Files @ 70aa6dc21be6
Branch filter:

Location: CSY/reowolf/src/protocol/parser/pass_rewriting.rs - annotation

70aa6dc21be6 16.6 KiB application/rls-services+xml Show Source Show as Raw Download as Raw
MH
WIP: More AST rewriting
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
c94c99d87e48
3bee4ec688b3
c94c99d87e48
c94c99d87e48
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
c94c99d87e48
3bee4ec688b3
c94c99d87e48
c94c99d87e48
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
c94c99d87e48
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
70aa6dc21be6
70aa6dc21be6
c94c99d87e48
c94c99d87e48
3bee4ec688b3
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
3bee4ec688b3
3bee4ec688b3
3bee4ec688b3
c94c99d87e48
c94c99d87e48
c94c99d87e48
70aa6dc21be6
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
70aa6dc21be6
70aa6dc21be6
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
70aa6dc21be6
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
c94c99d87e48
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
70aa6dc21be6
3bee4ec688b3
// TODO: File contains a lot of manual AST element construction. Wherein we have
//  (for the first time in this compiler) a lot of fields that have no real
//  meaning (e.g. the InputSpan of a AST-transformation). What are we going to
//  do with this to make the code and datastructures more easily grokable?
//  We could do an intermediate AST structure. But considering how close this
//  phase of compilation is to bytecode generation, that might be a lot of busy-
//  work with few results. Alternatively we may put the AST elements inside
//  a special substructure. We could also force ourselves (and put the
//  appropriate comments in the code) to not use certain fields anymore after
//  a particular stage of compilation.

use crate::collections::*;
use crate::protocol::*;

use super::visitor::*;

pub(crate) struct PassRewriting {
    current_scope: BlockStatementId,
    statement_buffer: ScopedBuffer<StatementId>,
    call_expr_buffer: ScopedBuffer<CallExpressionId>,
    expression_buffer: ScopedBuffer<ExpressionId>,
}

impl PassRewriting {
    pub(crate) fn new() -> Self {
        Self{
            current_scope: BlockStatementId::new_invalid(),
            statement_buffer: ScopedBuffer::with_capacity(16),
            call_expr_buffer: ScopedBuffer::with_capacity(16),
            expression_buffer: ScopedBuffer::with_capacity(16),
        }
    }
}

impl Visitor for PassRewriting {
    // --- Visiting procedures

    fn visit_component_definition(&mut self, ctx: &mut Ctx, id: ComponentDefinitionId) -> VisitorResult {
        let def = &ctx.heap[id];
        let body_id = def.body;
        return self.visit_block_stmt(ctx, body_id);
    }

    fn visit_function_definition(&mut self, ctx: &mut Ctx, id: FunctionDefinitionId) -> VisitorResult {
        let def = &ctx.heap[id];
        let body_id = def.body;
        return self.visit_block_stmt(ctx, body_id);
    }

    // --- Visiting statements (that are not the select statement)

    fn visit_block_stmt(&mut self, ctx: &mut Ctx, id: BlockStatementId) -> VisitorResult {
        let block_stmt = &ctx.heap[id];
        let stmt_section = self.statement_buffer.start_section_initialized(&block_stmt.statements);

        self.current_scope = id;
        for stmt_idx in 0..stmt_section.len() {
            self.visit_stmt(ctx, stmt_section[stmt_idx])?;
        }

        stmt_section.forget();
        return Ok(())
    }

    fn visit_labeled_stmt(&mut self, ctx: &mut Ctx, id: LabeledStatementId) -> VisitorResult {
        let labeled_stmt = &ctx.heap[id];
        let body_id = labeled_stmt.body;
        return self.visit_stmt(ctx, body_id);
    }

    fn visit_if_stmt(&mut self, ctx: &mut Ctx, id: IfStatementId) -> VisitorResult {
        let if_stmt = &ctx.heap[id];
        let true_body_id = if_stmt.true_body;
        let false_body_id = if_stmt.false_body;

        self.visit_block_stmt(ctx, true_body_id)?;
        if let Some(false_body_id) = false_body_id {
            self.visit_block_stmt(ctx, false_body_id)?;
        }

        return Ok(())
    }

    fn visit_while_stmt(&mut self, ctx: &mut Ctx, id: WhileStatementId) -> VisitorResult {
        let while_stmt = &ctx.heap[id];
        let body_id = while_stmt.body;
        return self.visit_block_stmt(ctx, body_id);
    }

    fn visit_synchronous_stmt(&mut self, ctx: &mut Ctx, id: SynchronousStatementId) -> VisitorResult {
        let sync_stmt = &ctx.heap[id];
        let body_id = sync_stmt.body;
        return self.visit_block_stmt(ctx, body_id);
    }

    // --- Visiting the select statement

    fn visit_select_stmt(&mut self, ctx: &mut Ctx, id: SelectStatementId) -> VisitorResult {
        // We're going to transform the select statement by a block statement
        // containing builtin runtime-calls. And to do so we create temporary
        // variables and move some other statements around.
        let select_stmt = &ctx.heap[id];
        let mut total_num_cases = select_stmt.cases.len();
        let mut total_num_ports = 0;

        // Put heap IDs into temporary buffers to handle borrowing rules
        let mut call_id_section = self.call_expr_buffer.start_section();
        let mut expr_id_section = self.expression_buffer.start_section();

        for case in select_stmt.cases.iter() {
            total_num_ports += case.involved_ports.len();
            for (call_id, expr_id) in case.involved_ports.iter().copied() {
                call_id_section.push(call_id);
                expr_id_section.push(expr_id);
            }
        }

        // Transform all of the call expressions by takings its argument (the
        // port from which we `get`) and turning it into a temporary variable.
        let mut transformed_stmts = Vec::with_capacity(total_num_ports); // TODO: Recompute this preallocated length, put assert at the end
        let mut locals = Vec::with_capacity(total_num_ports);

        for port_var_idx in 0..call_id_section.len() {
            let call_id = call_id_section[port_var_idx];
            let expr_id = expr_id_section[port_var_idx];
            let (replacement_variable_id, variable_stmt_id) = self.modify_get_call_insert_variable(ctx, call_id, expr_id);
            transformed_stmts.push(variable_stmt_id.upcast().upcast());
            locals.push(replacement_variable_id);
        }

        // Our transformed statements now contain all of the temporary port
        // calculations. We'll now insert the appropriate runtime calls to
        // notify the runtime that we're going to wait on these ports.
        let (_, select_start_stmt_id) = self.create_runtime_select_start_call_statement(ctx, total_num_cases, total_num_ports);
        transformed_stmts.push(select_start_stmt_id.upcast());

        // TODO: Call the runtime function for eeach of the substituted port variables to register all ports for the select statement

        call_id_section.forget();
        expr_id_section.forget();

        // let block = ctx.heap.alloc_block_statement(|this| BlockStatement{
        //     this,
        //     is_implicit: true,
        //     span: stmt.span,
        //     statements: vec![],
        //     end_block: EndBlockStatementId(),
        //     scope_node: ScopeNode {},
        //     first_unique_id_in_scope: 0,
        //     next_unique_id_in_scope: 0,
        //     locals,
        //     labels: vec![],
        //     next: ()
        // });

        return Ok(())
    }
}

impl PassRewriting {
    fn modify_get_call_insert_variable(&self, ctx: &mut Ctx, call_expr_id: CallExpressionId, port_expr_id: ExpressionId) -> (VariableId, MemoryStatementId) {
        // Retrieve original expression which we're going to transplant into
        // its own variable
        let port_expr = &ctx.heap[port_expr_id];
        let port_expr_span = port_expr.full_span();
        let port_expr_unique_id = port_expr.get_unique_id_in_definition();

        // Create the entries in the heap
        let variable_expr_id = ctx.heap.alloc_variable_expression(|this| VariableExpression{
            this,
            identifier: Identifier::new_empty(port_expr_span),
            declaration: None,
            used_as_binding_target: false,
            parent: ExpressionParent::None,
            unique_id_in_definition: port_expr_unique_id,
        });
        let initial_expr_id = ctx.heap.alloc_assignment_expression(|this| AssignmentExpression{
            this,
            operator_span: port_expr_span,
            full_span: port_expr_span,
            left: variable_expr_id.upcast(),
            operation: AssignmentOperator::Set,
            right: port_expr_id,
            parent: ExpressionParent::None,
            unique_id_in_definition: -1,
        });
        let variable_id = ctx.heap.alloc_variable(|this| Variable{
            this,
            kind: VariableKind::Local,
            parser_type: ParserType{ elements: vec![ParserTypeElement{
                    element_span: port_expr_span,
                    variant: ParserTypeVariant::Inferred,
                }],
                full_span: port_expr_span
            },
            identifier: Identifier::new_empty(port_expr_span),
            relative_pos_in_block: -1,
            unique_id_in_scope: -1,
        });
        let variable_decl_stmt = ctx.heap.alloc_memory_statement(|this| MemoryStatement{
            this,
            span: port_expr_span,
            variable: variable_id,
            initial_expr: initial_expr_id,
            next: StatementId::new_invalid(),
        });

        // Modify all entries that required access other heap entries
        let variable_expr = &mut ctx.heap[variable_expr_id];
        variable_expr.declaration = Some(variable_id);
        variable_expr.parent = ExpressionParent::Expression(initial_expr_id.upcast(), 1);

        let initial_expr = &mut ctx.heap[initial_expr_id];
        initial_expr.parent = ExpressionParent::Memory(variable_decl_stmt);

        // Modify the parent of the expression that we just transplanted
        let port_expr = &mut ctx.heap[port_expr_id];
        *port_expr.parent_mut() = ExpressionParent::Expression(initial_expr_id.upcast(), 1);

        // Modify the call expression (that should contain the port expression
        // as the first argument) to point to the new variable
        let call_arg_expr_id = ctx.heap.alloc_variable_expression(|this| VariableExpression{
            this,
            identifier: Identifier::new_empty(port_expr_span),
            declaration: Some(variable_id),
            used_as_binding_target: false,
            parent: ExpressionParent::Expression(call_expr_id.upcast(), 0),
            unique_id_in_definition: port_expr_unique_id,
        });
        let call_expr = &mut ctx.heap[call_expr_id];
        debug_assert_eq!(call_expr.method, Method::Get);
        debug_assert!(call_expr.arguments.len() == 1 && call_expr.arguments[0] == port_expr_id);
        call_expr.arguments[0] = call_arg_expr_id.upcast();

        return (variable_id, variable_decl_stmt);
    }

    fn create_runtime_call_statement(&self, ctx: &mut Ctx, method: Method, arguments: Vec<ExpressionId>) -> (CallExpressionId, ExpressionStatementId) {
        let call_expr_id = ctx.heap.alloc_call_expression(|this| CallExpression{
            this,
            func_span: InputSpan::new(),
            full_span: InputSpan::new(),
            parser_type: ParserType{
                elements: Vec::new(),
                full_span: InputSpan::new(),
            },
            method,
            arguments,
            definition: DefinitionId::new_invalid(),
            parent: ExpressionParent::None,
            unique_id_in_definition: -1,
        });
        let call_stmt_id = ctx.heap.alloc_expression_statement(|this| ExpressionStatement{
            this,
            span: InputSpan::new(),
            expression: call_expr_id.upcast(),
            next: StatementId::new_invalid(),
        });

        let call_expr = &mut ctx.heap[call_expr_id];
        call_expr.parent = ExpressionParent::ExpressionStmt(call_stmt_id);

        return (call_expr_id, call_stmt_id);
    }

    fn create_runtime_select_start_call_statement(&self, ctx: &mut Ctx, num_cases: usize, num_ports_total: usize) -> (CallExpressionId, ExpressionStatementId) {
        let num_cases_expr_id = self.create_literal_integer(ctx, num_cases as u64);
        let num_ports_expr_id = self.create_literal_integer(ctx, num_ports_total as u64);
        let arguments = vec![
            num_cases_expr_id.upcast(),
            num_ports_expr_id.upcast()
        ];

        let (call_expr_id, call_stmt_id) = self.create_runtime_call_statement(ctx, Method::SelectStart, arguments);

        let num_cases_expr = &mut ctx.heap[num_cases_expr_id];
        num_cases_expr.parent = ExpressionParent::Expression(call_expr_id.upcast(), 0);
        let num_ports_expr = &mut ctx.heap[num_ports_expr_id];
        num_ports_expr.parent = ExpressionParent::Expression(num_ports_expr_id.upcast(), 1);

        return (call_expr_id, call_stmt_id);
    }

    fn create_runtime_select_register_port_call_statement(&self, ctx: &mut Ctx, case_index: usize, port_index: usize, original_port_expr_id: ExpressionId, port_variable_id: VariableId) -> (CallExpressionId, ExpressionStatementId) {
        let original_port_expr = &ctx.heap[original_port_expr_id];
        let original_port_span = original_port_expr.full_span();
        let original_port_unique_id = original_port_expr.get_unique_id_in_definition();

        let case_index_expr_id = self.create_literal_integer(ctx, case_index as u64);
        let port_index_expr_id = self.create_literal_integer(ctx, port_index as u64);
        let port_var_expr_id = self.create_variable_expr(ctx, port_variable_id);

        let arguments = vec![
            case_index_expr_id.upcast(),
            port_index_expr_id.upcast(),
            port_var_expr_id.upcast()
        ];

        let (call_expr_id, call_stmt_id) = self.create_runtime_call_statement(ctx, Method::SelectRegisterCasePort, arguments);

        let case_index_expr = &mut ctx.heap[case_index_expr_id];
        case_index_expr.parent = ExpressionParent::Expression(call_expr_id.upcast(), 0);
        let port_index_expr = &mut ctx.heap[port_index_expr_id];
        port_index_expr.parent = ExpressionParent::Expression(call_expr_id.upcast(), 1);
        let port_var_expr = &mut ctx.heap[port_var_expr_id];
        port_var_expr.parent = ExpressionParent::Expression(call_expr_id.upcast(), 2);

        return (call_expr_id, call_stmt_id);
    }

    fn create_runtime_select_wait_variable_and_statement(&self, ctx: &mut Ctx) -> (VariableId, MemoryStatementId) {
        let variable_id = ctx.heap.alloc_variable(|this| Variable{
            this,
            kind: VariableKind::Local,
            parser_type: ParserType{
                elements: Vec::new(),
                full_span: InputSpan::new(),
            },
            identifier: Identifier::new_empty(InputSpan::new()),
            relative_pos_in_block: -1,
            unique_id_in_scope: -1
        });
        let variable_expr_id = self.create_variable_expr(ctx, variable_id);
        let runtime_call_expr_id = ctx.heap.alloc_call_expression(|this| CallExpression{
            this,
            func_span: InputSpan::new(),
            full_span: InputSpan::new(),
            parser_type: ParserType{
                elements: Vec::new(),
                full_span: InputSpan::new(),
            },
            method: Method::SelectWait,
            arguments: Vec::new(),
            definition: DefinitionId::new_invalid(),
            parent: ExpressionParent::None,
            unique_id_in_definition: -1
        });
        let initial_expr_id = ctx.heap.alloc_assignment_expression(|this| AssignmentExpression{
            this,
            operator_span: InputSpan::new(),
            full_span: InputSpan::new(),
            left: variable_expr_id.upcast(),
            operation: AssignmentOperator::Set,
            right: runtime_call_expr_id.upcast(),
            parent: ExpressionParent::None,
            unique_id_in_definition: -1
        });

        let variable_statement_id = ctx.heap.alloc_memory_statement(|this| MemoryStatement{
            this,
            span: InputSpan::new(),
            variable: variable_id,
            initial_expr: initial_expr_id,
            next: StatementId::new_invalid()
        });

        let variable_expr = &mut ctx.heap[variable_expr_id];
        variable_expr.parent = ExpressionParent::Expression(initial_expr_id.upcast(), 0);
        let runtime_call_expr = &mut ctx.heap[runtime_call_expr_id];
        runtime_call_expr.parent = ExpressionParent::Expression(initial_expr_id.upcast(), 1);
        let initial_expr = &mut ctx.heap[initial_expr_id];
        initial_expr.parent = ExpressionParent::Memory(variable_statement_id);

        return (variable_id, variable_statement_id);
    }

    /// Creates an integer literal. The caller still needs to set its expression
    /// parent afterwards.
    fn create_literal_integer(&self, ctx: &mut Ctx, value: u64) -> LiteralExpressionId {
        return ctx.heap.alloc_literal_expression(|this| LiteralExpression{
            this,
            span: InputSpan::new(),
            value: Literal::Integer(LiteralInteger{
                unsigned_value: value,
                negated: false,
            }),
            parent: ExpressionParent::None,
            unique_id_in_definition: -1
        });
    }

    fn create_variable_expr(&self, ctx: &mut Ctx, variable_id: VariableId) -> VariableExpressionId {
        return ctx.heap.alloc_variable_expression(|this| VariableExpression{
            this,
            identifier: Identifier::new_empty(InputSpan::new()),
            declaration: Some(variable_id),
            used_as_binding_target: false,
            parent: ExpressionParent::None,
            unique_id_in_definition: -1
        })
    }
}