#pragma once #include #include #include #include #include class Edge { public: unsigned int u, v; bool operator==(const Edge &e) const { return u == e.u && v == e.v; } }; class StoredEdge { public: Edge e; // indices into adjacency lists // adj[u][u2vindex] = v; // adj[v][v2uindex] = u; unsigned int u2vindex, v2uindex; }; class DiDegree { public: unsigned int in; unsigned int out; }; typedef std::vector DegreeSequence; typedef std::vector DiDegreeSequence; class Graph { public: Graph() {} Graph(unsigned int n) { reset(n); } ~Graph() {} // Clears any previous edges and create // an empty graph on n vertices void reset(unsigned int n) { edges.clear(); adj.resize(n); for (auto &v : adj) v.clear(); badj.resize(n); for (auto &v : badj) { v.resize(n); v.assign(n, false); } } unsigned int edgeCount() const { return edges.size(); } const Edge &getEdge(unsigned int i) const { return edges[i].e; } const auto& getAdj() const { return adj; } const auto& getBooleanAdj() const { return badj; } // When the degree sequence is not graphics, the Graph can be // in any state, it is not neccesarily empty bool createFromDegreeSequence(const DegreeSequence &d) { // Havel-Hakimi algorithm // Based on Erdos-Gallai theorem unsigned int n = d.size(); // degree, vertex index std::vector> degrees(n); for (unsigned int i = 0; i < n; ++i) { degrees[i].first = d[i]; degrees[i].second = i; } // Clear the graph reset(n); while (!degrees.empty()) { // Construction will find maximum triangles only if sort is stable // and does NOT sort on vertex id std::stable_sort(degrees.begin(), degrees.end(), [](const auto &p1, const auto &p2) { return p1.first < p2.first; }); // Highest degree is at back of the vector // Take it out unsigned int degree = degrees.back().first; unsigned int u = degrees.back().second; degrees.pop_back(); if (degree > degrees.size()) { return false; } // Now loop over the last 'degree' entries of degrees auto rit = degrees.rbegin(); for (unsigned int i = 0; i < degree; ++i) { if (rit->first == 0 || !addEdge({u, rit->second})) { return false; } rit->first--; ++rit; } } return true; } DegreeSequence getDegreeSequence() const { DegreeSequence d(adj.size()); std::transform(adj.begin(), adj.end(), d.begin(), [](const auto &u) { return u.size(); }); return d; } // Assumes valid vertex indices bool hasEdge(const Edge& e_) const { return badj[e_.u][e_.v]; //Edge e; //if (adj[e_.u].size() <= adj[e_.v].size()) { // e = e_; //} else { // e.u = e_.v; // e.v = e_.u; //} //for (unsigned int v : adj[e.u]) { // if (v == e.v) // return true; //} //return false; } bool addEdge(const Edge &e) { if (e.u >= adj.size() || e.v >= adj.size()) return false; if (hasEdge(e)) return false; StoredEdge se; se.e = e; se.u2vindex = adj[e.u].size(); se.v2uindex = adj[e.v].size(); adj[e.u].push_back(e.v); adj[e.v].push_back(e.u); edges.push_back(se); badj[e.u][e.v] = 1; badj[e.v][e.u] = 1; return true; } // There are two possible edge exchanges // switchType indicates which one is desired // Returns false if the switch is not possible bool exchangeEdges(unsigned int e1index, unsigned int e2index, bool switchType, bool trackTriangles = false) { StoredEdge &se1 = edges[e1index]; StoredEdge &se2 = edges[e2index]; const Edge &e1 = se1.e; const Edge &e2 = se2.e; // The new edges configuration is one of these two // A) e1.u - e2.u and e1.v - e2.v // B) e1.u - e2.v and e2.u - e1.v // Note that to do (B) instead of (A), simply swap e2.u <-> e2.v // Now we can just consider switch type (A) if (switchType) { std::swap(se2.e.u, se2.e.v); std::swap(se2.u2vindex, se2.v2uindex); } // First check if the move is possible if (hasEdge({e1.u, e2.u}) || hasEdge({e1.v, e2.v})) return false; // conflicting edges if (trackTriangles) { trackedTriangles -= countTriangles(e1); trackedTriangles -= countTriangles(e2); } // Clear old edges badj[e1.u][e1.v] = false; badj[e1.v][e1.u] = false; badj[e2.u][e2.v] = false; badj[e2.v][e2.u] = false; adj[e1.u][se1.u2vindex] = e2.u; adj[e1.v][se1.v2uindex] = e2.v; adj[e2.u][se2.u2vindex] = e1.u; adj[e2.v][se2.v2uindex] = e1.v; // Carefull: when updating se1,se2 also e1 and 2e change std::swap(se1.e.v, se2.e.u); std::swap(se1.v2uindex, se2.u2vindex); // e1 and e2 now contain the NEW edges!! badj[e1.u][e1.v] = true; badj[e1.v][e1.u] = true; badj[e2.u][e2.v] = true; badj[e2.v][e2.u] = true; if (trackTriangles) { trackedTriangles += countTriangles(e1); trackedTriangles += countTriangles(e2); } return true; } // Assumes edge exists // Used for computing triangle-delta's after switch move unsigned int countTriangles(Edge e) const { auto triangles = 0u; if (adj[e.u].size() > adj[e.v].size()) std::swap(e.u, e.v); for (auto w : adj[e.u]) { if (hasEdge({w, e.v})) ++triangles; } return triangles; } unsigned int countTriangles() const { auto triangles = 0u; for (auto& v : adj) { for (unsigned int i = 0; i < v.size(); ++i) { for (unsigned int j = i + 1; j < v.size(); ++j) { if (hasEdge({v[i], v[j]})) { ++triangles; } } } } assert(triangles % 3 == 0); return triangles / 3; } unsigned int& getTrackedTriangles() { return trackedTriangles; } // Should return zero int consistencyCheck() const { // Check if info in 'edges' is present // in adj and badj for (auto &se : edges) { if (se.e.u >= adj.size() || se.e.v >= adj.size()) return 1; if (!badj[se.e.u][se.e.v]) return 2; if (!badj[se.e.v][se.e.u]) return 3; if (se.u2vindex >= adj[se.e.u].size()) return 4; if (se.v2uindex >= adj[se.e.v].size()) return 5; if (adj[se.e.u][se.u2vindex] != se.e.v) return 6; if (adj[se.e.v][se.v2uindex] != se.e.u) return 7; } // Check if info in 'adj' is present // in badj and edges for (unsigned int u = 0; u < adj.size(); ++u) { for (unsigned int v : adj[u]) { if (!badj[u][v]) return 8; if (!badj[v][u]) return 9; // Check if it appears in edges bool found = false; for (auto &se : edges) { if ((se.e.u == u && se.e.v == v) || (se.e.u == v && se.e.v == u)) { found = true; break; } } if (!found) return 10; } } // Check if info in 'badj' is present // in adj and edges // TODO return 0; } private: // Graph is saved in three formats for speed // They should be kept consistent at all times std::vector> adj; std::vector> badj; // symmetric binary matrix std::vector edges; unsigned int trackedTriangles; };