for (unsigned int i = 0; i < degree; ++i) { if (rit->first == 0 || !addEdge({u, rit->second})) { edges.clear(); adj.clear(); return false; } rit->first--; ++rit; } } return true; } DegreeSequence getDegreeSequence() const { DegreeSequence d(adj.size()); std::transform(adj.begin(), adj.end(), d.begin(), [](const auto &u) { return u.size(); }); return d; } // Assumes valid vertex indices bool hasEdge(const Edge &e) const { for (unsigned int v : adj[e.u]) { if (v == e.v) return true; } return false; } bool addEdge(const Edge &e) { if (e.u >= adj.size() || e.v >= adj.size()) return false; if (hasEdge(e)) return false; edges.push_back(e); adj[e.u].push_back(e.v); adj[e.v].push_back(e.u); return true; } // There are two possible edge exchanges // switchType indicates which one is desired // Returns false if the switch is not possible bool exchangeEdges(const Edge &e1, const Edge &e2, bool switchType) { // The new edges configuration is one of these two // A) e1.u - e2.u and e1.v - e2.v // B) e1.u - e2.v and e1.v - e2.u // First check if the move is possible if (switchType) { if (hasEdge({e1.u, e2.u}) || hasEdge({e1.v, e2.v})) return false; // conflicting edges } else { if (hasEdge({e1.u, e2.v}) || hasEdge({e1.v, e2.u})) return false; // conflicting edges } // Find the edges in the adjacency lists unsigned int i1, j1, i2, j2; for (i1 = 0; i1 < adj[e1.u].size(); ++i1) { if (adj[e1.u][i1] == e1.v) break; } for (j1 = 0; j1 < adj[e1.v].size(); ++j1) { if (adj[e1.v][j1] == e1.u) break; } for (i2 = 0; i2 < adj[e2.u].size(); ++i2) { if (adj[e2.u][i2] == e2.v) break; } for (j2 = 0; j2 < adj[e2.v].size(); ++j2) { if (adj[e2.v][j2] == e2.u) break; } // Remove the old edges bool removedOne = false; for (auto iter = edges.begin(); iter != edges.end();) { if (*iter == e1) { iter = edges.erase(iter); if (removedOne) break; removedOne = true; } else if (*iter == e2) { iter = edges.erase(iter); if (removedOne) break; removedOne = true; } else { ++iter; } } // Add the new edges if (switchType) { adj[e1.u][i1] = e2.u; adj[e1.v][j1] = e2.v; adj[e2.u][i2] = e1.u; adj[e2.v][j2] = e1.v; edges.push_back({e1.u, e2.u}); edges.push_back({e1.v, e2.v}); } else { adj[e1.u][i1] = e2.v; adj[e1.v][j1] = e2.u; adj[e2.u][i2] = e1.v; adj[e2.v][j2] = e1.u; edges.push_back({e1.u, e2.v}); edges.push_back({e1.v, e2.u}); } return true; } private: // Graph is saved in two formats for speed // The two should be kept consistent at all times std::vector> adj; std::vector edges; }; // Mathematica style export std::ostream &operator<<(std::ostream &s, const Graph &g) { if (g.edgeCount() == 0) { s << '{' << '}'; return s; } s << '{' << g.getEdge(0).u << '<' << '-' << '>' << g.getEdge(0).v; for (unsigned int i = 1; i < g.edgeCount(); ++i) { const Edge &e = g.getEdge(i); s << ',' << e.u << '<' << '-' << '>' << e.v; } s << '}'; return s; } class SwitchChain { public: SwitchChain() : mt(std::random_device{}()), permutationDistribution(0, 2) { // random_device uses hardware entropy if available // std::random_device rd; // mt.seed(rd()); } ~SwitchChain() {} bool initialize(const Graph &gstart) { if (gstart.edgeCount() == 0) return false; g = gstart; edgeDistribution.param( std::uniform_int_distribution<>::param_type(0, g.edgeCount() - 1)); return true; } bool doMove() { Edge e1 = g.getEdge(edgeDistribution(mt)); Edge e2 = g.getEdge(edgeDistribution(mt)); // Keep regenerating while conflicting edges int timeout = 0; while (edgeConflicts(e1, e2)) { e1 = g.getEdge(edgeDistribution(mt)); e2 = g.getEdge(edgeDistribution(mt)); ++timeout; if (timeout % 100 == 0) { std::cerr << "Warning: sampled " << timeout << " random edges but they keep conflicting.\n"; } } // Consider one of the three possible permutations // 1) e1.u - e1.v and e2.u - e2.v (original) // 2) e1.u - e2.u and e1.v - e2.v // 3) e1.u - e2.v and e1.v - e2.u // Note that it might be that these new edges already exist // in which case we also reject the move // This is checked in exchangeEdges int perm = permutationDistribution(mt); if (perm == 0) // Original permutation return false; return g.exchangeEdges(e1, e2, perm == 1); } Graph g; std::mt19937 mt; std::uniform_int_distribution<> edgeDistribution; std::uniform_int_distribution<> permutationDistribution; }; int main() { Graph g; if (!g.createFromDegreeSequence({1, 2, 2, 2, 3, 3, 3})) { std::cerr << "Could not create graph from degree sequence.\n"; return 1; } SwitchChain chain; if (!chain.initialize(g)) { std::cerr << "Could not initialize Markov chain.\n"; return 1; } std::ofstream outfile("graphdata.m"); outfile << '{' << g; std::cout << "Starting switch Markov chain" << std::endl; int movesDone = 0; int movesTotal = 100000; for (int i = 0; i < movesTotal; ++i) { if (chain.doMove()) ++movesDone; if (i % (movesTotal / 100) == (movesTotal / 100 - 1)) outfile << ',' << chain.g; } outfile << '}'; std::cout << movesDone << '/' << movesTotal << " moves succeeded." << std::endl; return 0; }