#include "exports.hpp" #include "graph.hpp" #include "graph_ccm.hpp" #include "graph_powerlaw.hpp" #include "switchchain.hpp" #include #include #include #include #include #include int main(int argc, char* argv[]) { // Simulation parameters const int numVerticesMin = 1000; const int numVerticesMax = 1000; const int numVerticesStep = 500; float tauValues[] = {2.1f, 2.2f, 2.3f, 2.4f, 2.5f, 2.6f, 2.7f, 2.8f, 2.9f}; //float tauValues[] = {2.1f, 2.3f, 2.5f, 2.7f, 2.9f}; const int totalDegreeSamples = 200; auto getMixingTime = [](int n, float tau) { return int(50.0f * (50.0f - 30.0f * (tau - 2.0f)) * n); }; auto getMeasurements = [](int n, float tau) { (void)n; (void)tau; return 100; }; auto getMeasureSkip = [](int n, float tau) { (void)tau; return 10 * n; // Take a sample every ... steps }; // Output file std::ofstream outfile; if (argc >= 2) outfile.open(argv[1]); else outfile.open("graphdata_ccm_initialtris.m"); if (!outfile.is_open()) { std::cout << "ERROR: Could not open output file.\n"; return 1; } // Output Mathematica-style comment to indicate file contents outfile << "(*\n"; outfile << "n from " << numVerticesMin << " to " << numVerticesMax << " step " << numVerticesStep << std::endl; outfile << "tauValues: " << tauValues << std::endl; outfile << "degreeSamples: " << totalDegreeSamples << std::endl; outfile << "mixingTime: 50 * (50 - 30 (tau - 2)) n\n"; outfile << "measurements: 100\n"; outfile << "measureSkip: 10 n\n"; outfile << "data:\n"; outfile << "1: {n,tau}\n"; outfile << "2: avgTriangles\n"; outfile << "3: {ccmTris1, ccmsrate1} \n"; outfile << "4: {ccmTris2, ccmsrate2} \n"; outfile << "*)" << std::endl; // Mathematica does not accept normal scientific notation outfile << std::fixed; outfile << '{'; bool outputComma = false; std::mt19937 rng(std::random_device{}()); Graph g; for (int numVertices = numVerticesMin; numVertices <= numVerticesMax; numVertices += numVerticesStep) { for (float tau : tauValues) { // For a single n,tau take samples over several instances of // the degree distribution. for (int degreeSample = 0; degreeSample < totalDegreeSamples; ++degreeSample) { DegreeSequence ds; generatePowerlawGraph(numVertices, tau, g, ds, rng); std::cout << "Running (n,tau) = (" << numVertices << ',' << tau << "). " << std::flush; // // Test the GCM1 and GCM2 success rate // long long gcmTris1tot = 0; long long gcmTris2tot = 0; int successrate1 = 0; int successrate2 = 0; for (int i = 0; i < 100; ++i) { Graph gtemp; // Take new highest degree every time if (constrainedConfigurationModel(ds, gtemp, rng, false)) { ++successrate1; gcmTris1tot += gtemp.countTriangles(); } // Finish all pairings of highest degree first if (constrainedConfigurationModel(ds, gtemp, rng, true)) { ++successrate2; gcmTris2tot += gtemp.countTriangles(); } } float gcmTris1 = float(gcmTris1tot) / float(successrate1); float gcmTris2 = float(gcmTris2tot) / float(successrate2); SwitchChain chain; if (!chain.initialize(g)) { std::cerr << "Could not initialize Markov chain.\n"; return 1; } long long trianglesTotal = 0; std::cout << " Finished CCM generation." << std::flush; int mixingTime = getMixingTime(numVertices, tau); for (int i = 0; i < mixingTime; ++i) { chain.doMove(); } chain.g.getTrackedTriangles() = chain.g.countTriangles(); int measurements = getMeasurements(numVertices, tau); int measureSkip = getMeasureSkip(numVertices, tau); for (int i = 0; i < measurements; ++i) { for (int j = 0; j < measureSkip; ++j) chain.doMove(true); trianglesTotal += chain.g.getTrackedTriangles(); } std::cout << " Finished mixing and measurements." << std::flush; if (outputComma) outfile << ',' << '\n'; outputComma = true; float avgTriangles = float(trianglesTotal) / float(measurements); outfile << '{'; outfile << '{' << numVertices << ',' << tau << '}'; outfile << ',' << avgTriangles; outfile << ',' << '{' << gcmTris1 << ',' << successrate1 << '}'; outfile << ',' << '{' << gcmTris2 << ',' << successrate2 << '}'; outfile << '}' << std::flush; std::cout << std::endl; } } } outfile << '}'; return 0; }