#pragma once #include #include #include #include class Edge { public: unsigned int u, v; bool operator==(const Edge &e) const { return u == e.u && v == e.v; } }; class DiDegree { public: unsigned int in; unsigned int out; }; typedef std::vector DegreeSequence; typedef std::vector DiDegreeSequence; class Graph { public: Graph() {} Graph(unsigned int n) { adj.resize(n); } ~Graph() {} void resize(unsigned int n) { if (n < adj.size()) { edges.clear(); } adj.resize(n); } unsigned int edgeCount() const { return edges.size(); } const Edge &getEdge(unsigned int i) const { return edges[i]; } bool createFromDegreeSequence(const DegreeSequence &d) { // Havel-Hakimi algorithm unsigned int n = d.size(); // degree, vertex index std::vector> degrees(n); for (unsigned int i = 0; i < n; ++i) { degrees[i].first = d[i]; degrees[i].second = i; } edges.clear(); adj.resize(n); while (!degrees.empty()) { std::sort(degrees.begin(), degrees.end()); // Highest degree is at back of the vector // Take it out unsigned int degree = degrees.back().first; unsigned int u = degrees.back().second; degrees.pop_back(); if (degree > degrees.size()) { edges.clear(); adj.clear(); return false; } // Now loop over the last 'degree' entries of degrees auto rit = degrees.rbegin(); for (unsigned int i = 0; i < degree; ++i) { if (rit->first == 0 || !addEdge({u, rit->second})) { edges.clear(); adj.clear(); return false; } rit->first--; ++rit; } } return true; } DegreeSequence getDegreeSequence() const { DegreeSequence d(adj.size()); std::transform(adj.begin(), adj.end(), d.begin(), [](const auto &u) { return u.size(); }); return d; } // Assumes valid vertex indices bool hasEdge(const Edge &e) const { for (unsigned int v : adj[e.u]) { if (v == e.v) return true; } return false; } bool addEdge(const Edge &e) { if (e.u >= adj.size() || e.v >= adj.size()) return false; if (hasEdge(e)) return false; edges.push_back(e); adj[e.u].push_back(e.v); adj[e.v].push_back(e.u); return true; } // There are two possible edge exchanges // switchType indicates which one is desired // Returns false if the switch is not possible bool exchangeEdges(const Edge &e1, const Edge &e2, bool switchType) { // The new edges configuration is one of these two // A) e1.u - e2.u and e1.v - e2.v // B) e1.u - e2.v and e1.v - e2.u // First check if the move is possible if (switchType) { if (hasEdge({e1.u, e2.u}) || hasEdge({e1.v, e2.v})) return false; // conflicting edges } else { if (hasEdge({e1.u, e2.v}) || hasEdge({e1.v, e2.u})) return false; // conflicting edges } // Find the edges in the adjacency lists unsigned int i1, j1, i2, j2; for (i1 = 0; i1 < adj[e1.u].size(); ++i1) { if (adj[e1.u][i1] == e1.v) break; } for (j1 = 0; j1 < adj[e1.v].size(); ++j1) { if (adj[e1.v][j1] == e1.u) break; } for (i2 = 0; i2 < adj[e2.u].size(); ++i2) { if (adj[e2.u][i2] == e2.v) break; } for (j2 = 0; j2 < adj[e2.v].size(); ++j2) { if (adj[e2.v][j2] == e2.u) break; } // Remove the old edges bool removedOne = false; for (auto iter = edges.begin(); iter != edges.end();) { if (*iter == e1) { iter = edges.erase(iter); if (removedOne) break; removedOne = true; } else if (*iter == e2) { iter = edges.erase(iter); if (removedOne) break; removedOne = true; } else { ++iter; } } // Add the new edges if (switchType) { adj[e1.u][i1] = e2.u; adj[e1.v][j1] = e2.v; adj[e2.u][i2] = e1.u; adj[e2.v][j2] = e1.v; edges.push_back({e1.u, e2.u}); edges.push_back({e1.v, e2.v}); } else { adj[e1.u][i1] = e2.v; adj[e1.v][j1] = e2.u; adj[e2.u][i2] = e1.v; adj[e2.v][j2] = e1.u; edges.push_back({e1.u, e2.v}); edges.push_back({e1.v, e2.u}); } return true; } int countTriangles() const { int triangles = 0; for (auto& v : adj) { for (unsigned int i = 0; i < v.size(); ++i) { for (unsigned int j = i + 1; j < v.size(); ++j) { if (hasEdge({v[i], v[j]})) { ++triangles; } } } } assert(triangles % 3 == 0); return triangles / 3; } private: // Graph is saved in two formats for speed // The two should be kept consistent at all times std::vector> adj; std::vector edges; };