Files
@ 7f25ee16c39b
Branch filter:
Location: CSY/reowolf/src/protocol/lexer2.rs - annotation
7f25ee16c39b
15.6 KiB
application/rls-services+xml
WIP on compiler rearchitecting
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 | 7f25ee16c39b 33aa370aeb00 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 13bac4f35619 33aa370aeb00 33aa370aeb00 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 33aa370aeb00 33aa370aeb00 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 33aa370aeb00 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 33aa370aeb00 33aa370aeb00 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 33aa370aeb00 7f25ee16c39b 7f25ee16c39b 33aa370aeb00 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 7f25ee16c39b 13bac4f35619 | use crate::protocol::ast::*;
use crate::protocol::Heap;
use crate::collections::{StringPool, StringRef};
use crate::protocol::tokenizer::*;
use crate::protocol::input_source2::{InputSource2 as InputSource, InputPosition2 as InputPosition, InputSpan, ParseError};
use crate::protocol::symbol_table2::*;
#[derive(PartialEq, Eq)]
enum ModuleCompilationPhase {
Source, // only source is set
Tokenized, // source is tokenized
DefinitionsScanned, // all definitions are linked to their type class
ImportsResolved, // all imports are added to the symbol table
Parsed, // produced the AST for the module
ValidatedAndLinked, // AST is traversed and has linked the required AST nodes
Typed, // Type inference and checking has been performed
}
enum KeywordDefinition {
Struct,
Enum,
Union,
Function,
Primitive,
Composite,
}
impl KeywordDefinition {
fn as_symbol_class(&self) -> SymbolClass {
use KeywordDefinition as KD;
use SymbolClass as SC;
match self {
KD::Struct => SC::Struct,
KD::Enum => SC::Enum,
KD::Union => SC::Union,
KD::Function => SC::Function,
KD::Primitive | KD::Composite => SC::Component,
}
}
}
struct Module {
// Buffers
source: InputSource,
tokens: TokenBuffer,
// Identifiers
root_id: RootId,
name: Option<(PragmaId, StringRef)>,
version: Option<(PragmaId, i64)>,
phase: ModuleCompilationPhase,
}
struct Ctx<'a> {
heap: &'a mut Heap,
symbols: &'a mut SymbolTable,
pool: &'a mut StringPool,
}
/// Scans the module and finds all module-level type definitions. These will be
/// added to the symbol table such that during AST-construction we know which
/// identifiers point to types. Will also parse all pragmas to determine module
/// names.
pub(crate) struct ASTSymbolPrePass {
symbols: Vec<Symbol>,
pragmas: Vec<PragmaId>,
buffer: String,
has_pragma_version: bool,
has_pragma_module: bool,
}
impl ASTSymbolPrePass {
pub(crate) fn new() -> Self {
Self{
symbols: Vec::with_capacity(128),
pragmas: Vec::with_capacity(8),
buffer: String::with_capacity(128),
has_pragma_version: false,
has_pragma_module: false,
}
}
fn reset(&mut self) {
self.symbols.clear();
self.pragmas.clear();
self.has_pragma_version = false;
self.has_pragma_module = false;
}
pub(crate) fn parse(&mut self, modules: &mut [Module], module_idx: usize, ctx: &mut Ctx) -> Result<(), ParseError> {
self.reset();
let module = &mut modules[module_idx];
let module_range = &module.tokens.ranges[0];
let expected_parent_idx = 0;
let expected_subranges = module_range.subranges;
debug_assert_eq!(module.phase, ModuleCompilationPhase::Tokenized);
debug_assert_eq!(module_range.range_kind, TokenRangeKind::Module);
debug_assert_eq!(module.root_id.index, 0);
// Preallocate root in the heap
let root_id = ctx.heap.alloc_protocol_description(|this| {
Root{
this,
pragmas: Vec::new(),
imports: Vec::new(),
definitions: Vec::new(),
}
});
module.root_id = root_id;
// Visit token ranges to detect defintions
let mut visited_subranges = 0;
for range_idx in expected_parent_idx + 1..module.tokens.ranges.len() {
// Skip any ranges that do not belong to the module
let cur_range = &module.tokens.ranges[range_idx];
if cur_range.parent_idx != expected_parent_idx {
continue;
}
// Parse if it is a definition or a pragma
if cur_range.range_kind == TokenRangeKind::Definition {
self.visit_definition_range(modules, module_idx, ctx, range_idx)?;
} else if cur_range.range_kind == TokenRangeKind::Pragma {
self.visit_pragma_range(modules, module_idx, ctx, range_idx)?;
}
visited_subranges += 1;
if visited_subranges == expected_subranges {
break;
}
}
// By now all symbols should have been found: add to symbol table and
// add the parsed pragmas to the preallocated root in the heap.
debug_assert_eq!(visited_subranges, expected_subranges);
ctx.symbols.insert_scoped_symbols(None, SymbolScope::Module(module.root_id), &self.symbols);
let root = &mut ctx.heap[root_id];
debug_assert!(root.pragmas.is_empty());
root.pragmas.extend(&self.pragmas);
module.phase = ModuleCompilationPhase::DefinitionsScanned;
Ok(())
}
fn visit_pragma_range(&mut self, modules: &mut [Module], module_idx: usize, ctx: &mut Ctx, range_idx: usize) -> Result<(), ParseError> {
let module = &mut modules[module_idx];
let range = &module.tokens.ranges[range_idx];
let mut iter = module.tokens.iter_range(range);
// Consume pragma name
let (pragma_section, pragma_start, _) = consume_pragma(&self.source, &mut iter)?;
// Consume pragma values
if pragma_section == "#module" {
// Check if name is defined twice within the same file
if self.has_pragma_module {
return Err(ParseError::new_error(&module.source, pragma_start, "module name is defined twice"));
}
// Consume the domain-name
let (module_name, module_span) = consume_domain_ident(&module.source, &mut iter)?;
if iter.next().is_some() {
return Err(ParseError::new_error(&module.source, iter.last_valid_pos(), "expected end of #module pragma after module name"));
}
// Add to heap and symbol table
let pragma_span = InputSpan::from_positions(pragma_start, module_span.end);
let module_name = ctx.pool.intern(module_name);
let pragma_id = ctx.heap.alloc_pragma(|this| Pragma::Module(PragmaModule{
this,
span: pragma_span,
value: Identifier{ span: module_span, value: module_name.clone() },
}));
self.pragmas.push(pragma_id);
if let Err(other_module_root_id) = ctx.symbols.insert_module(module_name, module.root_id) {
// Naming conflict
let this_module = &modules[module_idx];
let other_module = seek_module(modules, other_module_root_id).unwrap();
let (other_module_pragma_id, _) = other_module.name.unwrap();
let other_pragma = ctx.heap[other_module_pragma_id].as_module();
return Err(ParseError::new_error_str_at_span(
&this_module.source, pragma_span, "conflict in module name"
).with_info_str_at_span(
&other_module.source, other_pragma.span, "other module is defined here"
));
}
self.has_pragma_module = true;
} else if pragma_section == "#version" {
// Check if version is defined twice within the same file
if self.has_pragma_version {
return Err(ParseError::new_error(&module.source, pragma_start, "module version is defined twice"));
}
// Consume the version pragma
let (version, version_span) = consume_integer_literal(&module.source, &mut iter, &mut self.buffer)?;
let pragma_id = ctx.heap.alloc_pragma(|this| Pragma::Version(PragmaVersion{
this,
span: InputSpan::from_positions(pragma_start, version_span.end),
version,
}));
self.pragmas.push(pragma_id);
self.has_pragma_version = true;
} else {
// Custom pragma, maybe we support this in the future, but for now
// we don't.
return Err(ParseError::new_error(&module.source, pragma_start, "illegal pragma name"));
}
Ok(())
}
fn visit_definition_range(&mut self, modules: &mut [Module], module_idx: usize, ctx: &mut Ctx, range_idx: usize) -> Result<(), ParseError> {
let module = &modules[module_idx];
let range = &module.tokens.ranges[range_idx];
let definition_span = InputSpan::from_positions(
module.tokens.start_pos(range),
module.tokens.end_pos(range)
);
let mut iter = module.tokens.iter_range(range);
// Because we're visiting a definition, we expect an ident that resolves
// to a keyword indicating a definition.
let kw_text = consume_ident_text(&module.source, &mut iter).unwrap();
let kw = parse_definition_keyword(kw_text).unwrap();
// Retrieve identifier and put in temp symbol table
let definition_ident = consume_ident_text(&module.source, &mut iter)?;
let definition_ident = ctx.pool.intern(definition_ident);
let symbol_class = kw.as_symbol_class();
// Get the token indicating the end of the definition to get the full
// span of the definition
let last_token = &module.tokens.tokens[range.end - 1];
debug_assert_eq!(last_token.kind, TokenKind::CloseCurly);
self.symbols.push(Symbol::new(
module.root_id,
SymbolScope::Module(module.root_id),
definition_span,
symbol_class,
definition_ident
));
Ok(())
}
}
pub(crate) struct ASTImportPrePass {
}
impl ASTImportPrePass {
pub(crate) fn parse(&mut self, modules: &mut [Module], module_idx: usize, ctx: &mut Ctx) -> Result<(), ParseError> {
let module = &modules[module_idx];
let module_range = &module.tokens.ranges[0];
debug_assert_eq!(module.phase, ModuleCompilationPhase::DefinitionsScanned);
debug_assert_eq!(module_range.range_kind, TokenRangeKind::Module);
let expected_parent_idx = 0;
let expected_subranges = module_range.subranges;
let mut visited_subranges = 0;
for range_idx in expected_parent_idx + 1..module.tokens.ranges.len() {
let cur_range = &module.tokens.ranges[range_idx];
if cur_range.parent_idx != expected_parent_idx {
continue;
}
visited_subranges += 1;
if cur_range.range_kind == TokenRangeKind::Import {
self.visit_import_range(modules, module_idx, ctx, range_idx)?;
}
if visited_subranges == expected_subranges {
break;
}
}
Ok(())
}
pub(crate) fn visit_import_range(
&mut self, modules: &mut [Module], module_idx: usize, ctx: &mut Ctx, range_idx: usize
) -> Result<(), ParseError> {
let module = &modules[module_idx];
let import_range = &module.tokens.ranges[range_idx];
debug_assert_eq!(import_range.range_kind, TokenRangeKind::Import);
let mut iter = module.tokens.iter_range(import_range);
// Consume "import"
let _import_ident = consume_ident_text(&module.source, &mut iter)?;
debug_assert_eq!(_import_ident, KW_IMPORT);
// Consume module name
let (module_name, _) = consume_domain_ident(&module.source, &mut iter)?;
Ok(())
}
}
fn consume_domain_ident<'a>(source: &'a InputSource, iter: &mut TokenIter) -> Result<(&'a [u8], InputSpan), ParseError> {
let (_, name_start, mut name_end) = consume_ident(source, iter)?;
while let Some(TokenKind::Dot) = iter.next() {
consume_dot(source, iter)?;
let (_, _, new_end) = consume_ident(source, iter)?;
name_end = new_end;
}
Ok((source.section(name_start, name_end), InputSpan::from_positions(name_start, name_end)))
}
fn consume_dot<'a>(source: &'a InputSource, iter: &mut TokenIter) -> Result<(), ParseError> {
if Some(TokenKind::Dot) != iter.next() {
return Err(ParseError::new_error_str_at_pos(source, iter.last_valid_pos(), "expected a dot"));
}
iter.consume();
Ok(())
}
fn consume_integer_literal(source: &InputSource, iter: &mut TokenIter, buffer: &mut String) -> Result<(u64, InputSpan), ParseError> {
if Some(TokenKind::Integer) != iter.next() {
return Err(ParseError::new_error_str_at_pos(source, iter.last_valid_pos(), "expected an integer literal"));
}
let (start_pos, end_pos) = iter.next_range();
iter.consume();
let integer_text = source.section(start_pos, end_pos);
// Determine radix and offset from prefix
let (radix, input_offset, radix_name) =
if integer_text.starts_with(b"0b") || integer_text.starts_with(b"0B") {
// Binary number
(2, 2, "binary")
} else if integer_text.starts_with(b"0o") || integer_text.starts_with(b"0O") {
// Octal number
(8, 2, "octal")
} else if integer_text.starts_with(b"0x") || integer_text.starts_with(b"0X") {
// Hexadecimal number
(16, 2, "hexadecimal")
} else {
(10, 0, "decimal")
};
// Take out any of the separating '_' characters
buffer.clear();
for char_idx in input_offset..integer_text.len() {
let char = integer_text[char_idx];
if char == b'_' {
continue;
}
if !char.is_ascii_digit() {
return Err(ParseError::new_error(source, start_pos, "incorrectly formatted integer"));
}
buffer.push(char::from(char));
}
// Use the cleaned up string to convert to integer
match u64::from_str_radix(&buffer, radix) {
Ok(number) => Ok((number, InputSpan::from_positions(start_pos, end_pos))),
Err(_) => Err(
ParseError::new_error(source, start_pos, "incorrectly formatted integer")
),
}
}
fn seek_module(modules: &[Module], root_id: RootId) -> Option<&Module> {
for module in modules {
if module.root_id == root_id {
return Some(module)
}
}
return None
}
fn consume_pragma<'a>(source: &'a InputSource, iter: &mut TokenIter) -> Result<(&'a [u8], InputPosition, InputPosition), ParseError> {
if Some(TokenKind::Pragma) != iter.next() {
return Err(ParseError::new_error(source, iter.last_valid_pos(), "expected a pragma"));
}
let (pragma_start, pragma_end) = iter.next_range();
iter.consume();
Ok((source.section(pragma_start, pragma_end), pragma_start, pragma_end))
}
fn consume_ident_text<'a>(source: &'a InputSource, iter: &mut TokenIter) -> Result<&'a [u8], ParseError> {
if Some(TokenKind::Ident) != iter.next() {
return Err(ParseError::new_error(source, iter.last_valid_pos(), "expected an identifier"));
}
let (ident_start, ident_end) = iter.next_range();
iter.consume();
Ok(source.section(ident_start, ident_end))
}
fn consume_ident<'a>(source: &'a InputSource, iter: &mut TokenIter) -> Result<(&'a [u8], InputPosition, InputPosition), ParseError> {
if Some(TokenKind::Ident) != iter.next() {
return Err(ParseError::new_error(sourcee, iter.last_valid_pos(), "expected an identifier"));
}
let (ident_start, ident_end) = iter.next_range();
iter.consume();
Ok((source.section(ident_start, ident_end), ident_start, ident_end))
}
fn parse_definition_keyword(keyword: &[u8]) -> Option<KeywordDefinition> {
match keyword {
KW_STRUCT => Some(Keyword::Struct),
KW_ENUM => Some(Keyword::Enum),
KW_UNION => Some(Keyword::Union),
KW_FUNCTION => Some(Keyword::Function),
KW_PRIMITIVE => Some(Keyword::Primitive),
KW_COMPOSITE => Some(Keyword::Composite),
_ => None
}
}
|