Changeset - 03af3095927d
[Not reviewed]
0 8 0
MH - 4 years ago 2021-04-08 16:01:45
contact@maxhenger.nl
remove (de)serialization of AST for now
7 files changed:
0 comments (0 inline, 0 general)
src/common.rs
Show inline comments
 
///////////////////// PRELUDE /////////////////////
 
pub(crate) use crate::protocol::{ComponentState, ProtocolDescription};
 
pub(crate) use crate::runtime::{error::AddComponentError, NonsyncProtoContext, SyncProtoContext};
 
pub(crate) use core::{
 
    cmp::Ordering,
 
    fmt::{Debug, Formatter},
 
    hash::Hash,
 
    ops::Range,
 
    time::Duration,
 
};
 
pub(crate) use maplit::hashmap;
 
pub(crate) use mio::{
 
    net::{TcpListener, TcpStream},
 
    Events, Interest, Poll, Token,
 
};
 
pub(crate) use std::{
 
    collections::{BTreeMap, HashMap, HashSet},
 
    convert::TryInto,
 
    io::{Read, Write},
 
    net::SocketAddr,
 
    sync::Arc,
 
    time::Instant,
 
};
 
pub(crate) use Polarity::*;
 

	
 
pub(crate) trait IdParts {
 
    fn id_parts(self) -> (ConnectorId, U32Suffix);
 
}
 

	
 
/// Used by various distributed algorithms to identify connectors.
 
pub type ConnectorId = u32;
 

	
 
/// Used in conjunction with the `ConnectorId` type to create identifiers for ports and components
 
pub type U32Suffix = u32;
 
#[derive(
 
    Copy, Clone, Eq, PartialEq, Ord, Hash, PartialOrd, serde::Serialize, serde::Deserialize,
 
)]
 
#[derive(Copy, Clone, Eq, PartialEq, Ord, Hash, PartialOrd)]
 

	
 
/// Generalization of a port/component identifier
 
#[derive(serde::Serialize, serde::Deserialize)]
 
#[repr(C)]
 
pub struct Id {
 
    pub(crate) connector_id: ConnectorId,
 
    pub(crate) u32_suffix: U32Suffix,
 
}
 
#[derive(Clone, Debug, Default)]
 
pub struct U32Stream {
 
    next: u32,
 
}
 

	
 
/// Identifier of a component in a session
 
#[derive(
 
    Copy, Clone, Eq, PartialEq, Ord, Hash, PartialOrd, serde::Serialize, serde::Deserialize,
 
)]
 
#[derive(Copy, Clone, Eq, PartialEq, Ord, Hash, PartialOrd, serde::Serialize, serde::Deserialize)]
 
pub struct ComponentId(Id); // PUB because it can be returned by errors
 

	
 
/// Identifier of a port in a session
 
#[derive(
 
    Copy, Clone, Eq, PartialEq, Ord, Hash, PartialOrd, serde::Serialize, serde::Deserialize,
 
)]
 
#[derive(Copy, Clone, Eq, PartialEq, Ord, Hash, PartialOrd, serde::Serialize, serde::Deserialize)]
 
#[repr(transparent)]
 
pub struct PortId(Id);
 

	
 
/// A safely aliasable heap-allocated payload of message bytes
 
#[derive(Default, Eq, PartialEq, Clone, Ord, PartialOrd)]
 
pub struct Payload(Arc<Vec<u8>>);
 
#[derive(
 
    Debug, Eq, PartialEq, Clone, Hash, Copy, Ord, PartialOrd, serde::Serialize, serde::Deserialize,
 
)]
 
#[derive(Debug, Eq, PartialEq, Clone, Hash, Copy, Ord, PartialOrd)]
 

	
 
/// "Orientation" of a port, determining whether they can send or receive messages with `put` and `get` respectively.
 
#[repr(C)]
 
#[derive(serde::Serialize, serde::Deserialize)]
 
pub enum Polarity {
 
    Putter, // output port (from the perspective of the component)
 
    Getter, // input port (from the perspective of the component)
 
}
 
#[derive(
 
    Debug, Eq, PartialEq, Clone, Hash, Copy, Ord, PartialOrd, serde::Serialize, serde::Deserialize,
 
)]
 
#[derive(Debug, Eq, PartialEq, Clone, Hash, Copy, Ord, PartialOrd)]
 

	
 
/// "Orientation" of a transport-layer network endpoint, dictating how it's connection procedure should
 
/// be conducted. Corresponds with connect() / accept() familiar to TCP socket programming.
 
#[repr(C)]
 
pub enum EndpointPolarity {
 
    Active,  // calls connect()
 
    Passive, // calls bind() listen() accept()
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub(crate) enum NonsyncBlocker {
 
    Inconsistent,
 
    ComponentExit,
 
    SyncBlockStart,
 
}
 
#[derive(Debug, Clone)]
 
pub(crate) enum SyncBlocker {
 
    Inconsistent,
 
    SyncBlockEnd,
 
    CouldntReadMsg(PortId),
 
    CouldntCheckFiring(PortId),
 
    PutMsg(PortId, Payload),
 
}
 
pub(crate) struct DenseDebugHex<'a>(pub &'a [u8]);
 
pub(crate) struct DebuggableIter<I: Iterator<Item = T> + Clone, T: Debug>(pub(crate) I);
 
///////////////////// IMPL /////////////////////
 
impl IdParts for Id {
 
    fn id_parts(self) -> (ConnectorId, U32Suffix) {
 
        (self.connector_id, self.u32_suffix)
 
    }
 
}
 
impl IdParts for PortId {
 
    fn id_parts(self) -> (ConnectorId, U32Suffix) {
 
        self.0.id_parts()
 
    }
 
}
 
impl IdParts for ComponentId {
 
    fn id_parts(self) -> (ConnectorId, U32Suffix) {
 
        self.0.id_parts()
 
    }
 
}
 
impl U32Stream {
 
    pub(crate) fn next(&mut self) -> u32 {
 
        if self.next == u32::MAX {
 
            panic!("NO NEXT!")
 
        }
 
        self.next += 1;
 
        self.next - 1
 
    }
 
    pub(crate) fn n_skipped(mut self, n: u32) -> Self {
 
        self.next = self.next.saturating_add(n);
 
        self
 
    }
 
}
 
impl From<Id> for PortId {
 
    fn from(id: Id) -> PortId {
 
        Self(id)
 
    }
 
}
 
impl From<Id> for ComponentId {
 
    fn from(id: Id) -> Self {
 
        Self(id)
 
    }
 
}
 
impl From<&[u8]> for Payload {
 
    fn from(s: &[u8]) -> Payload {
 
        Payload(Arc::new(s.to_vec()))
 
    }
 
}
 
impl Payload {
 
    /// Create a new payload of uninitialized bytes with the given length.
 
    pub fn new(len: usize) -> Payload {
 
        let mut v = Vec::with_capacity(len);
 
        unsafe {
 
            v.set_len(len);
 
        }
 
        Payload(Arc::new(v))
 
    }
 
    /// Returns the length of the payload's byte sequence
 
    pub fn len(&self) -> usize {
 
        self.0.len()
 
    }
 
    /// Allows shared reading of the payload's contents
 
    pub fn as_slice(&self) -> &[u8] {
 
        &self.0
 
    }
 

	
 
    /// Allows mutation of the payload's contents.
 
    /// Results in a deep copy in the event this payload is aliased.
 
    pub fn as_mut_vec(&mut self) -> &mut Vec<u8> {
 
        Arc::make_mut(&mut self.0)
 
    }
 

	
 
    /// Modifies this payload, concatenating the given immutable payload's contents.
 
    /// Results in a deep copy in the event this payload is aliased.
 
    pub fn concatenate_with(&mut self, other: &Self) {
 
        let bytes = other.as_slice().iter().copied();
 
        let me = self.as_mut_vec();
 
        me.extend(bytes);
 
    }
 
}
 
impl serde::Serialize for Payload {
 
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
 
    where
 
        S: serde::Serializer,
 
    {
 
        let inner: &Vec<u8> = &self.0;
 
        inner.serialize(serializer)
 
    }
 
}
 
impl<'de> serde::Deserialize<'de> for Payload {
 
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
 
    where
 
        D: serde::Deserializer<'de>,
 
    {
 
        let inner: Vec<u8> = Vec::deserialize(deserializer)?;
 
        Ok(Self(Arc::new(inner)))
 
    }
 
}
 
impl From<Vec<u8>> for Payload {
 
    fn from(s: Vec<u8>) -> Self {
 
        Self(s.into())
 
    }
 
}
 
impl Debug for PortId {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        let (a, b) = self.id_parts();
 
        write!(f, "pid{}_{}", a, b)
 
    }
 
}
 
impl Debug for ComponentId {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        let (a, b) = self.id_parts();
 
        write!(f, "cid{}_{}", a, b)
 
    }
 
}
 
impl Debug for Payload {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        write!(f, "Payload[{:?}]", DenseDebugHex(self.as_slice()))
 
    }
 
}
 
impl std::ops::Not for Polarity {
 
    type Output = Self;
 
    fn not(self) -> Self::Output {
 
        use Polarity::*;
 
        match self {
 
            Putter => Getter,
 
            Getter => Putter,
 
        }
 
    }
 
}
 
impl Debug for DenseDebugHex<'_> {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        for b in self.0 {
 
            write!(f, "{:02X?}", b)?;
 
        }
 
        Ok(())
 
    }
 
}
 

	
 
impl<I: Iterator<Item = T> + Clone, T: Debug> Debug for DebuggableIter<I, T> {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), std::fmt::Error> {
 
        f.debug_list().entries(self.0.clone()).finish()
 
    }
 
}
src/protocol/arena.rs
Show inline comments
 
use crate::common::*;
 
use core::hash::Hash;
 
use core::marker::PhantomData;
 

	
 
#[derive(serde::Serialize, serde::Deserialize)]
 
pub struct Id<T> {
 
    pub(crate) index: u32,
 
    _phantom: PhantomData<T>,
 
}
 

	
 
impl<T> Id<T> {
 
    pub(crate) fn new(index: u32) -> Self {
 
        Self{ index, _phantom: Default::default() }
 
    }
 
}
 

	
 
#[derive(Debug, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug)]
 
pub(crate) struct Arena<T> {
 
    store: Vec<T>,
 
}
 
//////////////////////////////////
 

	
 
impl<T> Debug for Id<T> {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        f.debug_struct("Id").field("index", &self.index).finish()
 
    }
 
}
 
impl<T> Clone for Id<T> {
 
    fn clone(&self) -> Self {
 
        *self
 
    }
 
}
 
impl<T> Copy for Id<T> {}
 
impl<T> PartialEq for Id<T> {
 
    fn eq(&self, other: &Self) -> bool {
 
        self.index.eq(&other.index)
 
    }
 
}
 
impl<T> Eq for Id<T> {}
 
impl<T> Hash for Id<T> {
 
    fn hash<H: std::hash::Hasher>(&self, h: &mut H) {
 
        self.index.hash(h);
 
    }
 
}
 

	
 
impl<T> Arena<T> {
 
    pub fn new() -> Self {
 
        Self { store: vec![] }
 
    }
 
    pub fn alloc_with_id(&mut self, f: impl FnOnce(Id<T>) -> T) -> Id<T> {
 
        use std::convert::TryFrom;
 
        let id = Id::new(u32::try_from(self.store.len()).expect("Out of capacity!"));
 
        self.store.push(f(id));
 
        id
 
    }
 
    pub fn iter(&self) -> impl Iterator<Item = &T> {
 
        self.store.iter()
 
    }
 
    pub fn len(&self) -> usize {
 
        self.store.len()
 
    }
 
}
 
impl<T> core::ops::Index<Id<T>> for Arena<T> {
 
    type Output = T;
 
    fn index(&self, id: Id<T>) -> &Self::Output {
 
        self.store.index(id.index as usize)
 
    }
 
}
 
impl<T> core::ops::IndexMut<Id<T>> for Arena<T> {
 
    fn index_mut(&mut self, id: Id<T>) -> &mut Self::Output {
 
        self.store.index_mut(id.index as usize)
 
    }
 
}
 
\ No newline at end of file
src/protocol/ast.rs
Show inline comments
 
// TODO: @cleanup, rigorous cleanup of dead code and silly object-oriented
 
//  trait impls where I deem them unfit.
 

	
 
use std::fmt;
 
use std::fmt::{Debug, Display, Formatter};
 
use std::ops::{Index, IndexMut};
 

	
 
use super::arena::{Arena, Id};
 
use crate::protocol::inputsource::*;
 

	
 
/// Global limits to the AST, should be checked by lexer and parser. Some are
 
/// arbitrary
 
const MAX_LEVEL: usize = 128;
 
const MAX_NAMESPACES: usize = 64;
 

	
 

	
 
/// Helper macro that defines a type alias for a AST element ID. In this case 
 
/// only used to alias the `Id<T>` types.
 
macro_rules! define_aliased_ast_id {
 
    // Variant where we just defined the alias, without any indexing
 
    ($name:ident, $parent:ty) => {
 
        pub type $name = $parent;
 
    };
 
    // Variant where we define the type, and the Index and IndexMut traits
 
    (
 
        $name:ident, $parent:ty, 
 
        index($indexed_type:ty, $indexed_arena:ident)
 
    ) => {
 
        define_aliased_ast_id!($name, $parent);
 
        impl Index<$name> for Heap {
 
            type Output = $indexed_type;
 
            fn index(&self, index: $name) -> &Self::Output {
 
                &self.$indexed_arena[index]
 
            }
 
        }
 

	
 
        impl IndexMut<$name> for Heap {
 
            fn index_mut(&mut self, index: $name) -> &mut Self::Output {
 
                &mut self.$indexed_arena[index]
 
            }
 
        }
 
    };
 
    // Variant where we define type, Index(Mut) traits and an allocation function
 
    (
 
        $name:ident, $parent:ty,
 
        index($indexed_type:ty, $indexed_arena:ident),
 
        alloc($fn_name:ident)
 
    ) => {
 
        define_aliased_ast_id!($name, $parent, index($indexed_type, $indexed_arena));
 
        impl Heap {
 
            pub fn $fn_name(&mut self, f: impl FnOnce($name) -> $indexed_type) -> $name {
 
                self.$indexed_arena.alloc_with_id(|id| f(id))
 
            }
 
        }
 
    };
 
}
 

	
 
/// Helper macro that defines a wrapper type for a particular variant of an AST
 
/// element ID. Only used to define single-wrapping IDs.
 
macro_rules! define_new_ast_id {
 
    // Variant where we just defined the new type, without any indexing
 
    ($name:ident, $parent:ty) => {
 
        #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, serde::Serialize, serde::Deserialize)]
 
        #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
 
        pub struct $name (pub(crate) $parent);
 

	
 
        impl $name {
 
            pub fn upcast(self) -> $parent {
 
                self.0
 
            }
 
        }
 
    };
 
    // Variant where we define the type, and the Index and IndexMut traits
 
    (
 
        $name:ident, $parent:ty, 
 
        index($indexed_type:ty, $wrapper_type:path, $indexed_arena:ident)
 
    ) => {
 
        define_new_ast_id!($name, $parent);
 
        impl Index<$name> for Heap {
 
            type Output = $indexed_type;
 
            fn index(&self, index: $name) -> &Self::Output {
 
                if let $wrapper_type(v) = &self.$indexed_arena[index.0] {
 
                    v
 
                } else {
 
                    unreachable!()
 
                }
 
            }
 
        }
 

	
 
        impl IndexMut<$name> for Heap {
 
            fn index_mut(&mut self, index: $name) -> &mut Self::Output {
 
                if let $wrapper_type(v) = &mut self.$indexed_arena[index.0] {
 
                    v
 
                } else {
 
                    unreachable!()
 
                }
 
            }
 
        }
 
    };
 
    // Variant where we define the type, the Index and IndexMut traits, and an allocation function
 
    (
 
        $name:ident, $parent:ty, 
 
        index($indexed_type:ty, $wrapper_type:path, $indexed_arena:ident),
 
        alloc($fn_name:ident)
 
    ) => {
 
        define_new_ast_id!($name, $parent, index($indexed_type, $wrapper_type, $indexed_arena));
 
        impl Heap {
 
            pub fn $fn_name(&mut self, f: impl FnOnce($name) -> $indexed_type) -> $name {
 
                $name(
 
                    self.$indexed_arena.alloc_with_id(|id| {
 
                        $wrapper_type(f($name(id)))
 
                    })
 
                )
 
            }
 
        }
 
    }
 
}
 

	
 
define_aliased_ast_id!(RootId, Id<Root>, index(Root, protocol_descriptions), alloc(alloc_protocol_description));
 
define_aliased_ast_id!(PragmaId, Id<Pragma>, index(Pragma, pragmas), alloc(alloc_pragma));
 
define_aliased_ast_id!(ImportId, Id<Import>, index(Import, imports), alloc(alloc_import));
 
define_aliased_ast_id!(ParserTypeId, Id<ParserType>, index(ParserType, parser_types), alloc(alloc_parser_type));
 

	
 
define_aliased_ast_id!(VariableId, Id<Variable>, index(Variable, variables));
 
define_new_ast_id!(ParameterId, VariableId, index(Parameter, Variable::Parameter, variables), alloc(alloc_parameter));
 
define_new_ast_id!(LocalId, VariableId, index(Local, Variable::Local, variables), alloc(alloc_local));
 

	
 
define_aliased_ast_id!(DefinitionId, Id<Definition>, index(Definition, definitions));
 
define_new_ast_id!(StructId, DefinitionId, index(StructDefinition, Definition::Struct, definitions), alloc(alloc_struct_definition));
 
define_new_ast_id!(EnumId, DefinitionId, index(EnumDefinition, Definition::Enum, definitions), alloc(alloc_enum_definition));
 
define_new_ast_id!(UnionId, DefinitionId, index(UnionDefinition, Definition::Union, definitions), alloc(alloc_union_definition));
 
define_new_ast_id!(ComponentId, DefinitionId, index(Component, Definition::Component, definitions), alloc(alloc_component));
 
define_new_ast_id!(FunctionId, DefinitionId, index(Function, Definition::Function, definitions), alloc(alloc_function));
 

	
 
define_aliased_ast_id!(StatementId, Id<Statement>, index(Statement, statements));
 
define_new_ast_id!(BlockStatementId, StatementId, index(BlockStatement, Statement::Block, statements), alloc(alloc_block_statement));
 
define_new_ast_id!(LocalStatementId, StatementId, index(LocalStatement, Statement::Local, statements), alloc(alloc_local_statement));
 
define_new_ast_id!(MemoryStatementId, LocalStatementId);
 
define_new_ast_id!(ChannelStatementId, LocalStatementId);
 
define_new_ast_id!(SkipStatementId, StatementId, index(SkipStatement, Statement::Skip, statements), alloc(alloc_skip_statement));
 
define_new_ast_id!(LabeledStatementId, StatementId, index(LabeledStatement, Statement::Labeled, statements), alloc(alloc_labeled_statement));
 
define_new_ast_id!(IfStatementId, StatementId, index(IfStatement, Statement::If, statements), alloc(alloc_if_statement));
 
define_new_ast_id!(EndIfStatementId, StatementId, index(EndIfStatement, Statement::EndIf, statements), alloc(alloc_end_if_statement));
 
define_new_ast_id!(WhileStatementId, StatementId, index(WhileStatement, Statement::While, statements), alloc(alloc_while_statement));
 
define_new_ast_id!(EndWhileStatementId, StatementId, index(EndWhileStatement, Statement::EndWhile, statements), alloc(alloc_end_while_statement));
 
define_new_ast_id!(BreakStatementId, StatementId, index(BreakStatement, Statement::Break, statements), alloc(alloc_break_statement));
 
define_new_ast_id!(ContinueStatementId, StatementId, index(ContinueStatement, Statement::Continue, statements), alloc(alloc_continue_statement));
 
define_new_ast_id!(SynchronousStatementId, StatementId, index(SynchronousStatement, Statement::Synchronous, statements), alloc(alloc_synchronous_statement));
 
define_new_ast_id!(EndSynchronousStatementId, StatementId, index(EndSynchronousStatement, Statement::EndSynchronous, statements), alloc(alloc_end_synchronous_statement));
 
define_new_ast_id!(ReturnStatementId, StatementId, index(ReturnStatement, Statement::Return, statements), alloc(alloc_return_statement));
 
define_new_ast_id!(AssertStatementId, StatementId, index(AssertStatement, Statement::Assert, statements), alloc(alloc_assert_statement));
 
define_new_ast_id!(GotoStatementId, StatementId, index(GotoStatement, Statement::Goto, statements), alloc(alloc_goto_statement));
 
define_new_ast_id!(NewStatementId, StatementId, index(NewStatement, Statement::New, statements), alloc(alloc_new_statement));
 
define_new_ast_id!(ExpressionStatementId, StatementId, index(ExpressionStatement, Statement::Expression, statements), alloc(alloc_expression_statement));
 

	
 
define_aliased_ast_id!(ExpressionId, Id<Expression>, index(Expression, expressions));
 
define_new_ast_id!(AssignmentExpressionId, ExpressionId, index(AssignmentExpression, Expression::Assignment, expressions), alloc(alloc_assignment_expression));
 
define_new_ast_id!(BindingExpressionId, ExpressionId, index(BindingExpression, Expression::Binding, expressions), alloc(alloc_binding_expression));
 
define_new_ast_id!(ConditionalExpressionId, ExpressionId, index(ConditionalExpression, Expression::Conditional, expressions), alloc(alloc_conditional_expression));
 
define_new_ast_id!(BinaryExpressionId, ExpressionId, index(BinaryExpression, Expression::Binary, expressions), alloc(alloc_binary_expression));
 
define_new_ast_id!(UnaryExpressionId, ExpressionId, index(UnaryExpression, Expression::Unary, expressions), alloc(alloc_unary_expression));
 
define_new_ast_id!(IndexingExpressionId, ExpressionId, index(IndexingExpression, Expression::Indexing, expressions), alloc(alloc_indexing_expression));
 
define_new_ast_id!(SlicingExpressionId, ExpressionId, index(SlicingExpression, Expression::Slicing, expressions), alloc(alloc_slicing_expression));
 
define_new_ast_id!(SelectExpressionId, ExpressionId, index(SelectExpression, Expression::Select, expressions), alloc(alloc_select_expression));
 
define_new_ast_id!(ArrayExpressionId, ExpressionId, index(ArrayExpression, Expression::Array, expressions), alloc(alloc_array_expression));
 
define_new_ast_id!(LiteralExpressionId, ExpressionId, index(LiteralExpression, Expression::Literal, expressions), alloc(alloc_literal_expression));
 
define_new_ast_id!(CallExpressionId, ExpressionId, index(CallExpression, Expression::Call, expressions), alloc(alloc_call_expression));
 
define_new_ast_id!(VariableExpressionId, ExpressionId, index(VariableExpression, Expression::Variable, expressions), alloc(alloc_variable_expression));
 

	
 
// TODO: @cleanup - pub qualifiers can be removed once done
 
#[derive(Debug, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug)]
 
pub struct Heap {
 
    // Root arena, contains the entry point for different modules. Each root
 
    // contains lists of IDs that correspond to the other arenas.
 
    pub(crate) protocol_descriptions: Arena<Root>,
 
    // Contents of a file, these are the elements the `Root` elements refer to
 
    pragmas: Arena<Pragma>,
 
    pub(crate) imports: Arena<Import>,
 
    identifiers: Arena<Identifier>,
 
    pub(crate) parser_types: Arena<ParserType>,
 
    pub(crate) variables: Arena<Variable>,
 
    pub(crate) definitions: Arena<Definition>,
 
    pub(crate) statements: Arena<Statement>,
 
    pub(crate) expressions: Arena<Expression>,
 
}
 

	
 
impl Heap {
 
    pub fn new() -> Heap {
 
        Heap {
 
            // string_alloc: StringAllocator::new(),
 
            protocol_descriptions: Arena::new(),
 
            pragmas: Arena::new(),
 
            imports: Arena::new(),
 
            identifiers: Arena::new(),
 
            parser_types: Arena::new(),
 
            variables: Arena::new(),
 
            definitions: Arena::new(),
 
            statements: Arena::new(),
 
            expressions: Arena::new(),
 
        }
 
    }
 
    pub fn alloc_memory_statement(
 
        &mut self,
 
        f: impl FnOnce(MemoryStatementId) -> MemoryStatement,
 
    ) -> MemoryStatementId {
 
        MemoryStatementId(LocalStatementId(self.statements.alloc_with_id(|id| {
 
            Statement::Local(LocalStatement::Memory(
 
                f(MemoryStatementId(LocalStatementId(id)))
 
            ))
 
        })))
 
    }
 
    pub fn alloc_channel_statement(
 
        &mut self,
 
        f: impl FnOnce(ChannelStatementId) -> ChannelStatement,
 
    ) -> ChannelStatementId {
 
        ChannelStatementId(LocalStatementId(self.statements.alloc_with_id(|id| {
 
            Statement::Local(LocalStatement::Channel(
 
                f(ChannelStatementId(LocalStatementId(id)))
 
            ))
 
        })))
 
    }
 
}
 

	
 
impl Index<MemoryStatementId> for Heap {
 
    type Output = MemoryStatement;
 
    fn index(&self, index: MemoryStatementId) -> &Self::Output {
 
        &self.statements[index.0.0].as_memory()
 
    }
 
}
 

	
 
impl Index<ChannelStatementId> for Heap {
 
    type Output = ChannelStatement;
 
    fn index(&self, index: ChannelStatementId) -> &Self::Output {
 
        &self.statements[index.0.0].as_channel()
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct Root {
 
    pub this: RootId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub pragmas: Vec<PragmaId>,
 
    pub imports: Vec<ImportId>,
 
    pub definitions: Vec<DefinitionId>,
 
}
 

	
 
impl Root {
 
    pub fn get_definition_ident(&self, h: &Heap, id: &[u8]) -> Option<DefinitionId> {
 
        for &def in self.definitions.iter() {
 
            if h[def].identifier().value == id {
 
                return Some(def);
 
            }
 
        }
 
        None
 
    }
 
}
 

	
 
impl SyntaxElement for Root {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub enum Pragma {
 
    Version(PragmaVersion),
 
    Module(PragmaModule)
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct PragmaVersion {
 
    pub this: PragmaId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub version: u64,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct PragmaModule {
 
    pub this: PragmaId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub value: Vec<u8>,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct PragmaOld {
 
    pub this: PragmaId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub value: Vec<u8>,
 
}
 

	
 
impl SyntaxElement for PragmaOld {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub enum Import {
 
    Module(ImportModule),
 
    Symbols(ImportSymbols)
 
}
 

	
 
impl Import {
 
    pub(crate) fn as_module(&self) -> &ImportModule {
 
        match self {
 
            Import::Module(m) => m,
 
            _ => panic!("Unable to cast 'Import' to 'ImportModule'")
 
        }
 
    }
 
    pub(crate) fn as_symbols(&self) -> &ImportSymbols {
 
        match self {
 
            Import::Symbols(m) => m,
 
            _ => panic!("Unable to cast 'Import' to 'ImportSymbols'")
 
        }
 
    }
 
}
 

	
 
impl SyntaxElement for Import {
 
    fn position(&self) -> InputPosition {
 
        match self {
 
            Import::Module(m) => m.position,
 
            Import::Symbols(m) => m.position
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct ImportModule {
 
    pub this: ImportId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub module_name: Vec<u8>,
 
    pub alias: Identifier,
 
    // Phase 2: module resolving
 
    pub module_id: Option<RootId>,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct AliasedSymbol {
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub name: Identifier,
 
    pub alias: Identifier,
 
    // Phase 2: symbol resolving
 
    pub definition_id: Option<DefinitionId>,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct ImportSymbols {
 
    pub this: ImportId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub module_name: Vec<u8>,
 
    // Phase 2: module resolving
 
    pub module_id: Option<RootId>,
 
    // Phase 1&2
 
    // if symbols is empty, then we implicitly import all symbols without any
 
    // aliases for them. If it is not empty, then symbols are explicitly
 
    // specified, and optionally given an alias.
 
    pub symbols: Vec<AliasedSymbol>,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct Identifier {
 
    pub position: InputPosition,
 
    pub value: Vec<u8>
 
}
 

	
 
impl PartialEq for Identifier {
 
    fn eq(&self, other: &Self) -> bool {
 
        return self.value == other.value
 
    }
 
}
 

	
 
impl Display for Identifier {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        // A source identifier is in ASCII range.
 
        write!(f, "{}", String::from_utf8_lossy(&self.value))
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub enum NamespacedIdentifierPart {
 
    // Regular identifier
 
    Identifier{start: u16, end: u16},
 
    // Polyargs associated with a preceding identifier
 
    PolyArgs{start: u16, end: u16},
 
}
 

	
 
impl NamespacedIdentifierPart {
 
    pub(crate) fn is_identifier(&self) -> bool {
 
        match self {
 
            NamespacedIdentifierPart::Identifier{..} => true,
 
            NamespacedIdentifierPart::PolyArgs{..} => false,
 
        }
 
    }
 

	
 
    pub(crate) fn as_identifier(&self) -> (u16, u16) {
 
        match self {
 
            NamespacedIdentifierPart::Identifier{start, end} => (*start, *end),
 
            NamespacedIdentifierPart::PolyArgs{..} => {
 
                unreachable!("Tried to obtain {:?} as Identifier", self);
 
            }
 
        }
 
    }
 

	
 
    pub(crate) fn as_poly_args(&self) -> (u16, u16) {
 
        match self {
 
            NamespacedIdentifierPart::PolyArgs{start, end} => (*start, *end),
 
            NamespacedIdentifierPart::Identifier{..} => {
 
                unreachable!("Tried to obtain {:?} as PolyArgs", self)
 
            }
 
        }
 
    }
 
}
 

	
 
/// An identifier with optional namespaces and polymorphic variables. Note that 
 
/// we allow each identifier to be followed by polymorphic arguments during the 
 
/// parsing phase (e.g. Foo<A,B>::Bar<C,D>::Qux). But in our current language 
 
/// implementation we can only have valid namespaced identifier that contain one
 
/// set of polymorphic arguments at the appropriate position.
 
/// TODO: @tokens Reimplement/rename once we have a tokenizer
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct NamespacedIdentifier {
 
    pub position: InputPosition,
 
    pub value: Vec<u8>, // Full name as it resides in the input source
 
    pub poly_args: Vec<ParserTypeId>, // All poly args littered throughout the namespaced identifier
 
    pub parts: Vec<NamespacedIdentifierPart>, // Indices into value/poly_args
 
}
 

	
 
impl NamespacedIdentifier {
 
    /// Returns the identifier value without any of the specific polymorphic
 
    /// arguments.
 
    pub fn strip_poly_args(&self) -> Vec<u8> {
 
        debug_assert!(!self.parts.is_empty() && self.parts[0].is_identifier());
 

	
 
        let mut result = Vec::with_capacity(self.value.len());
 
        let mut iter = self.iter();
 
        let (first_ident, _) = iter.next().unwrap();
 
        result.extend(first_ident);
 

	
 
        for (ident, _) in iter.next() {
 
            result.push(b':');
 
            result.push(b':');
 
            result.extend(ident);
 
        }
 

	
 
        result
 
    }
 

	
 
    /// Returns an iterator of the elements in the namespaced identifier
 
    pub fn iter(&self) -> NamespacedIdentifierIter {
 
        return NamespacedIdentifierIter{
 
            identifier: self,
 
            element_idx: 0
 
        }
 
    }
 

	
 
    pub fn get_poly_args(&self) -> Option<&[ParserTypeId]> {
 
        let has_poly_args = self.parts.iter().any(|v| !v.is_identifier());
 
        if has_poly_args {
 
            Some(&self.poly_args)
 
        } else {
 
            None
 
        }
 
    }
 

	
 
    // Check if two namespaced identifiers match eachother when not considering
 
    // the polymorphic arguments
 
    pub fn matches_namespaced_identifier(&self, other: &Self) -> bool {
 
        let mut iter_self = self.iter();
 
        let mut iter_other = other.iter();
 

	
 
        loop {
 
            let val_self = iter_self.next();
 
            let val_other = iter_other.next();
 
            if val_self.is_some() != val_other.is_some() {
 
                // One is longer than the other
 
                return false;
 
            }
 
            if val_self.is_none() {
 
                // Both are none
 
                return true;
 
            }
 

	
 
            // Both are something
 
            let (val_self, _) = val_self.unwrap();
 
            let (val_other, _) = val_other.unwrap();
 
            if val_self != val_other { return false; }
 
        }
 
    }
 

	
 
    // Check if the namespaced identifier matches an identifier when not 
 
    // considering the polymorphic arguments
 
    pub fn matches_identifier(&self, other: &Identifier) -> bool {
 
        let mut iter = self.iter();
 
        let (first_ident, _) = iter.next().unwrap();
 
        if first_ident != other.value { 
 
            return false;
 
        }
 

	
 
        if iter.next().is_some() {
 
            return false;
 
        }
 

	
 
        return true;
 
    }
 
}
 

	
 
/// Iterator over elements of the namespaced identifier. The element index will
 
/// only ever be at the start of an identifier element.
 
#[derive(Debug)]
 
pub struct NamespacedIdentifierIter<'a> {
 
    identifier: &'a NamespacedIdentifier,
 
    element_idx: usize,
 
}
 

	
 
impl<'a> Iterator for NamespacedIdentifierIter<'a> {
 
    type Item = (&'a [u8], Option<&'a [ParserTypeId]>);
 
    fn next(&mut self) -> Option<Self::Item> {
 
        match self.get(self.element_idx) {
 
            Some((ident, poly)) => {
 
                self.element_idx += 1;
 
                if poly.is_some() {
 
                    self.element_idx += 1;
 
                }
 
                Some((ident, poly))
 
            },
 
            None => None
 
        }
 
    }
 
}
 

	
 
impl<'a> NamespacedIdentifierIter<'a> {
 
    /// Returns number of parts iterated over, may not correspond to number of
 
    /// times one called `next()` because returning an identifier with 
 
    /// polymorphic arguments increments the internal counter by 2.
 
    pub fn num_returned(&self) -> usize {
 
        return self.element_idx;
 
    }
 

	
 
    pub fn num_remaining(&self) -> usize {
 
        return self.identifier.parts.len() - self.element_idx;
 
    }
 

	
 
    pub fn returned_section(&self) -> &[u8] {
 
        if self.element_idx == 0 { return &self.identifier.value[0..0]; }
 

	
 
        let last_idx = match &self.identifier.parts[self.element_idx - 1] {
 
            NamespacedIdentifierPart::Identifier{end, ..} => *end,
 
            NamespacedIdentifierPart::PolyArgs{end, ..} => *end,
 
        };
 

	
 
        return &self.identifier.value[..last_idx as usize];
 
    }
 

	
 
    /// Returns a specific element from the namespaced identifier
 
    pub fn get(&self, idx: usize) -> Option<<Self as Iterator>::Item> {
 
        if idx >= self.identifier.parts.len() { 
 
            return None 
 
        }
 

	
 
        let cur_part = &self.identifier.parts[idx];
 
        let next_part = self.identifier.parts.get(idx + 1);
 

	
 
        let (ident_start, ident_end) = cur_part.as_identifier();
 
        let poly_slice = match next_part {
 
            Some(part) => match part {
 
                NamespacedIdentifierPart::Identifier{..} => None,
 
                NamespacedIdentifierPart::PolyArgs{start, end} => Some(
 
                    &self.identifier.poly_args[*start as usize..*end as usize]
 
                ),
 
            },
 
            None => None
 
        };
 

	
 
        Some((
 
            &self.identifier.value[ident_start as usize..ident_end as usize],
 
            poly_slice
 
        ))
 
    }
 

	
 
    /// Returns the previously returend index into the parts array of the 
 
    /// identifier.
 
    pub fn prev_idx(&self) -> Option<usize> {
 
        if self.element_idx == 0 { 
 
            return None;
 
        };
 
        
 
        if self.identifier.parts[self.element_idx - 1].is_identifier() { 
 
            return Some(self.element_idx - 1);
 
        }
 

	
 
        // Previous part had polymorphic arguments, so the one before that must
 
        // be an identifier (if well formed)
 
        debug_assert!(self.element_idx >= 2 && self.identifier.parts[self.element_idx - 2].is_identifier());
 
        return Some(self.element_idx - 2)
 
    }
 

	
 
    /// Returns the previously returned result from `next()`
 
    pub fn prev(&self) -> Option<<Self as Iterator>::Item> {
 
        match self.prev_idx() {
 
            None => None,
 
            Some(idx) => self.get(idx)
 
        }
 
    }
 
}
 

	
 
/// TODO: @types Remove the Message -> Byte hack at some point...
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub enum ParserTypeVariant {
 
    // Basic builtin
 
    Message,
 
    Bool,
 
    Byte,
 
    Short,
 
    Int,
 
    Long,
 
    String,
 
    // Literals (need to get concrete builtin type during typechecking)
 
    IntegerLiteral,
 
    Inferred,
 
    // Complex builtins
 
    Array(ParserTypeId), // array of a type
 
    Input(ParserTypeId), // typed input endpoint of a channel
 
    Output(ParserTypeId), // typed output endpoint of a channel
 
    Symbolic(SymbolicParserType), // symbolic type (definition or polyarg)
 
}
 

	
 
impl ParserTypeVariant {
 
    pub(crate) fn supports_polymorphic_args(&self) -> bool {
 
        use ParserTypeVariant::*;
 
        match self {
 
            Message | Bool | Byte | Short | Int | Long | String | IntegerLiteral | Inferred => false,
 
            _ => true
 
        }
 
    }
 
}
 

	
 
/// ParserType is a specification of a type during the parsing phase and initial
 
/// linker/validator phase of the compilation process. These types may be
 
/// (partially) inferred or represent literals (e.g. a integer whose bytesize is
 
/// not yet determined).
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct ParserType {
 
    pub this: ParserTypeId,
 
    pub pos: InputPosition,
 
    pub variant: ParserTypeVariant,
 
}
 

	
 
/// SymbolicParserType is the specification of a symbolic type. During the
 
/// parsing phase we will only store the identifier of the type. During the
 
/// validation phase we will determine whether it refers to a user-defined type,
 
/// or a polymorphic argument. After the validation phase it may still be the
 
/// case that the resulting `variant` will not pass the typechecker.
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct SymbolicParserType {
 
    // Phase 1: parser
 
    pub identifier: NamespacedIdentifier,
 
    // Phase 2: validation/linking (for types in function/component bodies) and
 
    //  type table construction (for embedded types of structs/unions)
 
    pub poly_args2: Vec<ParserTypeId>, // taken from identifier or inferred
 
    pub variant: Option<SymbolicParserTypeVariant>
 
}
 

	
 
/// Specifies whether the symbolic type points to an actual user-defined type,
 
/// or whether it points to a polymorphic argument within the definition (e.g.
 
/// a defined variable `T var` within a function `int func<T>()`
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub enum SymbolicParserTypeVariant {
 
    Definition(DefinitionId),
 
    // TODO: figure out if I need the DefinitionId here
 
    PolyArg(DefinitionId, usize), // index of polyarg in the definition
 
}
 

	
 
/// ConcreteType is the representation of a type after resolving symbolic types
 
/// and performing type inference
 
#[derive(Debug, Clone, Copy, Eq, PartialEq, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
 
pub enum ConcreteTypePart {
 
    // Markers for the use of polymorphic types within a procedure's body that
 
    // refer to polymorphic variables on the procedure's definition. Different
 
    // from markers in the `InferenceType`, these will not contain nested types.
 
    Marker(usize),
 
    // Special types (cannot be explicitly constructed by the programmer)
 
    Void,
 
    // Builtin types without nested types
 
    Message,
 
    Bool,
 
    Byte,
 
    Short,
 
    Int,
 
    Long,
 
    String,
 
    // Builtin types with one nested type
 
    Array,
 
    Slice,
 
    Input,
 
    Output,
 
    // User defined type with any number of nested types
 
    Instance(DefinitionId, usize),
 
}
 

	
 
#[derive(Debug, Clone, Eq, PartialEq, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone, Eq, PartialEq)]
 
pub struct ConcreteType {
 
    pub(crate) parts: Vec<ConcreteTypePart>
 
}
 

	
 
impl Default for ConcreteType {
 
    fn default() -> Self {
 
        Self{ parts: Vec::new() }
 
    }
 
}
 

	
 
impl ConcreteType {
 
    pub(crate) fn has_marker(&self) -> bool {
 
        self.parts
 
            .iter()
 
            .any(|p| {
 
                if let ConcreteTypePart::Marker(_) = p { true } else { false }
 
            })
 
    }
 
}
 

	
 
// TODO: Remove at some point
 
#[derive(Debug, Clone, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone, PartialEq, Eq)]
 
pub enum PrimitiveType {
 
    Unassigned,
 
    Input,
 
    Output,
 
    Message,
 
    Boolean,
 
    Byte,
 
    Short,
 
    Int,
 
    Long,
 
}
 

	
 
#[derive(Debug, Clone, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone, PartialEq, Eq)]
 
pub struct Type {
 
    pub primitive: PrimitiveType,
 
    pub array: bool,
 
}
 

	
 
#[allow(dead_code)]
 
impl Type {
 
    pub const UNASSIGNED: Type = Type { primitive: PrimitiveType::Unassigned, array: false };
 

	
 
    pub const INPUT: Type = Type { primitive: PrimitiveType::Input, array: false };
 
    pub const OUTPUT: Type = Type { primitive: PrimitiveType::Output, array: false };
 
    pub const MESSAGE: Type = Type { primitive: PrimitiveType::Message, array: false };
 
    pub const BOOLEAN: Type = Type { primitive: PrimitiveType::Boolean, array: false };
 
    pub const BYTE: Type = Type { primitive: PrimitiveType::Byte, array: false };
 
    pub const SHORT: Type = Type { primitive: PrimitiveType::Short, array: false };
 
    pub const INT: Type = Type { primitive: PrimitiveType::Int, array: false };
 
    pub const LONG: Type = Type { primitive: PrimitiveType::Long, array: false };
 

	
 
    pub const INPUT_ARRAY: Type = Type { primitive: PrimitiveType::Input, array: true };
 
    pub const OUTPUT_ARRAY: Type = Type { primitive: PrimitiveType::Output, array: true };
 
    pub const MESSAGE_ARRAY: Type = Type { primitive: PrimitiveType::Message, array: true };
 
    pub const BOOLEAN_ARRAY: Type = Type { primitive: PrimitiveType::Boolean, array: true };
 
    pub const BYTE_ARRAY: Type = Type { primitive: PrimitiveType::Byte, array: true };
 
    pub const SHORT_ARRAY: Type = Type { primitive: PrimitiveType::Short, array: true };
 
    pub const INT_ARRAY: Type = Type { primitive: PrimitiveType::Int, array: true };
 
    pub const LONG_ARRAY: Type = Type { primitive: PrimitiveType::Long, array: true };
 
}
 

	
 
impl Display for Type {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        match &self.primitive {
 
            PrimitiveType::Unassigned => {
 
                write!(f, "unassigned")?;
 
            }
 
            PrimitiveType::Input => {
 
                write!(f, "in")?;
 
            }
 
            PrimitiveType::Output => {
 
                write!(f, "out")?;
 
            }
 
            PrimitiveType::Message => {
 
                write!(f, "msg")?;
 
            }
 
            PrimitiveType::Boolean => {
 
                write!(f, "boolean")?;
 
            }
 
            PrimitiveType::Byte => {
 
                write!(f, "byte")?;
 
            }
 
            PrimitiveType::Short => {
 
                write!(f, "short")?;
 
            }
 
            PrimitiveType::Int => {
 
                write!(f, "int")?;
 
            }
 
            PrimitiveType::Long => {
 
                write!(f, "long")?;
 
            }
 
        }
 
        if self.array {
 
            write!(f, "[]")
 
        } else {
 
            Ok(())
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub enum Field {
 
    Length,
 
    Symbolic(FieldSymbolic),
 
}
 
impl Field {
 
    pub fn is_length(&self) -> bool {
 
        match self {
 
            Field::Length => true,
 
            _ => false,
 
        }
 
    }
 

	
 
    pub fn as_symbolic(&self) -> &FieldSymbolic {
 
        match self {
 
            Field::Symbolic(v) => v,
 
            _ => unreachable!("attempted to get Field::Symbolic from {:?}", self)
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct FieldSymbolic {
 
    // Phase 1: Parser
 
    pub(crate) identifier: Identifier,
 
    // Phase 3: Typing
 
    pub(crate) definition: Option<DefinitionId>,
 
    pub(crate) field_idx: usize,
 
}
 

	
 
#[derive(Debug, Clone, Copy, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone, Copy)]
 
pub enum Scope {
 
    Definition(DefinitionId),
 
    Regular(BlockStatementId),
 
    Synchronous((SynchronousStatementId, BlockStatementId)),
 
}
 

	
 
impl Scope {
 
    pub fn is_block(&self) -> bool {
 
        match &self {
 
            Scope::Definition(_) => false,
 
            Scope::Regular(_) => true,
 
            Scope::Synchronous(_) => true,
 
        }
 
    }
 
    pub fn to_block(&self) -> BlockStatementId {
 
        match &self {
 
            Scope::Regular(id) => *id,
 
            Scope::Synchronous((_, id)) => *id,
 
            _ => panic!("unable to get BlockStatement from Scope")
 
        }
 
    }
 
}
 

	
 
pub trait VariableScope {
 
    fn parent_scope(&self, h: &Heap) -> Option<Scope>;
 
    fn get_variable(&self, h: &Heap, id: &Identifier) -> Option<VariableId>;
 
}
 

	
 
impl VariableScope for Scope {
 
    fn parent_scope(&self, h: &Heap) -> Option<Scope> {
 
        match self {
 
            Scope::Definition(def) => h[*def].parent_scope(h),
 
            Scope::Regular(stmt) => h[*stmt].parent_scope(h),
 
            Scope::Synchronous((stmt, _)) => h[*stmt].parent_scope(h),
 
        }
 
    }
 
    fn get_variable(&self, h: &Heap, id: &Identifier) -> Option<VariableId> {
 
        match self {
 
            Scope::Definition(def) => h[*def].get_variable(h, id),
 
            Scope::Regular(stmt) => h[*stmt].get_variable(h, id),
 
            Scope::Synchronous((stmt, _)) => h[*stmt].get_variable(h, id),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub enum Variable {
 
    Parameter(Parameter),
 
    Local(Local),
 
}
 

	
 
impl Variable {
 
    pub fn identifier(&self) -> &Identifier {
 
        match self {
 
            Variable::Parameter(var) => &var.identifier,
 
            Variable::Local(var) => &var.identifier,
 
        }
 
    }
 
    pub fn is_parameter(&self) -> bool {
 
        match self {
 
            Variable::Parameter(_) => true,
 
            _ => false,
 
        }
 
    }
 
    pub fn as_parameter(&self) -> &Parameter {
 
        match self {
 
            Variable::Parameter(result) => result,
 
            _ => panic!("Unable to cast `Variable` to `Parameter`"),
 
        }
 
    }
 
    pub fn as_local(&self) -> &Local {
 
        match self {
 
            Variable::Local(result) => result,
 
            _ => panic!("Unable to cast `Variable` to `Local`"),
 
        }
 
    }
 
    pub fn as_local_mut(&mut self) -> &mut Local {
 
        match self {
 
            Variable::Local(result) => result,
 
            _ => panic!("Unable to cast 'Variable' to 'Local'"),
 
        }
 
    }
 
}
 

	
 
impl SyntaxElement for Variable {
 
    fn position(&self) -> InputPosition {
 
        match self {
 
            Variable::Parameter(decl) => decl.position(),
 
            Variable::Local(decl) => decl.position(),
 
        }
 
    }
 
}
 

	
 
/// TODO: Remove distinction between parameter/local and add an enum to indicate
 
///     the distinction between the two
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct Parameter {
 
    pub this: ParameterId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub parser_type: ParserTypeId,
 
    pub identifier: Identifier,
 
}
 

	
 
impl SyntaxElement for Parameter {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct Local {
 
    pub this: LocalId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub parser_type: ParserTypeId,
 
    pub identifier: Identifier,
 
    // Phase 2: linker
 
    pub relative_pos_in_block: u32,
 
}
 
impl SyntaxElement for Local {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub enum Definition {
 
    Struct(StructDefinition),
 
    Enum(EnumDefinition),
 
    Union(UnionDefinition),
 
    Component(Component),
 
    Function(Function),
 
}
 

	
 
impl Definition {
 
    pub fn is_struct(&self) -> bool {
 
        match self {
 
            Definition::Struct(_) => true,
 
            _ => false
 
        }
 
    }
 
    pub fn as_struct(&self) -> &StructDefinition {
 
        match self {
 
            Definition::Struct(result) => result,
 
            _ => panic!("Unable to cast 'Definition' to 'StructDefinition'"),
 
        }
 
    }
 
    pub fn is_enum(&self) -> bool {
 
        match self {
 
            Definition::Enum(_) => true,
 
            _ => false,
 
        }
 
    }
 
    pub fn as_enum(&self) -> &EnumDefinition {
 
        match self {
 
            Definition::Enum(result) => result,
 
            _ => panic!("Unable to cast 'Definition' to 'EnumDefinition'"),
 
        }
 
    }
 
    pub fn is_union(&self) -> bool {
 
        match self {
 
            Definition::Union(_) => true,
 
            _ => false,
 
        }
 
    }
 
    pub fn as_union(&self) -> &UnionDefinition {
 
        match self {
 
            Definition::Union(result) => result, 
 
            _ => panic!("Unable to cast 'Definition' to 'UnionDefinition'"),
 
        }
 
    }
 
    pub fn is_component(&self) -> bool {
 
        match self {
 
            Definition::Component(_) => true,
 
            _ => false,
 
        }
 
    }
 
    pub fn as_component(&self) -> &Component {
 
        match self {
 
            Definition::Component(result) => result,
 
            _ => panic!("Unable to cast `Definition` to `Component`"),
 
        }
 
    }
 
    pub fn is_function(&self) -> bool {
 
        match self {
 
            Definition::Function(_) => true,
 
            _ => false,
 
        }
 
    }
 
    pub fn as_function(&self) -> &Function {
 
        match self {
 
            Definition::Function(result) => result,
 
            _ => panic!("Unable to cast `Definition` to `Function`"),
 
        }
 
    }
 
    pub fn identifier(&self) -> &Identifier {
 
        match self {
 
            Definition::Struct(def) => &def.identifier,
 
            Definition::Enum(def) => &def.identifier,
 
            Definition::Union(def) => &def.identifier,
 
            Definition::Component(def) => &def.identifier,
 
            Definition::Function(def) => &def.identifier,
 
        }
 
    }
 
    pub fn parameters(&self) -> &Vec<ParameterId> {
 
        // TODO: Fix this
 
        static EMPTY_VEC: Vec<ParameterId> = Vec::new();
 
        match self {
 
            Definition::Component(com) => &com.parameters,
 
            Definition::Function(fun) => &fun.parameters,
 
            _ => &EMPTY_VEC,
 
        }
 
    }
 
    pub fn body(&self) -> StatementId {
 
        // TODO: Fix this
 
        match self {
 
            Definition::Component(com) => com.body,
 
            Definition::Function(fun) => fun.body,
 
            _ => panic!("cannot retrieve body (for EnumDefinition or StructDefinition)")
 
        }
 
    }
 
}
 

	
 
impl SyntaxElement for Definition {
 
    fn position(&self) -> InputPosition {
 
        match self {
 
            Definition::Struct(def) => def.position,
 
            Definition::Enum(def) => def.position,
 
            Definition::Union(def) => def.position,
 
            Definition::Component(def) => def.position(),
 
            Definition::Function(def) => def.position(),
 
        }
 
    }
 
}
 

	
 
impl VariableScope for Definition {
 
    fn parent_scope(&self, _h: &Heap) -> Option<Scope> {
 
        None
 
    }
 
    fn get_variable(&self, h: &Heap, id: &Identifier) -> Option<VariableId> {
 
        for &parameter_id in self.parameters().iter() {
 
            let parameter = &h[parameter_id];
 
            if parameter.identifier == *id {
 
                return Some(parameter_id.0);
 
            }
 
        }
 
        None
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct StructFieldDefinition {
 
    pub position: InputPosition,
 
    pub field: Identifier,
 
    pub parser_type: ParserTypeId,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct StructDefinition {
 
    pub this: StructId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    pub fields: Vec<StructFieldDefinition>
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub enum EnumVariantValue {
 
    None,
 
    Integer(i64),
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct EnumVariantDefinition {
 
    pub position: InputPosition,
 
    pub identifier: Identifier,
 
    pub value: EnumVariantValue,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct EnumDefinition {
 
    pub this: EnumId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    pub variants: Vec<EnumVariantDefinition>,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub enum UnionVariantValue {
 
    None,
 
    Embedded(Vec<ParserTypeId>),
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct UnionVariantDefinition {
 
    pub position: InputPosition,
 
    pub identifier: Identifier,
 
    pub value: UnionVariantValue,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct UnionDefinition {
 
    pub this: UnionId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    pub variants: Vec<UnionVariantDefinition>,
 
}
 

	
 
#[derive(Debug, Clone, Copy, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone, Copy)]
 
pub enum ComponentVariant {
 
    Primitive,
 
    Composite,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct Component {
 
    pub this: ComponentId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub variant: ComponentVariant,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    pub parameters: Vec<ParameterId>,
 
    pub body: StatementId,
 
}
 

	
 
impl SyntaxElement for Component {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct Function {
 
    pub this: FunctionId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub return_type: ParserTypeId,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    pub parameters: Vec<ParameterId>,
 
    pub body: StatementId,
 
}
 

	
 
impl SyntaxElement for Function {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub enum Statement {
 
    Block(BlockStatement),
 
    Local(LocalStatement),
 
    Skip(SkipStatement),
 
    Labeled(LabeledStatement),
 
    If(IfStatement),
 
    EndIf(EndIfStatement),
 
    While(WhileStatement),
 
    EndWhile(EndWhileStatement),
 
    Break(BreakStatement),
 
    Continue(ContinueStatement),
 
    Synchronous(SynchronousStatement),
 
    EndSynchronous(EndSynchronousStatement),
 
    Return(ReturnStatement),
 
    Assert(AssertStatement),
 
    Goto(GotoStatement),
 
    New(NewStatement),
 
    Expression(ExpressionStatement),
 
}
 

	
 
impl Statement {
 
    pub fn as_block(&self) -> &BlockStatement {
 
        match self {
 
            Statement::Block(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `BlockStatement`"),
 
        }
 
    }
 
    pub fn as_block_mut(&mut self) -> &mut BlockStatement {
 
        match self {
 
            Statement::Block(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `BlockStatement`"),
 
        }
 
    }
 
    pub fn as_local(&self) -> &LocalStatement {
 
        match self {
 
            Statement::Local(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `LocalStatement`"),
 
        }
 
    }
 
    pub fn as_memory(&self) -> &MemoryStatement {
 
        self.as_local().as_memory()
 
    }
 
    pub fn as_channel(&self) -> &ChannelStatement {
 
        self.as_local().as_channel()
 
    }
 
    pub fn as_skip(&self) -> &SkipStatement {
 
        match self {
 
            Statement::Skip(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `SkipStatement`"),
 
        }
 
    }
 
    pub fn as_labeled(&self) -> &LabeledStatement {
 
        match self {
 
            Statement::Labeled(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `LabeledStatement`"),
 
        }
 
    }
 
    pub fn as_labeled_mut(&mut self) -> &mut LabeledStatement {
 
        match self {
 
            Statement::Labeled(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `LabeledStatement`"),
 
        }
 
    }
 
    pub fn as_if(&self) -> &IfStatement {
 
        match self {
 
            Statement::If(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `IfStatement`"),
 
        }
 
    }
 
    pub fn as_if_mut(&mut self) -> &mut IfStatement {
 
        match self {
 
            Statement::If(result) => result,
 
            _ => panic!("Unable to cast 'Statement' to 'IfStatement'"),
 
        }
 
    }
 
    pub fn as_end_if(&self) -> &EndIfStatement {
 
        match self {
 
            Statement::EndIf(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `EndIfStatement`"),
 
        }
 
    }
 
    pub fn is_while(&self) -> bool {
 
        match self {
 
            Statement::While(_) => true,
 
            _ => false,
 
        }
 
    }
 
    pub fn as_while(&self) -> &WhileStatement {
 
        match self {
 
            Statement::While(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `WhileStatement`"),
 
        }
 
    }
 
    pub fn as_while_mut(&mut self) -> &mut WhileStatement {
 
        match self {
 
            Statement::While(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `WhileStatement`"),
 
        }
 
    }
 
    pub fn as_end_while(&self) -> &EndWhileStatement {
 
        match self {
 
            Statement::EndWhile(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `EndWhileStatement`"),
 
        }
 
    }
 
    pub fn as_break(&self) -> &BreakStatement {
 
        match self {
 
            Statement::Break(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `BreakStatement`"),
 
        }
 
    }
 
    pub fn as_break_mut(&mut self) -> &mut BreakStatement {
 
        match self {
 
            Statement::Break(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `BreakStatement`"),
 
        }
 
    }
 
    pub fn as_continue(&self) -> &ContinueStatement {
 
        match self {
 
            Statement::Continue(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `ContinueStatement`"),
 
        }
 
    }
 
    pub fn as_continue_mut(&mut self) -> &mut ContinueStatement {
 
        match self {
 
            Statement::Continue(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `ContinueStatement`"),
 
        }
 
    }
 
    pub fn as_synchronous(&self) -> &SynchronousStatement {
 
        match self {
 
            Statement::Synchronous(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `SynchronousStatement`"),
 
        }
 
    }
 
    pub fn as_synchronous_mut(&mut self) -> &mut SynchronousStatement {
 
        match self {
 
            Statement::Synchronous(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `SynchronousStatement`"),
 
        }
 
    }
 
    pub fn as_end_synchronous(&self) -> &EndSynchronousStatement {
 
        match self {
 
            Statement::EndSynchronous(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `EndSynchronousStatement`"),
 
        }
 
    }
 
    pub fn as_return(&self) -> &ReturnStatement {
 
        match self {
 
            Statement::Return(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `ReturnStatement`"),
 
        }
 
    }
 
    pub fn as_assert(&self) -> &AssertStatement {
 
        match self {
 
            Statement::Assert(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `AssertStatement`"),
 
        }
 
    }
 
    pub fn as_goto(&self) -> &GotoStatement {
 
        match self {
 
            Statement::Goto(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `GotoStatement`"),
 
        }
 
    }
 
    pub fn as_goto_mut(&mut self) -> &mut GotoStatement {
 
        match self {
 
            Statement::Goto(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `GotoStatement`"),
 
        }
 
    }
 
    pub fn as_new(&self) -> &NewStatement {
 
        match self {
 
            Statement::New(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `NewStatement`"),
 
        }
 
    }
 
    pub fn as_expression(&self) -> &ExpressionStatement {
 
        match self {
 
            Statement::Expression(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `ExpressionStatement`"),
 
        }
 
    }
 
    pub fn link_next(&mut self, next: StatementId) {
 
        match self {
 
            Statement::Block(_) => todo!(),
 
            Statement::Local(stmt) => match stmt {
 
                LocalStatement::Channel(stmt) => stmt.next = Some(next),
 
                LocalStatement::Memory(stmt) => stmt.next = Some(next),
 
            },
 
            Statement::Skip(stmt) => stmt.next = Some(next),
 
            Statement::EndIf(stmt) => stmt.next = Some(next),
 
            Statement::EndWhile(stmt) => stmt.next = Some(next),
 
            Statement::EndSynchronous(stmt) => stmt.next = Some(next),
 
            Statement::Assert(stmt) => stmt.next = Some(next),
 
            Statement::New(stmt) => stmt.next = Some(next),
 
            Statement::Expression(stmt) => stmt.next = Some(next),
 
            Statement::Return(_)
 
            | Statement::Break(_)
 
            | Statement::Continue(_)
 
            | Statement::Synchronous(_)
 
            | Statement::Goto(_)
 
            | Statement::While(_)
 
            | Statement::Labeled(_)
 
            | Statement::If(_) => unreachable!(),
 
        }
 
    }
 
}
 

	
 
impl SyntaxElement for Statement {
 
    fn position(&self) -> InputPosition {
 
        match self {
 
            Statement::Block(stmt) => stmt.position(),
 
            Statement::Local(stmt) => stmt.position(),
 
            Statement::Skip(stmt) => stmt.position(),
 
            Statement::Labeled(stmt) => stmt.position(),
 
            Statement::If(stmt) => stmt.position(),
 
            Statement::EndIf(stmt) => stmt.position(),
 
            Statement::While(stmt) => stmt.position(),
 
            Statement::EndWhile(stmt) => stmt.position(),
 
            Statement::Break(stmt) => stmt.position(),
 
            Statement::Continue(stmt) => stmt.position(),
 
            Statement::Synchronous(stmt) => stmt.position(),
 
            Statement::EndSynchronous(stmt) => stmt.position(),
 
            Statement::Return(stmt) => stmt.position(),
 
            Statement::Assert(stmt) => stmt.position(),
 
            Statement::Goto(stmt) => stmt.position(),
 
            Statement::New(stmt) => stmt.position(),
 
            Statement::Expression(stmt) => stmt.position(),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct BlockStatement {
 
    pub this: BlockStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub statements: Vec<StatementId>,
 
    // Phase 2: linker
 
    pub parent_scope: Option<Scope>,
 
    pub relative_pos_in_parent: u32,
 
    pub locals: Vec<LocalId>,
 
    pub labels: Vec<LabeledStatementId>,
 
}
 

	
 
impl BlockStatement {
 
    pub fn parent_block(&self, h: &Heap) -> Option<BlockStatementId> {
 
        let parent = self.parent_scope.unwrap();
 
        match parent {
 
            Scope::Definition(_) => {
 
                // If the parent scope is a definition, then there is no
 
                // parent block.
 
                None
 
            }
 
            Scope::Synchronous((parent, _)) => {
 
                // It is always the case that when this function is called,
 
                // the parent of a synchronous statement is a block statement:
 
                // nested synchronous statements are flagged illegal,
 
                // and that happens before resolving variables that
 
                // creates the parent_scope references in the first place.
 
                Some(h[parent].parent_scope(h).unwrap().to_block())
 
            }
 
            Scope::Regular(parent) => {
 
                // A variable scope is either a definition, sync, or block.
 
                Some(parent)
 
            }
 
        }
 
    }
 
    pub fn first(&self) -> StatementId {
 
        // It is an invariant (guaranteed by the lexer) that block statements have at least one stmt
 
        *self.statements.first().unwrap()
 
    }
 
}
 

	
 
impl SyntaxElement for BlockStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
impl VariableScope for BlockStatement {
 
    fn parent_scope(&self, _h: &Heap) -> Option<Scope> {
 
        self.parent_scope.clone()
 
    }
 
    fn get_variable(&self, h: &Heap, id: &Identifier) -> Option<VariableId> {
 
        for local_id in self.locals.iter() {
 
            let local = &h[*local_id];
 
            if local.identifier == *id {
 
                return Some(local_id.0);
 
            }
 
        }
 
        None
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub enum LocalStatement {
 
    Memory(MemoryStatement),
 
    Channel(ChannelStatement),
 
}
 

	
 
impl LocalStatement {
 
    pub fn this(&self) -> LocalStatementId {
 
        match self {
 
            LocalStatement::Memory(stmt) => stmt.this.upcast(),
 
            LocalStatement::Channel(stmt) => stmt.this.upcast(),
 
        }
 
    }
 
    pub fn as_memory(&self) -> &MemoryStatement {
 
        match self {
 
            LocalStatement::Memory(result) => result,
 
            _ => panic!("Unable to cast `LocalStatement` to `MemoryStatement`"),
 
        }
 
    }
 
    pub fn as_channel(&self) -> &ChannelStatement {
 
        match self {
 
            LocalStatement::Channel(result) => result,
 
            _ => panic!("Unable to cast `LocalStatement` to `ChannelStatement`"),
 
        }
 
    }
 
    pub fn next(&self) -> Option<StatementId> {
 
        match self {
 
            LocalStatement::Memory(stmt) => stmt.next,
 
            LocalStatement::Channel(stmt) => stmt.next,
 
        }
 
    }
 
}
 

	
 
impl SyntaxElement for LocalStatement {
 
    fn position(&self) -> InputPosition {
 
        match self {
 
            LocalStatement::Memory(stmt) => stmt.position(),
 
            LocalStatement::Channel(stmt) => stmt.position(),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct MemoryStatement {
 
    pub this: MemoryStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub variable: LocalId,
 
    // Phase 2: linker
 
    pub next: Option<StatementId>,
 
}
 

	
 
impl SyntaxElement for MemoryStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
/// ChannelStatement is the declaration of an input and output port associated
 
/// with the same channel. Note that the polarity of the ports are from the
 
/// point of view of the component. So an output port is something that a
 
/// component uses to send data over (i.e. it is the "input end" of the
 
/// channel), and vice versa.
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct ChannelStatement {
 
    pub this: ChannelStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub from: LocalId, // output
 
    pub to: LocalId,   // input
 
    // Phase 2: linker
 
    pub relative_pos_in_block: u32,
 
    pub next: Option<StatementId>,
 
}
 

	
 
impl SyntaxElement for ChannelStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct SkipStatement {
 
    pub this: SkipStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    // Phase 2: linker
 
    pub next: Option<StatementId>,
 
}
 

	
 
impl SyntaxElement for SkipStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct LabeledStatement {
 
    pub this: LabeledStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub label: Identifier,
 
    pub body: StatementId,
 
    // Phase 2: linker
 
    pub relative_pos_in_block: u32,
 
    pub in_sync: Option<SynchronousStatementId>,
 
}
 

	
 
impl SyntaxElement for LabeledStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct IfStatement {
 
    pub this: IfStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub test: ExpressionId,
 
    pub true_body: StatementId,
 
    pub false_body: StatementId,
 
    // Phase 2: linker
 
    pub end_if: Option<EndIfStatementId>,
 
}
 

	
 
impl SyntaxElement for IfStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct EndIfStatement {
 
    pub this: EndIfStatementId,
 
    // Phase 2: linker
 
    pub start_if: IfStatementId,
 
    pub position: InputPosition, // of corresponding if statement
 
    pub next: Option<StatementId>,
 
}
 

	
 
impl SyntaxElement for EndIfStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct WhileStatement {
 
    pub this: WhileStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub test: ExpressionId,
 
    pub body: StatementId,
 
    // Phase 2: linker
 
    pub end_while: Option<EndWhileStatementId>,
 
    pub in_sync: Option<SynchronousStatementId>,
 
}
 

	
 
impl SyntaxElement for WhileStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct EndWhileStatement {
 
    pub this: EndWhileStatementId,
 
    // Phase 2: linker
 
    pub start_while: WhileStatementId,
 
    pub position: InputPosition, // of corresponding while
 
    pub next: Option<StatementId>,
 
}
 

	
 
impl SyntaxElement for EndWhileStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct BreakStatement {
 
    pub this: BreakStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub label: Option<Identifier>,
 
    // Phase 2: linker
 
    pub target: Option<EndWhileStatementId>,
 
}
 

	
 
impl SyntaxElement for BreakStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct ContinueStatement {
 
    pub this: ContinueStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub label: Option<Identifier>,
 
    // Phase 2: linker
 
    pub target: Option<WhileStatementId>,
 
}
 

	
 
impl SyntaxElement for ContinueStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct SynchronousStatement {
 
    pub this: SynchronousStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    // pub parameters: Vec<ParameterId>,
 
    pub body: StatementId,
 
    // Phase 2: linker
 
    pub end_sync: Option<EndSynchronousStatementId>,
 
    pub parent_scope: Option<Scope>,
 
}
 

	
 
impl SyntaxElement for SynchronousStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
impl VariableScope for SynchronousStatement {
 
    fn parent_scope(&self, _h: &Heap) -> Option<Scope> {
 
        self.parent_scope.clone()
 
    }
 
    fn get_variable(&self, _h: &Heap, _id: &Identifier) -> Option<VariableId> {
 
        // TODO: Another case of "where was this used for?"
 
        // for parameter_id in self.parameters.iter() {
 
        //     let parameter = &h[*parameter_id];
 
        //     if parameter.identifier.value == id.value {
 
        //         return Some(parameter_id.0);
 
        //     }
 
        // }
 
        None
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct EndSynchronousStatement {
 
    pub this: EndSynchronousStatementId,
 
    // Phase 2: linker
 
    pub position: InputPosition, // of corresponding sync statement
 
    pub start_sync: SynchronousStatementId,
 
    pub next: Option<StatementId>,
 
}
 

	
 
impl SyntaxElement for EndSynchronousStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct ReturnStatement {
 
    pub this: ReturnStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub expression: ExpressionId,
 
}
 

	
 
impl SyntaxElement for ReturnStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct AssertStatement {
 
    pub this: AssertStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub expression: ExpressionId,
 
    // Phase 2: linker
 
    pub next: Option<StatementId>,
 
}
 

	
 
impl SyntaxElement for AssertStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct GotoStatement {
 
    pub this: GotoStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub label: Identifier,
 
    // Phase 2: linker
 
    pub target: Option<LabeledStatementId>,
 
}
 

	
 
impl SyntaxElement for GotoStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct NewStatement {
 
    pub this: NewStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub expression: CallExpressionId,
 
    // Phase 2: linker
 
    pub next: Option<StatementId>,
 
}
 

	
 
impl SyntaxElement for NewStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct ExpressionStatement {
 
    pub this: ExpressionStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub expression: ExpressionId,
 
    // Phase 2: linker
 
    pub next: Option<StatementId>,
 
}
 

	
 
impl SyntaxElement for ExpressionStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, PartialEq, Eq, Clone, Copy, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
 
pub enum ExpressionParent {
 
    None, // only set during initial parsing
 
    If(IfStatementId),
 
    While(WhileStatementId),
 
    Return(ReturnStatementId),
 
    Assert(AssertStatementId),
 
    New(NewStatementId),
 
    ExpressionStmt(ExpressionStatementId),
 
    Expression(ExpressionId, u32) // index within expression (e.g LHS or RHS of expression)
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub enum Expression {
 
    Assignment(AssignmentExpression),
 
    Binding(BindingExpression),
 
    Conditional(ConditionalExpression),
 
    Binary(BinaryExpression),
 
    Unary(UnaryExpression),
 
    Indexing(IndexingExpression),
 
    Slicing(SlicingExpression),
 
    Select(SelectExpression),
 
    Array(ArrayExpression),
 
    Literal(LiteralExpression),
 
    Call(CallExpression),
 
    Variable(VariableExpression),
 
}
 

	
 
impl Expression {
 
    pub fn as_assignment(&self) -> &AssignmentExpression {
 
        match self {
 
            Expression::Assignment(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `AssignmentExpression`"),
 
        }
 
    }
 
    pub fn as_conditional(&self) -> &ConditionalExpression {
 
        match self {
 
            Expression::Conditional(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `ConditionalExpression`"),
 
        }
 
    }
 
    pub fn as_binary(&self) -> &BinaryExpression {
 
        match self {
 
            Expression::Binary(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `BinaryExpression`"),
 
        }
 
    }
 
    pub fn as_unary(&self) -> &UnaryExpression {
 
        match self {
 
            Expression::Unary(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `UnaryExpression`"),
 
        }
 
    }
 
    pub fn as_indexing(&self) -> &IndexingExpression {
 
        match self {
 
            Expression::Indexing(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `IndexingExpression`"),
 
        }
 
    }
 
    pub fn as_slicing(&self) -> &SlicingExpression {
 
        match self {
 
            Expression::Slicing(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `SlicingExpression`"),
 
        }
 
    }
 
    pub fn as_select(&self) -> &SelectExpression {
 
        match self {
 
            Expression::Select(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `SelectExpression`"),
 
        }
 
    }
 
    pub fn as_array(&self) -> &ArrayExpression {
 
        match self {
 
            Expression::Array(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `ArrayExpression`"),
 
        }
 
    }
 
    pub fn as_constant(&self) -> &LiteralExpression {
 
        match self {
 
            Expression::Literal(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `ConstantExpression`"),
 
        }
 
    }
 
    pub fn as_call(&self) -> &CallExpression {
 
        match self {
 
            Expression::Call(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `CallExpression`"),
 
        }
 
    }
 
    pub fn as_call_mut(&mut self) -> &mut CallExpression {
 
        match self {
 
            Expression::Call(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `CallExpression`"),
 
        }
 
    }
 
    pub fn as_variable(&self) -> &VariableExpression {
 
        match self {
 
            Expression::Variable(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `VariableExpression`"),
 
        }
 
    }
 
    pub fn as_variable_mut(&mut self) -> &mut VariableExpression {
 
        match self {
 
            Expression::Variable(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `VariableExpression`"),
 
        }
 
    }
 
    // TODO: @cleanup
 
    pub fn parent(&self) -> &ExpressionParent {
 
        match self {
 
            Expression::Assignment(expr) => &expr.parent,
 
            Expression::Binding(expr) => &expr.parent,
 
            Expression::Conditional(expr) => &expr.parent,
 
            Expression::Binary(expr) => &expr.parent,
 
            Expression::Unary(expr) => &expr.parent,
 
            Expression::Indexing(expr) => &expr.parent,
 
            Expression::Slicing(expr) => &expr.parent,
 
            Expression::Select(expr) => &expr.parent,
 
            Expression::Array(expr) => &expr.parent,
 
            Expression::Literal(expr) => &expr.parent,
 
            Expression::Call(expr) => &expr.parent,
 
            Expression::Variable(expr) => &expr.parent,
 
        }
 
    }
 
    // TODO: @cleanup
 
    pub fn parent_expr_id(&self) -> Option<ExpressionId> {
 
        if let ExpressionParent::Expression(id, _) = self.parent() {
 
            Some(*id)
 
        } else {
 
            None
 
        }
 
    }
 
    // TODO: @cleanup
 
    pub fn set_parent(&mut self, parent: ExpressionParent) {
 
        match self {
 
            Expression::Assignment(expr) => expr.parent = parent,
 
            Expression::Binding(expr) => expr.parent = parent,
 
            Expression::Conditional(expr) => expr.parent = parent,
 
            Expression::Binary(expr) => expr.parent = parent,
 
            Expression::Unary(expr) => expr.parent = parent,
 
            Expression::Indexing(expr) => expr.parent = parent,
 
            Expression::Slicing(expr) => expr.parent = parent,
 
            Expression::Select(expr) => expr.parent = parent,
 
            Expression::Array(expr) => expr.parent = parent,
 
            Expression::Literal(expr) => expr.parent = parent,
 
            Expression::Call(expr) => expr.parent = parent,
 
            Expression::Variable(expr) => expr.parent = parent,
 
        }
 
    }
 
    pub fn get_type(&self) -> &ConcreteType {
 
        match self {
 
            Expression::Assignment(expr) => &expr.concrete_type,
 
            Expression::Binding(expr) => &expr.concrete_type,
 
            Expression::Conditional(expr) => &expr.concrete_type,
 
            Expression::Binary(expr) => &expr.concrete_type,
 
            Expression::Unary(expr) => &expr.concrete_type,
 
            Expression::Indexing(expr) => &expr.concrete_type,
 
            Expression::Slicing(expr) => &expr.concrete_type,
 
            Expression::Select(expr) => &expr.concrete_type,
 
            Expression::Array(expr) => &expr.concrete_type,
 
            Expression::Literal(expr) => &expr.concrete_type,
 
            Expression::Call(expr) => &expr.concrete_type,
 
            Expression::Variable(expr) => &expr.concrete_type,
 
        }
 
    }
 

	
 
    // TODO: @cleanup
 
    pub fn get_type_mut(&mut self) -> &mut ConcreteType {
 
        match self {
 
            Expression::Assignment(expr) => &mut expr.concrete_type,
 
            Expression::Binding(expr) => &mut expr.concrete_type,
 
            Expression::Conditional(expr) => &mut expr.concrete_type,
 
            Expression::Binary(expr) => &mut expr.concrete_type,
 
            Expression::Unary(expr) => &mut expr.concrete_type,
 
            Expression::Indexing(expr) => &mut expr.concrete_type,
 
            Expression::Slicing(expr) => &mut expr.concrete_type,
 
            Expression::Select(expr) => &mut expr.concrete_type,
 
            Expression::Array(expr) => &mut expr.concrete_type,
 
            Expression::Literal(expr) => &mut expr.concrete_type,
 
            Expression::Call(expr) => &mut expr.concrete_type,
 
            Expression::Variable(expr) => &mut expr.concrete_type,
 
        }
 
    }
 
}
 

	
 
impl SyntaxElement for Expression {
 
    fn position(&self) -> InputPosition {
 
        match self {
 
            Expression::Assignment(expr) => expr.position(),
 
            Expression::Binding(expr) => expr.position,
 
            Expression::Conditional(expr) => expr.position(),
 
            Expression::Binary(expr) => expr.position(),
 
            Expression::Unary(expr) => expr.position(),
 
            Expression::Indexing(expr) => expr.position(),
 
            Expression::Slicing(expr) => expr.position(),
 
            Expression::Select(expr) => expr.position(),
 
            Expression::Array(expr) => expr.position(),
 
            Expression::Literal(expr) => expr.position(),
 
            Expression::Call(expr) => expr.position(),
 
            Expression::Variable(expr) => expr.position(),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub enum AssignmentOperator {
 
    Set,
 
    Multiplied,
 
    Divided,
 
    Remained,
 
    Added,
 
    Subtracted,
 
    ShiftedLeft,
 
    ShiftedRight,
 
    BitwiseAnded,
 
    BitwiseXored,
 
    BitwiseOred,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct AssignmentExpression {
 
    pub this: AssignmentExpressionId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub left: ExpressionId,
 
    pub operation: AssignmentOperator,
 
    pub right: ExpressionId,
 
    // Phase 2: linker
 
    pub parent: ExpressionParent,
 
    // Phase 3: type checking
 
    pub concrete_type: ConcreteType,
 
}
 

	
 
impl SyntaxElement for AssignmentExpression {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct BindingExpression {
 
    pub this: BindingExpressionId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub left: LiteralExpressionId,
 
    pub right: ExpressionId,
 
    // Phase 2: linker
 
    pub parent: ExpressionParent,
 
    // Phase 3: type checking
 
    pub concrete_type: ConcreteType,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct ConditionalExpression {
 
    pub this: ConditionalExpressionId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub test: ExpressionId,
 
    pub true_expression: ExpressionId,
 
    pub false_expression: ExpressionId,
 
    // Phase 2: linker
 
    pub parent: ExpressionParent,
 
    // Phase 3: type checking
 
    pub concrete_type: ConcreteType,
 
}
 

	
 
impl SyntaxElement for ConditionalExpression {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone, PartialEq, Eq)]
 
pub enum BinaryOperator {
 
    Concatenate,
 
    LogicalOr,
 
    LogicalAnd,
 
    BitwiseOr,
 
    BitwiseXor,
 
    BitwiseAnd,
 
    Equality,
 
    Inequality,
 
    LessThan,
 
    GreaterThan,
 
    LessThanEqual,
 
    GreaterThanEqual,
 
    ShiftLeft,
 
    ShiftRight,
 
    Add,
 
    Subtract,
 
    Multiply,
 
    Divide,
 
    Remainder,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct BinaryExpression {
 
    pub this: BinaryExpressionId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub left: ExpressionId,
 
    pub operation: BinaryOperator,
 
    pub right: ExpressionId,
 
    // Phase 2: linker
 
    pub parent: ExpressionParent,
 
    // Phase 3: type checking
 
    pub concrete_type: ConcreteType,
 
}
 

	
 
impl SyntaxElement for BinaryExpression {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone, PartialEq, Eq)]
 
pub enum UnaryOperation {
 
    Positive,
 
    Negative,
 
    BitwiseNot,
 
    LogicalNot,
 
    PreIncrement,
 
    PreDecrement,
 
    PostIncrement,
 
    PostDecrement,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct UnaryExpression {
 
    pub this: UnaryExpressionId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub operation: UnaryOperation,
 
    pub expression: ExpressionId,
 
    // Phase 2: linker
 
    pub parent: ExpressionParent,
 
    // Phase 3: type checking
 
    pub concrete_type: ConcreteType,
 
}
 

	
 
impl SyntaxElement for UnaryExpression {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct IndexingExpression {
 
    pub this: IndexingExpressionId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub subject: ExpressionId,
 
    pub index: ExpressionId,
 
    // Phase 2: linker
 
    pub parent: ExpressionParent,
 
    // Phase 3: type checking
 
    pub concrete_type: ConcreteType,
 
}
 

	
 
impl SyntaxElement for IndexingExpression {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct SlicingExpression {
 
    pub this: SlicingExpressionId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub subject: ExpressionId,
 
    pub from_index: ExpressionId,
 
    pub to_index: ExpressionId,
 
    // Phase 2: linker
 
    pub parent: ExpressionParent,
 
    // Phase 3: type checking
 
    pub concrete_type: ConcreteType,
 
}
 

	
 
impl SyntaxElement for SlicingExpression {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct SelectExpression {
 
    pub this: SelectExpressionId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub subject: ExpressionId,
 
    pub field: Field,
 
    // Phase 2: linker
 
    pub parent: ExpressionParent,
 
    // Phase 3: type checking
 
    pub concrete_type: ConcreteType,
 
}
 

	
 
impl SyntaxElement for SelectExpression {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct ArrayExpression {
 
    pub this: ArrayExpressionId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub elements: Vec<ExpressionId>,
 
    // Phase 2: linker
 
    pub parent: ExpressionParent,
 
    // Phase 3: type checking
 
    pub concrete_type: ConcreteType,
 
}
 

	
 
impl SyntaxElement for ArrayExpression {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
// TODO: @tokenizer Symbolic function calls are ambiguous with union literals
 
//  that accept embedded values (although the polymorphic arguments are placed
 
//  differently). To prevent double work we parse as CallExpression, and during
 
//  validation we may transform the expression into a union literal.
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct CallExpression {
 
    pub this: CallExpressionId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub method: Method,
 
    pub arguments: Vec<ExpressionId>,
 
    pub poly_args: Vec<ParserTypeId>, // if symbolic will be determined during validation phase
 
    // Phase 2: linker
 
    pub parent: ExpressionParent,
 
    // Phase 3: type checking
 
    pub concrete_type: ConcreteType,
 
}
 

	
 
impl SyntaxElement for CallExpression {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub enum Method {
 
    Get,
 
    Put,
 
    Fires,
 
    Create,
 
    Symbolic(MethodSymbolic)
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct MethodSymbolic {
 
    pub(crate) identifier: NamespacedIdentifier,
 
    pub(crate) definition: Option<DefinitionId>
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct LiteralExpression {
 
    pub this: LiteralExpressionId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub value: Literal,
 
    // Phase 2: linker
 
    pub parent: ExpressionParent,
 
    // Phase 3: type checking
 
    pub concrete_type: ConcreteType,
 
}
 

	
 
impl SyntaxElement for LiteralExpression {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
type LiteralCharacter = Vec<u8>;
 
type LiteralInteger = i64; // TODO: @int_literal
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub enum Literal {
 
    Null, // message
 
    True,
 
    False,
 
    Character(LiteralCharacter),
 
    Integer(LiteralInteger),
 
    Struct(LiteralStruct),
 
    Enum(LiteralEnum),
 
    Union(LiteralUnion),
 
}
 

	
 
impl Literal {
 
    pub(crate) fn as_struct(&self) -> &LiteralStruct {
 
        if let Literal::Struct(literal) = self{
 
            literal
 
        } else {
 
            unreachable!("Attempted to obtain {:?} as Literal::Struct", self)
 
        }
 
    }
 

	
 
    pub(crate) fn as_struct_mut(&mut self) -> &mut LiteralStruct {
 
        if let Literal::Struct(literal) = self{
 
            literal
 
        } else {
 
            unreachable!("Attempted to obtain {:?} as Literal::Struct", self)
 
        }
 
    }
 

	
 
    pub(crate) fn as_enum(&self) -> &LiteralEnum {
 
        if let Literal::Enum(literal) = self {
 
            literal
 
        } else {
 
            unreachable!("Attempted to obtain {:?} as Literal::Enum", self)
 
        }
 
    }
 

	
 
    pub(crate) fn as_union(&self) -> &LiteralUnion {
 
        if let Literal::Union(literal) = self {
 
            literal
 
        } else {
 
            unreachable!("Attempted to obtain {:?} as Literal::Union", self)
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct LiteralStructField {
 
    // Phase 1: parser
 
    pub(crate) identifier: Identifier,
 
    pub(crate) value: ExpressionId,
 
    // Phase 2: linker
 
    pub(crate) field_idx: usize, // in struct definition
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct LiteralStruct {
 
    // Phase 1: parser
 
    pub(crate) identifier: NamespacedIdentifier,
 
    pub(crate) fields: Vec<LiteralStructField>,
 
    // Phase 2: linker
 
    pub(crate) poly_args2: Vec<ParserTypeId>, // taken from identifier once linked to a definition
 
    pub(crate) definition: Option<DefinitionId>
 
}
 

	
 
// TODO: @tokenizer Enum literals are ambiguous with union literals that do not
 
//  accept embedded values. To prevent double work for now we parse as a 
 
//  LiteralEnum, and during validation we may transform the expression into a 
 
//  union literal.
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct LiteralEnum {
 
    // Phase 1: parser
 
    pub(crate) identifier: NamespacedIdentifier,
 
    // Phase 2: linker
 
    pub(crate) poly_args2: Vec<ParserTypeId>, // taken from identifier once linked to a definition
 
    pub(crate) definition: Option<DefinitionId>,
 
    pub(crate) variant_idx: usize, // as present in the type table
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct LiteralUnion {
 
    // Phase 1: parser
 
    pub(crate) identifier: NamespacedIdentifier,
 
    pub(crate) values: Vec<ExpressionId>,
 
    // Phase 2: linker
 
    pub(crate) poly_args2: Vec<ParserTypeId>, // taken from identifier once linked to a definition
 
    pub(crate) definition: Option<DefinitionId>,
 
    pub(crate) variant_idx: usize, // as present in type table
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct VariableExpression {
 
    pub this: VariableExpressionId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub identifier: NamespacedIdentifier,
 
    // Phase 2: linker
 
    pub declaration: Option<VariableId>,
 
    pub parent: ExpressionParent,
 
    // Phase 3: type checking
 
    pub concrete_type: ConcreteType,
 
}
 

	
 
impl SyntaxElement for VariableExpression {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
src/protocol/eval.rs
Show inline comments
 
use std::collections::HashMap;
 
use std::fmt;
 
use std::fmt::{Debug, Display, Formatter};
 
use std::{i16, i32, i64, i8};
 

	
 
use crate::common::*;
 

	
 
use crate::protocol::ast::*;
 
use crate::protocol::EvalContext;
 

	
 
// const MAX_RECURSION: usize = 1024;
 

	
 
const BYTE_MIN: i64 = i8::MIN as i64;
 
const BYTE_MAX: i64 = i8::MAX as i64;
 
const SHORT_MIN: i64 = i16::MIN as i64;
 
const SHORT_MAX: i64 = i16::MAX as i64;
 
const INT_MIN: i64 = i32::MIN as i64;
 
const INT_MAX: i64 = i32::MAX as i64;
 

	
 
const MESSAGE_MAX_LENGTH: i64 = SHORT_MAX;
 

	
 
const ONE: Value = Value::Byte(ByteValue(1));
 

	
 
// TODO: All goes one day anyway, so dirty typechecking hack
 
trait ValueImpl {
 
    fn exact_type(&self) -> Type;
 
    fn is_type_compatible(&self, h: &Heap, t: &ParserType) -> bool {
 
        Self::is_type_compatible_hack(h, t)
 
    }
 
    fn is_type_compatible_hack(h: &Heap, t: &ParserType) -> bool;
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub enum Value {
 
    Unassigned,
 
    Input(InputValue),
 
    Output(OutputValue),
 
    Message(MessageValue),
 
    Boolean(BooleanValue),
 
    Byte(ByteValue),
 
    Short(ShortValue),
 
    Int(IntValue),
 
    Long(LongValue),
 
    InputArray(InputArrayValue),
 
    OutputArray(OutputArrayValue),
 
    MessageArray(MessageArrayValue),
 
    BooleanArray(BooleanArrayValue),
 
    ByteArray(ByteArrayValue),
 
    ShortArray(ShortArrayValue),
 
    IntArray(IntArrayValue),
 
    LongArray(LongArrayValue),
 
}
 
impl Value {
 
    pub fn receive_message(buffer: &Payload) -> Value {
 
        Value::Message(MessageValue(Some(buffer.clone())))
 
    }
 
    fn create_message(length: Value) -> Value {
 
        match length {
 
            Value::Byte(_) | Value::Short(_) | Value::Int(_) | Value::Long(_) => {
 
                let length: i64 = i64::from(length);
 
                if length < 0 || length > MESSAGE_MAX_LENGTH {
 
                    // Only messages within the expected length are allowed
 
                    Value::Message(MessageValue(None))
 
                } else {
 
                    Value::Message(MessageValue(Some(Payload::new(length as usize))))
 
                }
 
            }
 
            _ => unimplemented!(),
 
        }
 
    }
 
    fn from_constant(constant: &Literal) -> Value {
 
        match constant {
 
            Literal::Null => Value::Message(MessageValue(None)),
 
            Literal::True => Value::Boolean(BooleanValue(true)),
 
            Literal::False => Value::Boolean(BooleanValue(false)),
 
            Literal::Integer(val) => {
 
                // Convert raw ASCII data to UTF-8 string
 
                let val = *val;
 
                if val >= BYTE_MIN && val <= BYTE_MAX {
 
                    Value::Byte(ByteValue(val as i8))
 
                } else if val >= SHORT_MIN && val <= SHORT_MAX {
 
                    Value::Short(ShortValue(val as i16))
 
                } else if val >= INT_MIN && val <= INT_MAX {
 
                    Value::Int(IntValue(val as i32))
 
                } else {
 
                    Value::Long(LongValue(val))
 
                }
 
            }
 
            Literal::Character(_data) => unimplemented!(),
 
            Literal::Struct(_data) => unimplemented!(),
 
            Literal::Enum(_data) => unimplemented!(),
 
            Literal::Union(_data) => unimplemented!(),
 
        }
 
    }
 
    fn set(&mut self, index: &Value, value: &Value) -> Option<Value> {
 
        // The index must be of integer type, and non-negative
 
        let the_index: usize;
 
        match index {
 
            Value::Byte(_) | Value::Short(_) | Value::Int(_) | Value::Long(_) => {
 
                let index = i64::from(index);
 
                if index < 0 || index >= MESSAGE_MAX_LENGTH {
 
                    // It is inconsistent to update out of bounds
 
                    return None;
 
                }
 
                the_index = index.try_into().unwrap();
 
            }
 
            _ => unreachable!(),
 
        }
 
        // The subject must be either a message or an array
 
        // And the value and the subject must be compatible
 
        match (self, value) {
 
            (Value::Message(MessageValue(None)), _) => {
 
                // It is inconsistent to update the null message
 
                None
 
            }
 
            (Value::Message(MessageValue(Some(payload))), Value::Byte(ByteValue(b))) => {
 
                if *b < 0 {
 
                    // It is inconsistent to update with a negative value
 
                    return None;
 
                }
 
                if let Some(slot) = payload.as_mut_vec().get_mut(the_index) {
 
                    *slot = (*b).try_into().unwrap();
 
                    Some(value.clone())
 
                } else {
 
                    // It is inconsistent to update out of bounds
 
                    None
 
                }
 
            }
 
            (Value::Message(MessageValue(Some(payload))), Value::Short(ShortValue(b))) => {
 
                if *b < 0 || *b > BYTE_MAX as i16 {
 
                    // It is inconsistent to update with a negative value or a too large value
 
                    return None;
 
                }
 
                if let Some(slot) = payload.as_mut_vec().get_mut(the_index) {
 
                    *slot = (*b).try_into().unwrap();
 
                    Some(value.clone())
 
                } else {
 
                    // It is inconsistent to update out of bounds
 
                    None
 
                }
 
            }
 
            (Value::InputArray(_), Value::Input(_)) => todo!(),
 
            (Value::OutputArray(_), Value::Output(_)) => todo!(),
 
            (Value::MessageArray(_), Value::Message(_)) => todo!(),
 
            (Value::BooleanArray(_), Value::Boolean(_)) => todo!(),
 
            (Value::ByteArray(_), Value::Byte(_)) => todo!(),
 
            (Value::ShortArray(_), Value::Short(_)) => todo!(),
 
            (Value::IntArray(_), Value::Int(_)) => todo!(),
 
            (Value::LongArray(_), Value::Long(_)) => todo!(),
 
            _ => unreachable!(),
 
        }
 
    }
 
    fn get(&self, index: &Value) -> Option<Value> {
 
        // The index must be of integer type, and non-negative
 
        let the_index: usize;
 
        match index {
 
            Value::Byte(_) | Value::Short(_) | Value::Int(_) | Value::Long(_) => {
 
                let index = i64::from(index);
 
                if index < 0 || index >= MESSAGE_MAX_LENGTH {
 
                    // It is inconsistent to update out of bounds
 
                    return None;
 
                }
 
                the_index = index.try_into().unwrap();
 
            }
 
            _ => unreachable!(),
 
        }
 
        // The subject must be either a message or an array
 
        match self {
 
            Value::Message(MessageValue(None)) => {
 
                // It is inconsistent to read from the null message
 
                None
 
            }
 
            Value::Message(MessageValue(Some(payload))) => {
 
                if let Some(slot) = payload.as_slice().get(the_index) {
 
                    Some(Value::Short(ShortValue((*slot).try_into().unwrap())))
 
                } else {
 
                    // It is inconsistent to update out of bounds
 
                    None
 
                }
 
            }
 
            _ => panic!("Can only get from port value"),
 
        }
 
    }
 
    fn length(&self) -> Option<Value> {
 
        // The subject must be either a message or an array
 
        match self {
 
            Value::Message(MessageValue(None)) => {
 
                // It is inconsistent to get length from the null message
 
                None
 
            }
 
            Value::Message(MessageValue(Some(buffer))) => {
 
                Some(Value::Int(IntValue((buffer.len()).try_into().unwrap())))
 
            }
 
            Value::InputArray(InputArrayValue(vec)) => {
 
                Some(Value::Int(IntValue((vec.len()).try_into().unwrap())))
 
            }
 
            Value::OutputArray(OutputArrayValue(vec)) => {
 
                Some(Value::Int(IntValue((vec.len()).try_into().unwrap())))
 
            }
 
            Value::MessageArray(MessageArrayValue(vec)) => {
 
                Some(Value::Int(IntValue((vec.len()).try_into().unwrap())))
 
            }
 
            Value::BooleanArray(BooleanArrayValue(vec)) => {
 
                Some(Value::Int(IntValue((vec.len()).try_into().unwrap())))
 
            }
 
            Value::ByteArray(ByteArrayValue(vec)) => {
 
                Some(Value::Int(IntValue((vec.len()).try_into().unwrap())))
 
            }
 
            Value::ShortArray(ShortArrayValue(vec)) => {
 
                Some(Value::Int(IntValue((vec.len()).try_into().unwrap())))
 
            }
 
            Value::IntArray(IntArrayValue(vec)) => {
 
                Some(Value::Int(IntValue((vec.len()).try_into().unwrap())))
 
            }
 
            Value::LongArray(LongArrayValue(vec)) => {
 
                Some(Value::Int(IntValue((vec.len()).try_into().unwrap())))
 
            }
 
            _ => unreachable!(),
 
        }
 
    }
 
    fn plus(&self, other: &Value) -> Value {
 
        match (self, other) {
 
            (Value::Byte(ByteValue(s)), Value::Byte(ByteValue(o))) => {
 
                Value::Byte(ByteValue(*s + *o))
 
            }
 
            (Value::Byte(ByteValue(s)), Value::Short(ShortValue(o))) => {
 
                Value::Short(ShortValue(*s as i16 + *o))
 
            }
 
            (Value::Byte(ByteValue(s)), Value::Int(IntValue(o))) => {
 
                Value::Int(IntValue(*s as i32 + *o))
 
            }
 
            (Value::Byte(ByteValue(s)), Value::Long(LongValue(o))) => {
 
                Value::Long(LongValue(*s as i64 + *o))
 
            }
 
            (Value::Short(ShortValue(s)), Value::Byte(ByteValue(o))) => {
 
                Value::Short(ShortValue(*s + *o as i16))
 
            }
 
            (Value::Short(ShortValue(s)), Value::Short(ShortValue(o))) => {
 
                Value::Short(ShortValue(*s + *o))
 
            }
 
            (Value::Short(ShortValue(s)), Value::Int(IntValue(o))) => {
 
                Value::Int(IntValue(*s as i32 + *o))
 
            }
 
            (Value::Short(ShortValue(s)), Value::Long(LongValue(o))) => {
 
                Value::Long(LongValue(*s as i64 + *o))
 
            }
 
            (Value::Int(IntValue(s)), Value::Byte(ByteValue(o))) => {
 
                Value::Int(IntValue(*s + *o as i32))
 
            }
 
            (Value::Int(IntValue(s)), Value::Short(ShortValue(o))) => {
 
                Value::Int(IntValue(*s + *o as i32))
 
            }
 
            (Value::Int(IntValue(s)), Value::Int(IntValue(o))) => Value::Int(IntValue(*s + *o)),
 
            (Value::Int(IntValue(s)), Value::Long(LongValue(o))) => {
 
                Value::Long(LongValue(*s as i64 + *o))
 
            }
 
            (Value::Long(LongValue(s)), Value::Byte(ByteValue(o))) => {
 
                Value::Long(LongValue(*s + *o as i64))
 
            }
 
            (Value::Long(LongValue(s)), Value::Short(ShortValue(o))) => {
 
                Value::Long(LongValue(*s + *o as i64))
 
            }
 
            (Value::Long(LongValue(s)), Value::Int(IntValue(o))) => {
 
                Value::Long(LongValue(*s + *o as i64))
 
            }
 
            (Value::Long(LongValue(s)), Value::Long(LongValue(o))) => {
 
                Value::Long(LongValue(*s + *o))
 
            }
 

	
 
            (Value::Message(MessageValue(s)), Value::Message(MessageValue(o))) => {
 
                let payload = if let [Some(s), Some(o)] = [s, o] {
 
                    let mut payload = s.clone();
 
                    payload.concatenate_with(o);
 
                    Some(payload)
 
                } else {
 
                    None
 
                };
 
                Value::Message(MessageValue(payload))
 
            }
 
            _ => unimplemented!(),
 
        }
 
    }
 
    fn minus(&self, other: &Value) -> Value {
 
        match (self, other) {
 
            (Value::Byte(ByteValue(s)), Value::Byte(ByteValue(o))) => {
 
                Value::Byte(ByteValue(*s - *o))
 
            }
 
            (Value::Byte(ByteValue(s)), Value::Short(ShortValue(o))) => {
 
                Value::Short(ShortValue(*s as i16 - *o))
 
            }
 
            (Value::Byte(ByteValue(s)), Value::Int(IntValue(o))) => {
 
                Value::Int(IntValue(*s as i32 - *o))
 
            }
 
            (Value::Byte(ByteValue(s)), Value::Long(LongValue(o))) => {
 
                Value::Long(LongValue(*s as i64 - *o))
 
            }
 
            (Value::Short(ShortValue(s)), Value::Byte(ByteValue(o))) => {
 
                Value::Short(ShortValue(*s - *o as i16))
 
            }
 
            (Value::Short(ShortValue(s)), Value::Short(ShortValue(o))) => {
 
                Value::Short(ShortValue(*s - *o))
 
            }
 
            (Value::Short(ShortValue(s)), Value::Int(IntValue(o))) => {
 
                Value::Int(IntValue(*s as i32 - *o))
 
            }
 
            (Value::Short(ShortValue(s)), Value::Long(LongValue(o))) => {
 
                Value::Long(LongValue(*s as i64 - *o))
 
            }
 
            (Value::Int(IntValue(s)), Value::Byte(ByteValue(o))) => {
 
                Value::Int(IntValue(*s - *o as i32))
 
            }
 
            (Value::Int(IntValue(s)), Value::Short(ShortValue(o))) => {
 
                Value::Int(IntValue(*s - *o as i32))
 
            }
 
            (Value::Int(IntValue(s)), Value::Int(IntValue(o))) => Value::Int(IntValue(*s - *o)),
 
            (Value::Int(IntValue(s)), Value::Long(LongValue(o))) => {
 
                Value::Long(LongValue(*s as i64 - *o))
 
            }
 
            (Value::Long(LongValue(s)), Value::Byte(ByteValue(o))) => {
 
                Value::Long(LongValue(*s - *o as i64))
 
            }
 
            (Value::Long(LongValue(s)), Value::Short(ShortValue(o))) => {
 
                Value::Long(LongValue(*s - *o as i64))
 
            }
 
            (Value::Long(LongValue(s)), Value::Int(IntValue(o))) => {
 
                Value::Long(LongValue(*s - *o as i64))
 
            }
 
            (Value::Long(LongValue(s)), Value::Long(LongValue(o))) => {
 
                Value::Long(LongValue(*s - *o))
 
            }
 
            _ => unimplemented!(),
 
        }
 
    }
 
    fn modulus(&self, other: &Value) -> Value {
 
        match (self, other) {
 
            (Value::Byte(ByteValue(s)), Value::Byte(ByteValue(o))) => {
 
                Value::Byte(ByteValue(*s % *o))
 
            }
 
            (Value::Byte(ByteValue(s)), Value::Short(ShortValue(o))) => {
 
                Value::Short(ShortValue(*s as i16 % *o))
 
            }
 
            (Value::Byte(ByteValue(s)), Value::Int(IntValue(o))) => {
 
                Value::Int(IntValue(*s as i32 % *o))
 
            }
 
            (Value::Byte(ByteValue(s)), Value::Long(LongValue(o))) => {
 
                Value::Long(LongValue(*s as i64 % *o))
 
            }
 
            (Value::Short(ShortValue(s)), Value::Byte(ByteValue(o))) => {
 
                Value::Short(ShortValue(*s % *o as i16))
 
            }
 
            (Value::Short(ShortValue(s)), Value::Short(ShortValue(o))) => {
 
                Value::Short(ShortValue(*s % *o))
 
            }
 
            (Value::Short(ShortValue(s)), Value::Int(IntValue(o))) => {
 
                Value::Int(IntValue(*s as i32 % *o))
 
            }
 
            (Value::Short(ShortValue(s)), Value::Long(LongValue(o))) => {
 
                Value::Long(LongValue(*s as i64 % *o))
 
            }
 
            (Value::Int(IntValue(s)), Value::Byte(ByteValue(o))) => {
 
                Value::Int(IntValue(*s % *o as i32))
 
            }
 
            (Value::Int(IntValue(s)), Value::Short(ShortValue(o))) => {
 
                Value::Int(IntValue(*s % *o as i32))
 
            }
 
            (Value::Int(IntValue(s)), Value::Int(IntValue(o))) => Value::Int(IntValue(*s % *o)),
 
            (Value::Int(IntValue(s)), Value::Long(LongValue(o))) => {
 
                Value::Long(LongValue(*s as i64 % *o))
 
            }
 
            (Value::Long(LongValue(s)), Value::Byte(ByteValue(o))) => {
 
                Value::Long(LongValue(*s % *o as i64))
 
            }
 
            (Value::Long(LongValue(s)), Value::Short(ShortValue(o))) => {
 
                Value::Long(LongValue(*s % *o as i64))
 
            }
 
            (Value::Long(LongValue(s)), Value::Int(IntValue(o))) => {
 
                Value::Long(LongValue(*s % *o as i64))
 
            }
 
            (Value::Long(LongValue(s)), Value::Long(LongValue(o))) => {
 
                Value::Long(LongValue(*s % *o))
 
            }
 
            _ => unimplemented!(),
 
        }
 
    }
 
    fn eq(&self, other: &Value) -> Value {
 
        match (self, other) {
 
            (Value::Byte(ByteValue(s)), Value::Byte(ByteValue(o))) => {
 
                Value::Boolean(BooleanValue(*s == *o))
 
            }
 
            (Value::Byte(ByteValue(s)), Value::Short(ShortValue(o))) => {
 
                Value::Boolean(BooleanValue(*s as i16 == *o))
 
            }
 
            (Value::Byte(ByteValue(s)), Value::Int(IntValue(o))) => {
 
                Value::Boolean(BooleanValue(*s as i32 == *o))
 
            }
 
            (Value::Byte(ByteValue(s)), Value::Long(LongValue(o))) => {
 
                Value::Boolean(BooleanValue(*s as i64 == *o))
 
            }
 
            (Value::Short(ShortValue(s)), Value::Byte(ByteValue(o))) => {
 
                Value::Boolean(BooleanValue(*s == *o as i16))
 
            }
 
            (Value::Short(ShortValue(s)), Value::Short(ShortValue(o))) => {
 
                Value::Boolean(BooleanValue(*s == *o))
 
            }
 
            (Value::Short(ShortValue(s)), Value::Int(IntValue(o))) => {
 
                Value::Boolean(BooleanValue(*s as i32 == *o))
 
            }
 
            (Value::Short(ShortValue(s)), Value::Long(LongValue(o))) => {
 
                Value::Boolean(BooleanValue(*s as i64 == *o))
 
            }
 
            (Value::Int(IntValue(s)), Value::Byte(ByteValue(o))) => {
 
                Value::Boolean(BooleanValue(*s == *o as i32))
 
            }
 
            (Value::Int(IntValue(s)), Value::Short(ShortValue(o))) => {
 
                Value::Boolean(BooleanValue(*s == *o as i32))
 
            }
 
            (Value::Int(IntValue(s)), Value::Int(IntValue(o))) => {
 
                Value::Boolean(BooleanValue(*s == *o))
 
            }
 
            (Value::Int(IntValue(s)), Value::Long(LongValue(o))) => {
 
                Value::Boolean(BooleanValue(*s as i64 == *o))
 
            }
 
            (Value::Long(LongValue(s)), Value::Byte(ByteValue(o))) => {
 
                Value::Boolean(BooleanValue(*s == *o as i64))
 
            }
 
            (Value::Long(LongValue(s)), Value::Short(ShortValue(o))) => {
 
                Value::Boolean(BooleanValue(*s == *o as i64))
 
            }
 
            (Value::Long(LongValue(s)), Value::Int(IntValue(o))) => {
 
                Value::Boolean(BooleanValue(*s == *o as i64))
 
            }
 
            (Value::Long(LongValue(s)), Value::Long(LongValue(o))) => {
 
                Value::Boolean(BooleanValue(*s == *o))
 
            }
 
            (Value::Message(MessageValue(s)), Value::Message(MessageValue(o))) => {
 
                Value::Boolean(BooleanValue(*s == *o))
 
            }
 
            _ => unimplemented!(),
 
        }
 
    }
 
    fn neq(&self, other: &Value) -> Value {
 
        match (self, other) {
 
            (Value::Byte(ByteValue(s)), Value::Byte(ByteValue(o))) => {
 
                Value::Boolean(BooleanValue(*s != *o))
 
            }
 
            (Value::Byte(ByteValue(s)), Value::Short(ShortValue(o))) => {
 
                Value::Boolean(BooleanValue(*s as i16 != *o))
 
            }
 
            (Value::Byte(ByteValue(s)), Value::Int(IntValue(o))) => {
 
                Value::Boolean(BooleanValue(*s as i32 != *o))
 
            }
 
            (Value::Byte(ByteValue(s)), Value::Long(LongValue(o))) => {
 
                Value::Boolean(BooleanValue(*s as i64 != *o))
 
            }
 
            (Value::Short(ShortValue(s)), Value::Byte(ByteValue(o))) => {
 
                Value::Boolean(BooleanValue(*s != *o as i16))
 
            }
 
            (Value::Short(ShortValue(s)), Value::Short(ShortValue(o))) => {
 
                Value::Boolean(BooleanValue(*s != *o))
 
            }
 
            (Value::Short(ShortValue(s)), Value::Int(IntValue(o))) => {
 
                Value::Boolean(BooleanValue(*s as i32 != *o))
 
            }
 
            (Value::Short(ShortValue(s)), Value::Long(LongValue(o))) => {
 
                Value::Boolean(BooleanValue(*s as i64 != *o))
 
            }
 
            (Value::Int(IntValue(s)), Value::Byte(ByteValue(o))) => {
 
                Value::Boolean(BooleanValue(*s != *o as i32))
 
            }
 
            (Value::Int(IntValue(s)), Value::Short(ShortValue(o))) => {
 
                Value::Boolean(BooleanValue(*s != *o as i32))
 
            }
 
            (Value::Int(IntValue(s)), Value::Int(IntValue(o))) => {
 
                Value::Boolean(BooleanValue(*s != *o))
 
            }
 
            (Value::Int(IntValue(s)), Value::Long(LongValue(o))) => {
 
                Value::Boolean(BooleanValue(*s as i64 != *o))
 
            }
 
            (Value::Long(LongValue(s)), Value::Byte(ByteValue(o))) => {
 
                Value::Boolean(BooleanValue(*s != *o as i64))
 
            }
 
            (Value::Long(LongValue(s)), Value::Short(ShortValue(o))) => {
 
                Value::Boolean(BooleanValue(*s != *o as i64))
 
            }
 
            (Value::Long(LongValue(s)), Value::Int(IntValue(o))) => {
 
                Value::Boolean(BooleanValue(*s != *o as i64))
 
            }
 
            (Value::Long(LongValue(s)), Value::Long(LongValue(o))) => {
 
                Value::Boolean(BooleanValue(*s != *o))
 
            }
 
            (Value::Message(MessageValue(s)), Value::Message(MessageValue(o))) => {
 
                Value::Boolean(BooleanValue(*s != *o))
 
            }
 
            _ => unimplemented!(),
 
        }
 
    }
 
    fn lt(&self, other: &Value) -> Value {
 
        // TODO: match value directly (as done above)
 
        assert!(!self.exact_type().array);
 
        assert!(!other.exact_type().array);
 
        match (self.exact_type().primitive, other.exact_type().primitive) {
 
            (PrimitiveType::Byte, PrimitiveType::Byte) => {
 
                Value::Boolean(BooleanValue(i8::from(self) < i8::from(other)))
 
            }
 
            (PrimitiveType::Byte, PrimitiveType::Short) => {
 
                Value::Boolean(BooleanValue(i16::from(self) < i16::from(other)))
 
            }
 
            (PrimitiveType::Byte, PrimitiveType::Int) => {
 
                Value::Boolean(BooleanValue(i32::from(self) < i32::from(other)))
 
            }
 
            (PrimitiveType::Byte, PrimitiveType::Long) => {
 
                Value::Boolean(BooleanValue(i64::from(self) < i64::from(other)))
 
            }
 
            (PrimitiveType::Short, PrimitiveType::Byte) => {
 
                Value::Boolean(BooleanValue(i16::from(self) < i16::from(other)))
 
            }
 
            (PrimitiveType::Short, PrimitiveType::Short) => {
 
                Value::Boolean(BooleanValue(i16::from(self) < i16::from(other)))
 
            }
 
            (PrimitiveType::Short, PrimitiveType::Int) => {
 
                Value::Boolean(BooleanValue(i32::from(self) < i32::from(other)))
 
            }
 
            (PrimitiveType::Short, PrimitiveType::Long) => {
 
                Value::Boolean(BooleanValue(i64::from(self) < i64::from(other)))
 
            }
 
            (PrimitiveType::Int, PrimitiveType::Byte) => {
 
                Value::Boolean(BooleanValue(i32::from(self) < i32::from(other)))
 
            }
 
            (PrimitiveType::Int, PrimitiveType::Short) => {
 
                Value::Boolean(BooleanValue(i32::from(self) < i32::from(other)))
 
            }
 
            (PrimitiveType::Int, PrimitiveType::Int) => {
 
                Value::Boolean(BooleanValue(i32::from(self) < i32::from(other)))
 
            }
 
            (PrimitiveType::Int, PrimitiveType::Long) => {
 
                Value::Boolean(BooleanValue(i64::from(self) < i64::from(other)))
 
            }
 
            (PrimitiveType::Long, PrimitiveType::Byte) => {
 
                Value::Boolean(BooleanValue(i64::from(self) < i64::from(other)))
 
            }
 
            (PrimitiveType::Long, PrimitiveType::Short) => {
 
                Value::Boolean(BooleanValue(i64::from(self) < i64::from(other)))
 
            }
 
            (PrimitiveType::Long, PrimitiveType::Int) => {
 
                Value::Boolean(BooleanValue(i64::from(self) < i64::from(other)))
 
            }
 
            (PrimitiveType::Long, PrimitiveType::Long) => {
 
                Value::Boolean(BooleanValue(i64::from(self) < i64::from(other)))
 
            }
 
            _ => unimplemented!(),
 
        }
 
    }
 
    fn lte(&self, other: &Value) -> Value {
 
        assert!(!self.exact_type().array);
 
        assert!(!other.exact_type().array);
 
        match (self.exact_type().primitive, other.exact_type().primitive) {
 
            (PrimitiveType::Byte, PrimitiveType::Byte) => {
 
                Value::Boolean(BooleanValue(i8::from(self) <= i8::from(other)))
 
            }
 
            (PrimitiveType::Byte, PrimitiveType::Short) => {
 
                Value::Boolean(BooleanValue(i16::from(self) <= i16::from(other)))
 
            }
 
            (PrimitiveType::Byte, PrimitiveType::Int) => {
 
                Value::Boolean(BooleanValue(i32::from(self) <= i32::from(other)))
 
            }
 
            (PrimitiveType::Byte, PrimitiveType::Long) => {
 
                Value::Boolean(BooleanValue(i64::from(self) <= i64::from(other)))
 
            }
 
            (PrimitiveType::Short, PrimitiveType::Byte) => {
 
                Value::Boolean(BooleanValue(i16::from(self) <= i16::from(other)))
 
            }
 
            (PrimitiveType::Short, PrimitiveType::Short) => {
 
                Value::Boolean(BooleanValue(i16::from(self) <= i16::from(other)))
 
            }
 
            (PrimitiveType::Short, PrimitiveType::Int) => {
 
                Value::Boolean(BooleanValue(i32::from(self) <= i32::from(other)))
 
            }
 
            (PrimitiveType::Short, PrimitiveType::Long) => {
 
                Value::Boolean(BooleanValue(i64::from(self) <= i64::from(other)))
 
            }
 
            (PrimitiveType::Int, PrimitiveType::Byte) => {
 
                Value::Boolean(BooleanValue(i32::from(self) <= i32::from(other)))
 
            }
 
            (PrimitiveType::Int, PrimitiveType::Short) => {
 
                Value::Boolean(BooleanValue(i32::from(self) <= i32::from(other)))
 
            }
 
            (PrimitiveType::Int, PrimitiveType::Int) => {
 
                Value::Boolean(BooleanValue(i32::from(self) <= i32::from(other)))
 
            }
 
            (PrimitiveType::Int, PrimitiveType::Long) => {
 
                Value::Boolean(BooleanValue(i64::from(self) <= i64::from(other)))
 
            }
 
            (PrimitiveType::Long, PrimitiveType::Byte) => {
 
                Value::Boolean(BooleanValue(i64::from(self) <= i64::from(other)))
 
            }
 
            (PrimitiveType::Long, PrimitiveType::Short) => {
 
                Value::Boolean(BooleanValue(i64::from(self) <= i64::from(other)))
 
            }
 
            (PrimitiveType::Long, PrimitiveType::Int) => {
 
                Value::Boolean(BooleanValue(i64::from(self) <= i64::from(other)))
 
            }
 
            (PrimitiveType::Long, PrimitiveType::Long) => {
 
                Value::Boolean(BooleanValue(i64::from(self) <= i64::from(other)))
 
            }
 
            _ => unimplemented!(),
 
        }
 
    }
 
    fn gt(&self, other: &Value) -> Value {
 
        assert!(!self.exact_type().array);
 
        assert!(!other.exact_type().array);
 
        match (self.exact_type().primitive, other.exact_type().primitive) {
 
            (PrimitiveType::Byte, PrimitiveType::Byte) => {
 
                Value::Boolean(BooleanValue(i8::from(self) > i8::from(other)))
 
            }
 
            (PrimitiveType::Byte, PrimitiveType::Short) => {
 
                Value::Boolean(BooleanValue(i16::from(self) > i16::from(other)))
 
            }
 
            (PrimitiveType::Byte, PrimitiveType::Int) => {
 
                Value::Boolean(BooleanValue(i32::from(self) > i32::from(other)))
 
            }
 
            (PrimitiveType::Byte, PrimitiveType::Long) => {
 
                Value::Boolean(BooleanValue(i64::from(self) > i64::from(other)))
 
            }
 
            (PrimitiveType::Short, PrimitiveType::Byte) => {
 
                Value::Boolean(BooleanValue(i16::from(self) > i16::from(other)))
 
            }
 
            (PrimitiveType::Short, PrimitiveType::Short) => {
 
                Value::Boolean(BooleanValue(i16::from(self) > i16::from(other)))
 
            }
 
            (PrimitiveType::Short, PrimitiveType::Int) => {
 
                Value::Boolean(BooleanValue(i32::from(self) > i32::from(other)))
 
            }
 
            (PrimitiveType::Short, PrimitiveType::Long) => {
 
                Value::Boolean(BooleanValue(i64::from(self) > i64::from(other)))
 
            }
 
            (PrimitiveType::Int, PrimitiveType::Byte) => {
 
                Value::Boolean(BooleanValue(i32::from(self) > i32::from(other)))
 
            }
 
            (PrimitiveType::Int, PrimitiveType::Short) => {
 
                Value::Boolean(BooleanValue(i32::from(self) > i32::from(other)))
 
            }
 
            (PrimitiveType::Int, PrimitiveType::Int) => {
 
                Value::Boolean(BooleanValue(i32::from(self) > i32::from(other)))
 
            }
 
            (PrimitiveType::Int, PrimitiveType::Long) => {
 
                Value::Boolean(BooleanValue(i64::from(self) > i64::from(other)))
 
            }
 
            (PrimitiveType::Long, PrimitiveType::Byte) => {
 
                Value::Boolean(BooleanValue(i64::from(self) > i64::from(other)))
 
            }
 
            (PrimitiveType::Long, PrimitiveType::Short) => {
 
                Value::Boolean(BooleanValue(i64::from(self) > i64::from(other)))
 
            }
 
            (PrimitiveType::Long, PrimitiveType::Int) => {
 
                Value::Boolean(BooleanValue(i64::from(self) > i64::from(other)))
 
            }
 
            (PrimitiveType::Long, PrimitiveType::Long) => {
 
                Value::Boolean(BooleanValue(i64::from(self) > i64::from(other)))
 
            }
 
            _ => unimplemented!(),
 
        }
 
    }
 
    fn gte(&self, other: &Value) -> Value {
 
        assert!(!self.exact_type().array);
 
        assert!(!other.exact_type().array);
 
        match (self.exact_type().primitive, other.exact_type().primitive) {
 
            (PrimitiveType::Byte, PrimitiveType::Byte) => {
 
                Value::Boolean(BooleanValue(i8::from(self) >= i8::from(other)))
 
            }
 
            (PrimitiveType::Byte, PrimitiveType::Short) => {
 
                Value::Boolean(BooleanValue(i16::from(self) >= i16::from(other)))
 
            }
 
            (PrimitiveType::Byte, PrimitiveType::Int) => {
 
                Value::Boolean(BooleanValue(i32::from(self) >= i32::from(other)))
 
            }
 
            (PrimitiveType::Byte, PrimitiveType::Long) => {
 
                Value::Boolean(BooleanValue(i64::from(self) >= i64::from(other)))
 
            }
 
            (PrimitiveType::Short, PrimitiveType::Byte) => {
 
                Value::Boolean(BooleanValue(i16::from(self) >= i16::from(other)))
 
            }
 
            (PrimitiveType::Short, PrimitiveType::Short) => {
 
                Value::Boolean(BooleanValue(i16::from(self) >= i16::from(other)))
 
            }
 
            (PrimitiveType::Short, PrimitiveType::Int) => {
 
                Value::Boolean(BooleanValue(i32::from(self) >= i32::from(other)))
 
            }
 
            (PrimitiveType::Short, PrimitiveType::Long) => {
 
                Value::Boolean(BooleanValue(i64::from(self) >= i64::from(other)))
 
            }
 
            (PrimitiveType::Int, PrimitiveType::Byte) => {
 
                Value::Boolean(BooleanValue(i32::from(self) >= i32::from(other)))
 
            }
 
            (PrimitiveType::Int, PrimitiveType::Short) => {
 
                Value::Boolean(BooleanValue(i32::from(self) >= i32::from(other)))
 
            }
 
            (PrimitiveType::Int, PrimitiveType::Int) => {
 
                Value::Boolean(BooleanValue(i32::from(self) >= i32::from(other)))
 
            }
 
            (PrimitiveType::Int, PrimitiveType::Long) => {
 
                Value::Boolean(BooleanValue(i64::from(self) >= i64::from(other)))
 
            }
 
            (PrimitiveType::Long, PrimitiveType::Byte) => {
 
                Value::Boolean(BooleanValue(i64::from(self) >= i64::from(other)))
 
            }
 
            (PrimitiveType::Long, PrimitiveType::Short) => {
 
                Value::Boolean(BooleanValue(i64::from(self) >= i64::from(other)))
 
            }
 
            (PrimitiveType::Long, PrimitiveType::Int) => {
 
                Value::Boolean(BooleanValue(i64::from(self) >= i64::from(other)))
 
            }
 
            (PrimitiveType::Long, PrimitiveType::Long) => {
 
                Value::Boolean(BooleanValue(i64::from(self) >= i64::from(other)))
 
            }
 
            _ => unimplemented!(),
 
        }
 
    }
 
    fn as_boolean(&self) -> &BooleanValue {
 
        match self {
 
            Value::Boolean(result) => result,
 
            _ => panic!("Unable to cast `Value` to `BooleanValue`"),
 
        }
 
    }
 
}
 

	
 
impl From<bool> for Value {
 
    fn from(b: bool) -> Self {
 
        Value::Boolean(BooleanValue(b))
 
    }
 
}
 
impl From<Value> for bool {
 
    fn from(val: Value) -> Self {
 
        match val {
 
            Value::Boolean(BooleanValue(b)) => b,
 
            _ => unimplemented!(),
 
        }
 
    }
 
}
 
impl From<&Value> for bool {
 
    fn from(val: &Value) -> Self {
 
        match val {
 
            Value::Boolean(BooleanValue(b)) => *b,
 
            _ => unimplemented!(),
 
        }
 
    }
 
}
 

	
 
impl From<Value> for i8 {
 
    fn from(val: Value) -> Self {
 
        match val {
 
            Value::Byte(ByteValue(b)) => b,
 
            _ => unimplemented!(),
 
        }
 
    }
 
}
 
impl From<&Value> for i8 {
 
    fn from(val: &Value) -> Self {
 
        match val {
 
            Value::Byte(ByteValue(b)) => *b,
 
            _ => unimplemented!(),
 
        }
 
    }
 
}
 

	
 
impl From<Value> for i16 {
 
    fn from(val: Value) -> Self {
 
        match val {
 
            Value::Byte(ByteValue(b)) => i16::from(b),
 
            Value::Short(ShortValue(s)) => s,
 
            _ => unimplemented!(),
 
        }
 
    }
 
}
 
impl From<&Value> for i16 {
 
    fn from(val: &Value) -> Self {
 
        match val {
 
            Value::Byte(ByteValue(b)) => i16::from(*b),
 
            Value::Short(ShortValue(s)) => *s,
 
            _ => unimplemented!(),
 
        }
 
    }
 
}
 

	
 
impl From<Value> for i32 {
 
    fn from(val: Value) -> Self {
 
        match val {
 
            Value::Byte(ByteValue(b)) => i32::from(b),
 
            Value::Short(ShortValue(s)) => i32::from(s),
 
            Value::Int(IntValue(i)) => i,
 
            _ => unimplemented!(),
 
        }
 
    }
 
}
 
impl From<&Value> for i32 {
 
    fn from(val: &Value) -> Self {
 
        match val {
 
            Value::Byte(ByteValue(b)) => i32::from(*b),
 
            Value::Short(ShortValue(s)) => i32::from(*s),
 
            Value::Int(IntValue(i)) => *i,
 
            _ => unimplemented!(),
 
        }
 
    }
 
}
 

	
 
impl From<Value> for i64 {
 
    fn from(val: Value) -> Self {
 
        match val {
 
            Value::Byte(ByteValue(b)) => i64::from(b),
 
            Value::Short(ShortValue(s)) => i64::from(s),
 
            Value::Int(IntValue(i)) => i64::from(i),
 
            Value::Long(LongValue(l)) => l,
 
            _ => unimplemented!(),
 
        }
 
    }
 
}
 
impl From<&Value> for i64 {
 
    fn from(val: &Value) -> Self {
 
        match val {
 
            Value::Byte(ByteValue(b)) => i64::from(*b),
 
            Value::Short(ShortValue(s)) => i64::from(*s),
 
            Value::Int(IntValue(i)) => i64::from(*i),
 
            Value::Long(LongValue(l)) => *l,
 
            _ => unimplemented!(),
 
        }
 
    }
 
}
 

	
 
impl ValueImpl for Value {
 
    fn exact_type(&self) -> Type {
 
        match self {
 
            Value::Unassigned => Type::UNASSIGNED,
 
            Value::Input(val) => val.exact_type(),
 
            Value::Output(val) => val.exact_type(),
 
            Value::Message(val) => val.exact_type(),
 
            Value::Boolean(val) => val.exact_type(),
 
            Value::Byte(val) => val.exact_type(),
 
            Value::Short(val) => val.exact_type(),
 
            Value::Int(val) => val.exact_type(),
 
            Value::Long(val) => val.exact_type(),
 
            Value::InputArray(val) => val.exact_type(),
 
            Value::OutputArray(val) => val.exact_type(),
 
            Value::MessageArray(val) => val.exact_type(),
 
            Value::BooleanArray(val) => val.exact_type(),
 
            Value::ByteArray(val) => val.exact_type(),
 
            Value::ShortArray(val) => val.exact_type(),
 
            Value::IntArray(val) => val.exact_type(),
 
            Value::LongArray(val) => val.exact_type(),
 
        }
 
    }
 
    fn is_type_compatible(&self, h: &Heap, t: &ParserType) -> bool {
 
        match self {
 
            Value::Unassigned => true,
 
            Value::Input(_) => InputValue::is_type_compatible_hack(h, t),
 
            Value::Output(_) => OutputValue::is_type_compatible_hack(h, t),
 
            Value::Message(_) => MessageValue::is_type_compatible_hack(h, t),
 
            Value::Boolean(_) => BooleanValue::is_type_compatible_hack(h, t),
 
            Value::Byte(_) => ByteValue::is_type_compatible_hack(h, t),
 
            Value::Short(_) => ShortValue::is_type_compatible_hack(h, t),
 
            Value::Int(_) => IntValue::is_type_compatible_hack(h, t),
 
            Value::Long(_) => LongValue::is_type_compatible_hack(h, t),
 
            Value::InputArray(_) => InputArrayValue::is_type_compatible_hack(h, t),
 
            Value::OutputArray(_) => OutputArrayValue::is_type_compatible_hack(h, t),
 
            Value::MessageArray(_) => MessageArrayValue::is_type_compatible_hack(h, t),
 
            Value::BooleanArray(_) => BooleanArrayValue::is_type_compatible_hack(h, t),
 
            Value::ByteArray(_) => ByteArrayValue::is_type_compatible_hack(h, t),
 
            Value::ShortArray(_) => ShortArrayValue::is_type_compatible_hack(h, t),
 
            Value::IntArray(_) => InputArrayValue::is_type_compatible_hack(h, t),
 
            Value::LongArray(_) => LongArrayValue::is_type_compatible_hack(h, t),
 
        }
 
    }
 
    fn is_type_compatible_hack(_h: &Heap, _t: &ParserType) -> bool { false }
 
}
 

	
 
impl Display for Value {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        let disp: &dyn Display;
 
        match self {
 
            Value::Unassigned => disp = &Type::UNASSIGNED,
 
            Value::Input(val) => disp = val,
 
            Value::Output(val) => disp = val,
 
            Value::Message(val) => disp = val,
 
            Value::Boolean(val) => disp = val,
 
            Value::Byte(val) => disp = val,
 
            Value::Short(val) => disp = val,
 
            Value::Int(val) => disp = val,
 
            Value::Long(val) => disp = val,
 
            Value::InputArray(val) => disp = val,
 
            Value::OutputArray(val) => disp = val,
 
            Value::MessageArray(val) => disp = val,
 
            Value::BooleanArray(val) => disp = val,
 
            Value::ByteArray(val) => disp = val,
 
            Value::ShortArray(val) => disp = val,
 
            Value::IntArray(val) => disp = val,
 
            Value::LongArray(val) => disp = val,
 
        }
 
        disp.fmt(f)
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct InputValue(pub PortId);
 

	
 
impl Display for InputValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "#in")
 
    }
 
}
 

	
 
impl ValueImpl for InputValue {
 
    fn exact_type(&self) -> Type {
 
        Type::INPUT
 
    }
 
    fn is_type_compatible_hack(_h: &Heap, t: &ParserType) -> bool {
 
        use ParserTypeVariant::*;
 
        match &t.variant {
 
            Input(_) | Inferred | Symbolic(_) => true,
 
            _ => false,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct OutputValue(pub PortId);
 

	
 
impl Display for OutputValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "#out")
 
    }
 
}
 

	
 
impl ValueImpl for OutputValue {
 
    fn exact_type(&self) -> Type {
 
        Type::OUTPUT
 
    }
 
    fn is_type_compatible_hack(_h: &Heap, t: &ParserType) -> bool {
 
        use ParserTypeVariant::*;
 
        match &t.variant {
 
            Output(_) | Inferred | Symbolic(_) => true,
 
            _ => false,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct MessageValue(pub Option<Payload>);
 

	
 
impl Display for MessageValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        match &self.0 {
 
            None => write!(f, "null"),
 
            Some(payload) => {
 
                // format print up to 10 bytes
 
                let mut slice = payload.as_slice();
 
                if slice.len() > 10 {
 
                    slice = &slice[..10];
 
                }
 
                f.debug_list().entries(slice.iter().copied()).finish()
 
            }
 
        }
 
    }
 
}
 

	
 
impl ValueImpl for MessageValue {
 
    fn exact_type(&self) -> Type {
 
        Type::MESSAGE
 
    }
 
    fn is_type_compatible_hack(_h: &Heap, t: &ParserType) -> bool {
 
        use ParserTypeVariant::*;
 
        match &t.variant {
 
            Message | Inferred | Symbolic(_) => true,
 
            _ => false,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct BooleanValue(bool);
 

	
 
impl Display for BooleanValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{}", self.0)
 
    }
 
}
 

	
 
impl ValueImpl for BooleanValue {
 
    fn exact_type(&self) -> Type {
 
        Type::BOOLEAN
 
    }
 
    fn is_type_compatible_hack(_h: &Heap, t: &ParserType) -> bool {
 
        use ParserTypeVariant::*;
 
        match t.variant {
 
            Symbolic(_) | Inferred | Bool | Byte | Short | Int | Long => true,
 
            _ => false
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct ByteValue(i8);
 

	
 
impl Display for ByteValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{}", self.0)
 
    }
 
}
 

	
 
impl ValueImpl for ByteValue {
 
    fn exact_type(&self) -> Type {
 
        Type::BYTE
 
    }
 
    fn is_type_compatible_hack(_h: &Heap, t: &ParserType) -> bool {
 
        use ParserTypeVariant::*;
 
        match t.variant {
 
            Symbolic(_) | Inferred | Byte | Short | Int | Long => true,
 
            _ => false
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct ShortValue(i16);
 

	
 
impl Display for ShortValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{}", self.0)
 
    }
 
}
 

	
 
impl ValueImpl for ShortValue {
 
    fn exact_type(&self) -> Type {
 
        Type::SHORT
 
    }
 
    fn is_type_compatible_hack(_h: &Heap, t: &ParserType) -> bool {
 
        use ParserTypeVariant::*;
 
        match t.variant {
 
            Symbolic(_) | Inferred | Short | Int | Long => true,
 
            _ => false
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct IntValue(i32);
 

	
 
impl Display for IntValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{}", self.0)
 
    }
 
}
 

	
 
impl ValueImpl for IntValue {
 
    fn exact_type(&self) -> Type {
 
        Type::INT
 
    }
 
    fn is_type_compatible_hack(_h: &Heap, t: &ParserType) -> bool {
 
        use ParserTypeVariant::*;
 
        match t.variant {
 
            Symbolic(_) | Inferred | Int | Long => true,
 
            _ => false
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct LongValue(i64);
 

	
 
impl Display for LongValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{}", self.0)
 
    }
 
}
 

	
 
impl ValueImpl for LongValue {
 
    fn exact_type(&self) -> Type {
 
        Type::LONG
 
    }
 
    fn is_type_compatible_hack(_h: &Heap, t: &ParserType) -> bool {
 
        use ParserTypeVariant::*;
 
        match &t.variant {
 
            Long | Inferred | Symbolic(_) => true,
 
            _ => false,
 
        }
 
    }
 
}
 

	
 
fn get_array_inner(t: &ParserType) -> Option<ParserTypeId> {
 
    match t.variant {
 
        ParserTypeVariant::Array(inner) => Some(inner),
 
        _ => None
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct InputArrayValue(Vec<InputValue>);
 

	
 
impl Display for InputArrayValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{{")?;
 
        let mut first = true;
 
        for v in self.0.iter() {
 
            if !first {
 
                write!(f, ",")?;
 
            }
 
            write!(f, "{}", v)?;
 
            first = false;
 
        }
 
        write!(f, "}}")
 
    }
 
}
 

	
 
impl ValueImpl for InputArrayValue {
 
    fn exact_type(&self) -> Type {
 
        Type::INPUT_ARRAY
 
    }
 
    fn is_type_compatible_hack(h: &Heap, t: &ParserType) -> bool {
 
        get_array_inner(t)
 
            .map(|v| InputValue::is_type_compatible_hack(h, &h[v]))
 
            .unwrap_or(false)
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct OutputArrayValue(Vec<OutputValue>);
 

	
 
impl Display for OutputArrayValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{{")?;
 
        let mut first = true;
 
        for v in self.0.iter() {
 
            if !first {
 
                write!(f, ",")?;
 
            }
 
            write!(f, "{}", v)?;
 
            first = false;
 
        }
 
        write!(f, "}}")
 
    }
 
}
 

	
 
impl ValueImpl for OutputArrayValue {
 
    fn exact_type(&self) -> Type {
 
        Type::OUTPUT_ARRAY
 
    }
 
    fn is_type_compatible_hack(h: &Heap, t: &ParserType) -> bool {
 
        get_array_inner(t)
 
            .map(|v| OutputValue::is_type_compatible_hack(h, &h[v]))
 
            .unwrap_or(false)
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct MessageArrayValue(Vec<MessageValue>);
 

	
 
impl Display for MessageArrayValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{{")?;
 
        let mut first = true;
 
        for v in self.0.iter() {
 
            if !first {
 
                write!(f, ",")?;
 
            }
 
            write!(f, "{}", v)?;
 
            first = false;
 
        }
 
        write!(f, "}}")
 
    }
 
}
 

	
 
impl ValueImpl for MessageArrayValue {
 
    fn exact_type(&self) -> Type {
 
        Type::MESSAGE_ARRAY
 
    }
 
    fn is_type_compatible_hack(h: &Heap, t: &ParserType) -> bool {
 
        get_array_inner(t)
 
            .map(|v| MessageValue::is_type_compatible_hack(h, &h[v]))
 
            .unwrap_or(false)
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct BooleanArrayValue(Vec<BooleanValue>);
 

	
 
impl Display for BooleanArrayValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{{")?;
 
        let mut first = true;
 
        for v in self.0.iter() {
 
            if !first {
 
                write!(f, ",")?;
 
            }
 
            write!(f, "{}", v)?;
 
            first = false;
 
        }
 
        write!(f, "}}")
 
    }
 
}
 

	
 
impl ValueImpl for BooleanArrayValue {
 
    fn exact_type(&self) -> Type {
 
        Type::BOOLEAN_ARRAY
 
    }
 
    fn is_type_compatible_hack(h: &Heap, t: &ParserType) -> bool {
 
        get_array_inner(t)
 
            .map(|v| BooleanValue::is_type_compatible_hack(h, &h[v]))
 
            .unwrap_or(false)
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct ByteArrayValue(Vec<ByteValue>);
 

	
 
impl Display for ByteArrayValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{{")?;
 
        let mut first = true;
 
        for v in self.0.iter() {
 
            if !first {
 
                write!(f, ",")?;
 
            }
 
            write!(f, "{}", v)?;
 
            first = false;
 
        }
 
        write!(f, "}}")
 
    }
 
}
 

	
 
impl ValueImpl for ByteArrayValue {
 
    fn exact_type(&self) -> Type {
 
        Type::BYTE_ARRAY
 
    }
 
    fn is_type_compatible_hack(h: &Heap, t: &ParserType) -> bool {
 
        get_array_inner(t)
 
            .map(|v| ByteValue::is_type_compatible_hack(h, &h[v]))
 
            .unwrap_or(false)
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct ShortArrayValue(Vec<ShortValue>);
 

	
 
impl Display for ShortArrayValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{{")?;
 
        let mut first = true;
 
        for v in self.0.iter() {
 
            if !first {
 
                write!(f, ",")?;
 
            }
 
            write!(f, "{}", v)?;
 
            first = false;
 
        }
 
        write!(f, "}}")
 
    }
 
}
 

	
 
impl ValueImpl for ShortArrayValue {
 
    fn exact_type(&self) -> Type {
 
        Type::SHORT_ARRAY
 
    }
 
    fn is_type_compatible_hack(h: &Heap, t: &ParserType) -> bool {
 
        get_array_inner(t)
 
            .map(|v| ShortValue::is_type_compatible_hack(h, &h[v]))
 
            .unwrap_or(false)
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct IntArrayValue(Vec<IntValue>);
 

	
 
impl Display for IntArrayValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{{")?;
 
        let mut first = true;
 
        for v in self.0.iter() {
 
            if !first {
 
                write!(f, ",")?;
 
            }
 
            write!(f, "{}", v)?;
 
            first = false;
 
        }
 
        write!(f, "}}")
 
    }
 
}
 

	
 
impl ValueImpl for IntArrayValue {
 
    fn exact_type(&self) -> Type {
 
        Type::INT_ARRAY
 
    }
 
    fn is_type_compatible_hack(h: &Heap, t: &ParserType) -> bool {
 
        get_array_inner(t)
 
            .map(|v| IntValue::is_type_compatible_hack(h, &h[v]))
 
            .unwrap_or(false)
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct LongArrayValue(Vec<LongValue>);
 

	
 
impl Display for LongArrayValue {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{{")?;
 
        let mut first = true;
 
        for v in self.0.iter() {
 
            if !first {
 
                write!(f, ",")?;
 
            }
 
            write!(f, "{}", v)?;
 
            first = false;
 
        }
 
        write!(f, "}}")
 
    }
 
}
 

	
 
impl ValueImpl for LongArrayValue {
 
    fn exact_type(&self) -> Type {
 
        Type::LONG_ARRAY
 
    }
 
    fn is_type_compatible_hack(h: &Heap, t: &ParserType) -> bool {
 
        get_array_inner(t)
 
            .map(|v| LongValue::is_type_compatible_hack(h, &h[v]))
 
            .unwrap_or(false)
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
struct Store {
 
    map: HashMap<VariableId, Value>,
 
}
 
impl Store {
 
    fn new() -> Self {
 
        Store { map: HashMap::new() }
 
    }
 
    fn initialize(&mut self, h: &Heap, var: VariableId, value: Value) {
 
        // Ensure value is compatible with type of variable
 
        let parser_type = match &h[var] {
 
            Variable::Local(v) => v.parser_type,
 
            Variable::Parameter(v) => v.parser_type,
 
        };
 
        assert!(value.is_type_compatible(h, &h[parser_type]));
 
        // Overwrite mapping
 
        self.map.insert(var, value.clone());
 
    }
 
    fn update(
 
        &mut self,
 
        h: &Heap,
 
        ctx: &mut EvalContext,
 
        lexpr: ExpressionId,
 
        value: Value,
 
    ) -> EvalResult {
 
        match &h[lexpr] {
 
            Expression::Variable(var) => {
 
                let var = var.declaration.unwrap();
 
                // Ensure value is compatible with type of variable
 
                let parser_type_id = match &h[var] {
 
                    Variable::Local(v) => v.parser_type,
 
                    Variable::Parameter(v) => v.parser_type
 
                };
 
                let parser_type = &h[parser_type_id];
 
                assert!(value.is_type_compatible(h, parser_type));
 
                // Overwrite mapping
 
                self.map.insert(var, value.clone());
 
                Ok(value)
 
            }
 
            Expression::Indexing(indexing) => {
 
                // Evaluate index expression, which must be some integral type
 
                let index = self.eval(h, ctx, indexing.index)?;
 
                // Mutable reference to the subject
 
                let subject;
 
                match &h[indexing.subject] {
 
                    Expression::Variable(var) => {
 
                        let var = var.declaration.unwrap();
 
                        subject = self.map.get_mut(&var).unwrap();
 
                    }
 
                    _ => unreachable!(),
 
                }
 
                match subject.set(&index, &value) {
 
                    Some(value) => Ok(value),
 
                    None => Err(EvalContinuation::Inconsistent),
 
                }
 
            }
 
            _ => unimplemented!("{:?}", h[lexpr]),
 
        }
 
    }
 
    fn get(&mut self, h: &Heap, ctx: &mut EvalContext, rexpr: ExpressionId) -> EvalResult {
 
        match &h[rexpr] {
 
            Expression::Variable(var) => {
 
                let var_id = var.declaration.unwrap();
 
                let value = self
 
                    .map
 
                    .get(&var_id)
 
                    .expect(&format!("Uninitialized variable {:?}", String::from_utf8_lossy(&var.identifier.value)));
 
                Ok(value.clone())
 
            }
 
            Expression::Indexing(indexing) => {
 
                // Evaluate index expression, which must be some integral type
 
                let index = self.eval(h, ctx, indexing.index)?;
 
                // Reference to subject
 
                let subject;
 
                match &h[indexing.subject] {
 
                    Expression::Variable(var) => {
 
                        let var = var.declaration.unwrap();
 
                        subject = self.map.get(&var).unwrap();
 
                    }
 
                    q => unreachable!("Reached {:?}", q),
 
                }
 
                match subject.get(&index) {
 
                    Some(value) => Ok(value),
 
                    None => Err(EvalContinuation::Inconsistent),
 
                }
 
            }
 
            Expression::Select(selecting) => {
 
                // Reference to subject
 
                let subject;
 
                match &h[selecting.subject] {
 
                    Expression::Variable(var) => {
 
                        let var = var.declaration.unwrap();
 
                        subject = self.map.get(&var).unwrap();
 
                    }
 
                    q => unreachable!("Reached {:?}", q),
 
                }
 
                match subject.length() {
 
                    Some(value) => Ok(value),
 
                    None => Err(EvalContinuation::Inconsistent),
 
                }
 
            }
 
            _ => unimplemented!("{:?}", h[rexpr]),
 
        }
 
    }
 
    fn eval(&mut self, h: &Heap, ctx: &mut EvalContext, expr: ExpressionId) -> EvalResult {
 
        match &h[expr] {
 
            Expression::Assignment(expr) => {
 
                let value = self.eval(h, ctx, expr.right)?;
 
                match expr.operation {
 
                    AssignmentOperator::Set => {
 
                        self.update(h, ctx, expr.left, value.clone())?;
 
                    }
 
                    AssignmentOperator::Added => {
 
                        let old = self.get(h, ctx, expr.left)?;
 
                        self.update(h, ctx, expr.left, old.plus(&value))?;
 
                    }
 
                    AssignmentOperator::Subtracted => {
 
                        let old = self.get(h, ctx, expr.left)?;
 
                        self.update(h, ctx, expr.left, old.minus(&value))?;
 
                    }
 
                    _ => unimplemented!("{:?}", expr),
 
                }
 
                Ok(value)
 
            }
 
            Expression::Binding(expr) => {
 
                unimplemented!("eval binding expression");
 
            }
 
            Expression::Conditional(expr) => {
 
                let test = self.eval(h, ctx, expr.test)?;
 
                if test.as_boolean().0 {
 
                    self.eval(h, ctx, expr.true_expression)
 
                } else {
 
                    self.eval(h, ctx, expr.false_expression)
 
                }
 
            }
 
            Expression::Binary(expr) => {
 
                let left = self.eval(h, ctx, expr.left)?;
 
                let right;
 
                match expr.operation {
 
                    BinaryOperator::LogicalAnd => {
 
                        if left.as_boolean().0 == false {
 
                            return Ok(left);
 
                        }
 
                        right = self.eval(h, ctx, expr.right)?;
 
                        right.as_boolean(); // panics if not a boolean
 
                        return Ok(right);
 
                    }
 
                    BinaryOperator::LogicalOr => {
 
                        if left.as_boolean().0 == true {
 
                            return Ok(left);
 
                        }
 
                        right = self.eval(h, ctx, expr.right)?;
 
                        right.as_boolean(); // panics if not a boolean
 
                        return Ok(right);
 
                    }
 
                    _ => {}
 
                }
 
                right = self.eval(h, ctx, expr.right)?;
 
                match expr.operation {
 
                    BinaryOperator::Equality => Ok(left.eq(&right)),
 
                    BinaryOperator::Inequality => Ok(left.neq(&right)),
 
                    BinaryOperator::LessThan => Ok(left.lt(&right)),
 
                    BinaryOperator::LessThanEqual => Ok(left.lte(&right)),
 
                    BinaryOperator::GreaterThan => Ok(left.gt(&right)),
 
                    BinaryOperator::GreaterThanEqual => Ok(left.gte(&right)),
 
                    BinaryOperator::Remainder => Ok(left.modulus(&right)),
 
                    BinaryOperator::Add => Ok(left.plus(&right)),
 
                    _ => unimplemented!("{:?}", expr.operation),
 
                }
 
            }
 
            Expression::Unary(expr) => {
 
                let mut value = self.eval(h, ctx, expr.expression)?;
 
                match expr.operation {
 
                    UnaryOperation::PostIncrement => {
 
                        self.update(h, ctx, expr.expression, value.plus(&ONE))?;
 
                    }
 
                    UnaryOperation::PreIncrement => {
 
                        value = value.plus(&ONE);
 
                        self.update(h, ctx, expr.expression, value.clone())?;
 
                    }
 
                    UnaryOperation::PostDecrement => {
 
                        self.update(h, ctx, expr.expression, value.minus(&ONE))?;
 
                    }
 
                    UnaryOperation::PreDecrement => {
 
                        value = value.minus(&ONE);
 
                        self.update(h, ctx, expr.expression, value.clone())?;
 
                    }
 
                    _ => unimplemented!(),
 
                }
 
                Ok(value)
 
            }
 
            Expression::Indexing(expr) => self.get(h, ctx, expr.this.upcast()),
 
            Expression::Slicing(_expr) => unimplemented!(),
 
            Expression::Select(expr) => self.get(h, ctx, expr.this.upcast()),
 
            Expression::Array(expr) => {
 
                let mut elements = Vec::new();
 
                for &elem in expr.elements.iter() {
 
                    elements.push(self.eval(h, ctx, elem)?);
 
                }
 
                todo!()
 
            }
 
            Expression::Literal(expr) => Ok(Value::from_constant(&expr.value)),
 
            Expression::Call(expr) => match &expr.method {
 
                Method::Get => {
 
                    assert_eq!(1, expr.arguments.len());
 
                    let value = self.eval(h, ctx, expr.arguments[0])?;
 
                    match ctx.get(value.clone()) {
 
                        None => Err(EvalContinuation::BlockGet(value)),
 
                        Some(result) => Ok(result),
 
                    }
 
                }
 
                Method::Put => {
 
                    assert_eq!(2, expr.arguments.len());
 
                    let port_value = self.eval(h, ctx, expr.arguments[0])?;
 
                    let msg_value = self.eval(h, ctx, expr.arguments[1])?;
 
                    if ctx.did_put(port_value.clone()) {
 
                        // Return bogus, replacing this at some point anyway
 
                        Ok(Value::Message(MessageValue(None)))
 
                    } else {
 
                        Err(EvalContinuation::Put(port_value, msg_value))
 
                    }
 
                }
 
                Method::Fires => {
 
                    assert_eq!(1, expr.arguments.len());
 
                    let value = self.eval(h, ctx, expr.arguments[0])?;
 
                    match ctx.fires(value.clone()) {
 
                        None => Err(EvalContinuation::BlockFires(value)),
 
                        Some(result) => Ok(result),
 
                    }
 
                }
 
                Method::Create => {
 
                    assert_eq!(1, expr.arguments.len());
 
                    let length = self.eval(h, ctx, expr.arguments[0])?;
 
                    Ok(Value::create_message(length))
 
                }
 
                Method::Symbolic(_symbol) => unimplemented!(),
 
            },
 
            Expression::Variable(expr) => self.get(h, ctx, expr.this.upcast()),
 
        }
 
    }
 
}
 

	
 
type EvalResult = Result<Value, EvalContinuation>;
 
pub enum EvalContinuation {
 
    Stepping,
 
    Inconsistent,
 
    Terminal,
 
    SyncBlockStart,
 
    SyncBlockEnd,
 
    NewComponent(DefinitionId, Vec<Value>),
 
    BlockFires(Value),
 
    BlockGet(Value),
 
    Put(Value, Value),
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub(crate) struct Prompt {
 
    definition: DefinitionId,
 
    store: Store,
 
    position: Option<StatementId>,
 
}
 

	
 
impl Prompt {
 
    pub fn new(h: &Heap, def: DefinitionId, args: &Vec<Value>) -> Self {
 
        let mut prompt =
 
            Prompt { definition: def, store: Store::new(), position: Some((&h[def]).body()) };
 
        prompt.set_arguments(h, args);
 
        prompt
 
    }
 
    fn set_arguments(&mut self, h: &Heap, args: &Vec<Value>) {
 
        let def = &h[self.definition];
 
        let params = def.parameters();
 
        assert_eq!(params.len(), args.len());
 
        for (param, value) in params.iter().zip(args.iter()) {
 
            let hparam = &h[*param];
 
            let parser_type = &h[hparam.parser_type];
 
            assert!(value.is_type_compatible(h, parser_type));
 
            self.store.initialize(h, param.upcast(), value.clone());
 
        }
 
    }
 
    pub fn step(&mut self, h: &Heap, ctx: &mut EvalContext) -> EvalResult {
 
        if self.position.is_none() {
 
            return Err(EvalContinuation::Terminal);
 
        }
 

	
 
        let stmt = &h[self.position.unwrap()];
 
        match stmt {
 
            Statement::Block(stmt) => {
 
                // Continue to first statement
 
                self.position = Some(stmt.first());
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::Local(stmt) => {
 
                match stmt {
 
                    LocalStatement::Memory(stmt) => {
 
                        // Update store
 
                        self.store.initialize(h, stmt.variable.upcast(), Value::Unassigned);
 
                    }
 
                    LocalStatement::Channel(stmt) => {
 
                        let [from, to] = ctx.new_channel();
 
                        // Store the values in the declared variables
 
                        self.store.initialize(h, stmt.from.upcast(), from);
 
                        self.store.initialize(h, stmt.to.upcast(), to);
 
                    }
 
                }
 
                // Continue to next statement
 
                self.position = stmt.next();
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::Skip(stmt) => {
 
                // Continue to next statement
 
                self.position = stmt.next;
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::Labeled(stmt) => {
 
                // Continue to next statement
 
                self.position = Some(stmt.body);
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::If(stmt) => {
 
                // Evaluate test
 
                let value = self.store.eval(h, ctx, stmt.test)?;
 
                // Continue with either branch
 
                if value.as_boolean().0 {
 
                    self.position = Some(stmt.true_body);
 
                } else {
 
                    self.position = Some(stmt.false_body);
 
                }
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::EndIf(stmt) => {
 
                // Continue to next statement
 
                self.position = stmt.next;
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::While(stmt) => {
 
                // Evaluate test
 
                let value = self.store.eval(h, ctx, stmt.test)?;
 
                // Either continue with body, or go to next
 
                if value.as_boolean().0 {
 
                    self.position = Some(stmt.body);
 
                } else {
 
                    self.position = stmt.end_while.map(|x| x.upcast());
 
                }
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::EndWhile(stmt) => {
 
                // Continue to next statement
 
                self.position = stmt.next;
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::Synchronous(stmt) => {
 
                // Continue to next statement, and signal upward
 
                self.position = Some(stmt.body);
 
                Err(EvalContinuation::SyncBlockStart)
 
            }
 
            Statement::EndSynchronous(stmt) => {
 
                // Continue to next statement, and signal upward
 
                self.position = stmt.next;
 
                Err(EvalContinuation::SyncBlockEnd)
 
            }
 
            Statement::Break(stmt) => {
 
                // Continue to end of while
 
                self.position = stmt.target.map(EndWhileStatementId::upcast);
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::Continue(stmt) => {
 
                // Continue to beginning of while
 
                self.position = stmt.target.map(WhileStatementId::upcast);
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::Assert(stmt) => {
 
                // Evaluate expression
 
                let value = self.store.eval(h, ctx, stmt.expression)?;
 
                if value.as_boolean().0 {
 
                    // Continue to next statement
 
                    self.position = stmt.next;
 
                    Err(EvalContinuation::Stepping)
 
                } else {
 
                    // Assertion failed: inconsistent
 
                    Err(EvalContinuation::Inconsistent)
 
                }
 
            }
 
            Statement::Return(stmt) => {
 
                // Evaluate expression
 
                let value = self.store.eval(h, ctx, stmt.expression)?;
 
                // Done with evaluation
 
                Ok(value)
 
            }
 
            Statement::Goto(stmt) => {
 
                // Continue to target
 
                self.position = stmt.target.map(|x| x.upcast());
 
                Err(EvalContinuation::Stepping)
 
            }
 
            Statement::New(stmt) => {
 
                let expr = &h[stmt.expression];
 
                let mut args = Vec::new();
 
                for &arg in expr.arguments.iter() {
 
                    let value = self.store.eval(h, ctx, arg)?;
 
                    args.push(value);
 
                }
 
                self.position = stmt.next;
 
                match &expr.method {
 
                    Method::Symbolic(symbolic) => {
 
                         Err(EvalContinuation::NewComponent(symbolic.definition.unwrap(), args))
 
                    },
 
                    _ => unreachable!("not a symbolic call expression")
 
                }
 
            }
 
            Statement::Expression(stmt) => {
 
                // Evaluate expression
 
                let _value = self.store.eval(h, ctx, stmt.expression)?;
 
                // Continue to next statement
 
                self.position = stmt.next;
 
                Err(EvalContinuation::Stepping)
 
            }
 
        }
 
    }
 
    // fn compute_function(_h: &Heap, _fun: FunctionId, _args: &Vec<Value>) -> Option<Value> {
 
    // let mut prompt = Self::new(h, fun.upcast(), args);
 
    // let mut context = EvalContext::None;
 
    // loop {
 
    //     let result = prompt.step(h, &mut context);
 
    //     match result {
 
    //         Ok(val) => return Some(val),
 
    //         Err(cont) => match cont {
 
    //             EvalContinuation::Stepping => continue,
 
    //             EvalContinuation::Inconsistent => return None,
 
    //             // Functions never terminate without returning
 
    //             EvalContinuation::Terminal => unreachable!(),
 
    //             // Functions never encounter any blocking behavior
 
    //             EvalContinuation::SyncBlockStart => unreachable!(),
 
    //             EvalContinuation::SyncBlockEnd => unreachable!(),
 
    //             EvalContinuation::NewComponent(_, _) => unreachable!(),
 
    //             EvalContinuation::BlockFires(val) => unreachable!(),
 
    //             EvalContinuation::BlockGet(val) => unreachable!(),
 
    //             EvalContinuation::Put(port, msg) => unreachable!(),
 
    //         },
 
    //     }
 
    // }
 
    // }
 
}
 

	
 
// #[cfg(test)]
 
// mod tests {
 
//     extern crate test_generator;
 

	
 
//     use std::fs::File;
 
//     use std::io::Read;
 
//     use std::path::Path;
 
//     use test_generator::test_resources;
 

	
 
//     use super::*;
 

	
 
//     #[test_resources("testdata/eval/positive/*.pdl")]
 
//     fn batch1(resource: &str) {
 
//         let path = Path::new(resource);
 
//         let expect = path.with_extension("txt");
 
//         let mut heap = Heap::new();
 
//         let mut source = InputSource::from_file(&path).unwrap();
 
//         let mut parser = Parser::new(&mut source);
 
//         let pd = parser.parse(&mut heap).unwrap();
 
//         let def = heap[pd].get_definition_ident(&heap, b"test").unwrap();
 
//         let fun = heap[def].as_function().this;
 
//         let args = Vec::new();
 
//         let result = Prompt::compute_function(&heap, fun, &args).unwrap();
 
//         let valstr: String = format!("{}", result);
 
//         println!("{}", valstr);
 

	
 
//         let mut cev: Vec<u8> = Vec::new();
 
//         let mut f = File::open(expect).unwrap();
 
//         f.read_to_end(&mut cev).unwrap();
 
//         let lavstr = String::from_utf8_lossy(&cev);
 
//         println!("{}", lavstr);
 

	
 
//         assert_eq!(valstr, lavstr);
 
//     }
 
// }
src/protocol/inputsource.rs
Show inline comments
 
use std::fmt;
 
use std::fs::File;
 
use std::io;
 
use std::path::Path;
 

	
 
use backtrace::Backtrace;
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub struct InputSource {
 
    pub(crate) filename: String,
 
    pub(crate) input: Vec<u8>,
 
    line: usize,
 
    column: usize,
 
    offset: usize,
 
}
 

	
 
static STD_LIB_PDL: &'static [u8] = b"
 
primitive forward(in<msg> i, out<msg> o) {
 
    while(true) synchronous put(o, get(i));
 
}
 
primitive sync(in<msg> i, out<msg> o) {
 
    while(true) synchronous if(fires(i)) put(o, get(i));
 
}
 
primitive alternator(in<msg> i, out<msg> l, out<msg> r) {
 
    while(true) {
 
        synchronous if(fires(i)) put(l, get(i));
 
        synchronous if(fires(i)) put(r, get(i));
 
    }
 
}
 
primitive replicator(in<msg> i, out<msg> l, out<msg> r) {
 
    while(true) synchronous {
 
        if(fires(i)) {
 
            msg m = get(i);
 
            put(l, m);
 
            put(r, m);
 
        }
 
    }
 
}
 
primitive merger(in<msg> l, in<msg> r, out<msg> o) {
 
    while(true) synchronous {
 
        if(fires(l))      put(o, get(l));
 
        else if(fires(r)) put(o, get(r));
 
    }
 
}
 
";
 

	
 
impl InputSource {
 
    // Constructors
 
    pub fn new<R: io::Read, S: ToString>(filename: S, reader: &mut R) -> io::Result<InputSource> {
 
        let mut vec = Vec::new();
 
        reader.read_to_end(&mut vec)?;
 
        vec.extend(STD_LIB_PDL.to_vec());
 
        Ok(InputSource {
 
            filename: filename.to_string(),
 
            input: vec,
 
            line: 1,
 
            column: 1,
 
            offset: 0,
 
        })
 
    }
 
    // Constructor helpers
 
    pub fn from_file(path: &Path) -> io::Result<InputSource> {
 
        let filename = path.file_name();
 
        match filename {
 
            Some(filename) => {
 
                let mut f = File::open(path)?;
 
                InputSource::new(filename.to_string_lossy(), &mut f)
 
            }
 
            None => Err(io::Error::new(io::ErrorKind::NotFound, "Invalid path")),
 
        }
 
    }
 
    pub fn from_string(string: &str) -> io::Result<InputSource> {
 
        let buffer = Box::new(string);
 
        let mut bytes = buffer.as_bytes();
 
        InputSource::new(String::new(), &mut bytes)
 
    }
 
    pub fn from_buffer(buffer: &[u8]) -> io::Result<InputSource> {
 
        InputSource::new(String::new(), &mut Box::new(buffer))
 
    }
 
    // Internal methods
 
    pub fn pos(&self) -> InputPosition {
 
        InputPosition { line: self.line, column: self.column, offset: self.offset }
 
    }
 
    pub fn seek(&mut self, pos: InputPosition) {
 
        debug_assert!(pos.offset < self.input.len());
 
        self.line = pos.line;
 
        self.column = pos.column;
 
        self.offset = pos.offset;
 
    }
 
    pub fn is_eof(&self) -> bool {
 
        self.next() == None
 
    }
 

	
 
    pub fn next(&self) -> Option<u8> {
 
        if self.offset < self.input.len() {
 
            Some(self.input[self.offset])
 
        } else {
 
            None
 
        }
 
    }
 

	
 
    pub fn lookahead(&self, pos: usize) -> Option<u8> {
 
        let offset_pos = self.offset + pos;
 
        if offset_pos < self.input.len() {
 
            Some(self.input[offset_pos])
 
        } else {
 
            None
 
        }
 
    }
 

	
 
    pub fn has(&self, to_compare: &[u8]) -> bool {
 
        if self.offset + to_compare.len() <= self.input.len() {
 
            for idx in 0..to_compare.len() {
 
                if to_compare[idx] != self.input[self.offset + idx] {
 
                    return false;
 
                }
 
            }
 

	
 
            true
 
        } else {
 
            false
 
        }
 
    }
 

	
 
    pub fn consume(&mut self) {
 
        match self.next() {
 
            Some(x) if x == b'\r' && self.lookahead(1) != Some(b'\n') || x == b'\n' => {
 
                self.line += 1;
 
                self.offset += 1;
 
                self.column = 1;
 
            }
 
            Some(_) => {
 
                self.offset += 1;
 
                self.column += 1;
 
            }
 
            None => {}
 
        }
 
    }
 
}
 

	
 
impl fmt::Display for InputSource {
 
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 
        self.pos().fmt(f)
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone, Copy)]
 
pub struct InputPosition {
 
    line: usize,
 
    column: usize,
 
    pub(crate) offset: usize,
 
}
 

	
 
impl InputPosition {
 
    fn context<'a>(&self, source: &'a InputSource) -> &'a [u8] {
 
        let start = self.offset - (self.column - 1);
 
        let mut end = self.offset;
 
        while end < source.input.len() {
 
            let cur = (*source.input)[end];
 
            if cur == b'\n' || cur == b'\r' {
 
                break;
 
            }
 
            end += 1;
 
        }
 
        &source.input[start..end]
 
    }
 
    fn eval_error<S: ToString>(&self, message: S) -> EvalError {
 
        EvalError { position: *self, message: message.to_string(), backtrace: Backtrace::new() }
 
    }
 

	
 
    pub(crate) fn col(&self) -> usize { self.column }
 
}
 

	
 
impl Default for InputPosition {
 
    fn default() -> Self {
 
        Self{ line: 1, column: 1, offset: 0 }
 
    }
 
}
 

	
 
impl fmt::Display for InputPosition {
 
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 
        write!(f, "{}:{}", self.line, self.column)
 
    }
 
}
 

	
 
pub trait SyntaxElement {
 
    fn position(&self) -> InputPosition;
 
    fn error<S: ToString>(&self, message: S) -> EvalError {
 
        self.position().eval_error(message)
 
    }
 
}
 

	
 
#[derive(Debug)]
 
pub enum ParseErrorType {
 
    Info,
 
    Error
 
}
 

	
 
#[derive(Debug)]
 
pub struct ParseErrorStatement {
 
    pub(crate) error_type: ParseErrorType,
 
    pub(crate) position: InputPosition,
 
    pub(crate) filename: String,
 
    pub(crate) context: String,
 
    pub(crate) message: String,
 
}
 

	
 
impl ParseErrorStatement {
 
    fn from_source(error_type: ParseErrorType, source: &InputSource, position: InputPosition, msg: &str) -> Self {
 
        // Seek line start and end
 
        let line_start = position.offset - (position.column - 1);
 
        let mut line_end = position.offset;
 
        while line_end < source.input.len() && source.input[line_end] != b'\n' {
 
            line_end += 1;
 
        }
 

	
 
        // Compensate for '\r\n'
 
        if line_end > line_start && source.input[line_end - 1] == b'\r' {
 
            line_end -= 1;
 
        }
 

	
 
        Self{
 
            error_type,
 
            position,
 
            filename: source.filename.clone(),
 
            context: String::from_utf8_lossy(&source.input[line_start..line_end]).to_string(),
 
            message: msg.to_string()
 
        }
 
    }
 
}
 

	
 
impl fmt::Display for ParseErrorStatement {
 
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 
        // Write message
 
        match self.error_type {
 
            ParseErrorType::Info => write!(f, " INFO: ")?,
 
            ParseErrorType::Error => write!(f, "ERROR: ")?,
 
        }
 
        writeln!(f, "{}", &self.message)?;
 

	
 
        // Write originating file/line/column
 
        if self.filename.is_empty() {
 
            writeln!(f, " +- at {}:{}", self.position.line, self.position.column)?;
 
        } else {
 
            writeln!(f, " +- at {}:{}:{}", self.filename, self.position.line, self.position.column)?;
 
        }
 

	
 
        // Write source context
 
        writeln!(f, " | ")?;
 
        writeln!(f, " | {}", self.context)?;
 

	
 
        // Write underline indicating where the error ocurred
 
        debug_assert!(self.position.column <= self.context.chars().count());
 
        let mut arrow = String::with_capacity(self.context.len() + 3);
 
        arrow.push_str(" | ");
 
        let mut char_col = 1;
 
        for char in self.context.chars() {
 
            if char_col == self.position.column { break; }
 
            if char == '\t' {
 
                arrow.push('\t');
 
            } else {
 
                arrow.push(' ');
 
            }
 

	
 
            char_col += 1;
 
        }
 
        arrow.push('^');
 
        writeln!(f, "{}", arrow)?;
 

	
 
        Ok(())
 
    }
 
}
 

	
 
#[derive(Debug)]
 
pub struct ParseError {
 
    pub(crate) statements: Vec<ParseErrorStatement>
 
}
 

	
 
impl fmt::Display for ParseError {
 
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 
        if self.statements.is_empty() {
 
            return Ok(())
 
        }
 

	
 
        self.statements[0].fmt(f)?;
 
        for statement in self.statements.iter().skip(1) {
 
            writeln!(f)?;
 
            statement.fmt(f)?;
 
        }
 

	
 
        Ok(())
 
    }
 
}
 

	
 
impl ParseError {
 
    pub fn empty() -> Self {
 
        Self{ statements: Vec::new() }
 
    }
 

	
 
    pub fn new_error(source: &InputSource, position: InputPosition, msg: &str) -> Self {
 
        Self{ statements: vec!(ParseErrorStatement::from_source(ParseErrorType::Error, source, position, msg))}
 
    }
 

	
 
    pub fn with_prefixed(mut self, error_type: ParseErrorType, source: &InputSource, position: InputPosition, msg: &str) -> Self {
 
        self.statements.insert(0, ParseErrorStatement::from_source(error_type, source, position, msg));
 
        self
 
    }
 

	
 
    pub fn with_postfixed(mut self, error_type: ParseErrorType, source: &InputSource, position: InputPosition, msg: &str) -> Self {
 
        self.statements.push(ParseErrorStatement::from_source(error_type, source, position, msg));
 
        self
 
    }
 

	
 
    pub fn with_postfixed_info(self, source: &InputSource, position: InputPosition, msg: &str) -> Self {
 
        self.with_postfixed(ParseErrorType::Info, source, position, msg)
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EvalError {
 
    position: InputPosition,
 
    message: String,
 
    backtrace: Backtrace,
 
}
 

	
 
impl EvalError {
 
    pub fn new<S: ToString>(position: InputPosition, message: S) -> EvalError {
 
        EvalError { position, message: message.to_string(), backtrace: Backtrace::new() }
 
    }
 
    // Diagnostic methods
 
    pub fn write<A: io::Write>(&self, source: &InputSource, writer: &mut A) -> io::Result<()> {
 
        if !source.filename.is_empty() {
 
            writeln!(
 
                writer,
 
                "Evaluation error at {}:{}: {}",
 
                source.filename, self.position, self.message
 
            )?;
 
        } else {
 
            writeln!(writer, "Evaluation error at {}: {}", self.position, self.message)?;
 
        }
 
        let line = self.position.context(source);
 
        writeln!(writer, "{}", String::from_utf8_lossy(line))?;
 
        let mut arrow: Vec<u8> = Vec::new();
 
        for pos in 1..self.position.column {
 
            let c = line[pos - 1];
 
            if c == b'\t' {
 
                arrow.push(b'\t')
 
            } else {
 
                arrow.push(b' ')
 
            }
 
        }
 
        arrow.push(b'^');
 
        writeln!(writer, "{}", String::from_utf8_lossy(&arrow))
 
    }
 
    pub fn print(&self, source: &InputSource) {
 
        self.write(source, &mut std::io::stdout()).unwrap()
 
    }
 
    pub fn display<'a>(&'a self, source: &'a InputSource) -> DisplayEvalError<'a> {
 
        DisplayEvalError::new(self, source)
 
    }
 
}
 

	
 
impl From<EvalError> for io::Error {
 
    fn from(_: EvalError) -> io::Error {
 
        io::Error::new(io::ErrorKind::InvalidInput, "eval error")
 
    }
 
}
 

	
 
#[derive(Clone, Copy)]
 
pub struct DisplayEvalError<'a> {
 
    error: &'a EvalError,
 
    source: &'a InputSource,
 
}
 

	
 
impl DisplayEvalError<'_> {
 
    fn new<'a>(error: &'a EvalError, source: &'a InputSource) -> DisplayEvalError<'a> {
 
        DisplayEvalError { error, source }
 
    }
 
}
 

	
 
impl fmt::Display for DisplayEvalError<'_> {
 
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 
        let mut vec: Vec<u8> = Vec::new();
 
        match self.error.write(self.source, &mut vec) {
 
            Err(_) => {
 
                return fmt::Result::Err(fmt::Error);
 
            }
 
            Ok(_) => {}
 
        }
 
        write!(f, "{}", String::from_utf8_lossy(&vec))
 
    }
 
}
 

	
 
// #[cfg(test)]
 
// mod tests {
 
//     use super::*;
 

	
 
//     #[test]
 
//     fn test_from_string() {
 
//         let mut is = InputSource::from_string("#version 100\n").unwrap();
 
//         assert!(is.input.len() == 13);
 
//         assert!(is.line == 1);
 
//         assert!(is.column == 1);
 
//         assert!(is.offset == 0);
 
//         let ps = is.pos();
 
//         assert!(ps.line == 1);
 
//         assert!(ps.column == 1);
 
//         assert!(ps.offset == 0);
 
//         assert!(is.next() == Some(b'#'));
 
//         is.consume();
 
//         assert!(is.next() == Some(b'v'));
 
//         assert!(is.lookahead(1) == Some(b'e'));
 
//         is.consume();
 
//         assert!(is.next() == Some(b'e'));
 
//         is.consume();
 
//         assert!(is.next() == Some(b'r'));
 
//         is.consume();
 
//         assert!(is.next() == Some(b's'));
 
//         is.consume();
 
//         assert!(is.next() == Some(b'i'));
 
//         is.consume();
 
//         {
 
//             let ps = is.pos();
 
//             assert_eq!(b"#version 100", ps.context(&is));
 
//             let er = is.error("hello world!");
 
//             let mut vec: Vec<u8> = Vec::new();
 
//             er.write(&is, &mut vec).unwrap();
 
//             assert_eq!(
 
//                 "Parse error at 1:7: hello world!\n#version 100\n      ^\n",
 
//                 String::from_utf8_lossy(&vec)
 
//             );
 
//         }
 
//         assert!(is.next() == Some(b'o'));
 
//         is.consume();
 
//         assert!(is.next() == Some(b'n'));
 
//         is.consume();
 
//         assert!(is.input.len() == 13);
 
//         assert!(is.line == 1);
 
//         assert!(is.column == 9);
 
//         assert!(is.offset == 8);
 
//         assert!(is.next() == Some(b' '));
 
//         is.consume();
 
//         assert!(is.next() == Some(b'1'));
 
//         is.consume();
 
//         assert!(is.next() == Some(b'0'));
 
//         is.consume();
 
//         assert!(is.next() == Some(b'0'));
 
//         is.consume();
 
//         assert!(is.input.len() == 13);
 
//         assert!(is.line == 1);
 
//         assert!(is.column == 13);
 
//         assert!(is.offset == 12);
 
//         assert!(is.next() == Some(b'\n'));
 
//         is.consume();
 
//         assert!(is.input.len() == 13);
 
//         assert!(is.line == 2);
 
//         assert!(is.column == 1);
 
//         assert!(is.offset == 13);
 
//         {
 
//             let ps = is.pos();
 
//             assert_eq!(b"", ps.context(&is));
 
//         }
 
//         assert!(is.next() == None);
 
//         is.consume();
 
//         assert!(is.next() == None);
 
//     }
 

	
 
//     #[test]
 
//     fn test_split() {
 
//         let mut is = InputSource::from_string("#version 100\n").unwrap();
 
//         let backup = is.clone();
 
//         assert!(is.next() == Some(b'#'));
 
//         is.consume();
 
//         assert!(is.next() == Some(b'v'));
 
//         is.consume();
 
//         assert!(is.next() == Some(b'e'));
 
//         is.consume();
 
//         is = backup;
 
//         assert!(is.next() == Some(b'#'));
 
//         is.consume();
 
//         assert!(is.next() == Some(b'v'));
 
//         is.consume();
 
//         assert!(is.next() == Some(b'e'));
 
//         is.consume();
 
//     }
 
// }
src/protocol/mod.rs
Show inline comments
 
mod arena;
 
// mod ast;
 
mod eval;
 
pub(crate) mod inputsource;
 
// mod lexer;
 
mod tokenizer;
 
mod parser;
 
mod pools;
 
#[cfg(test)] mod tests;
 

	
 
// TODO: Remove when not benchmarking
 
pub(crate) mod ast;
 
pub(crate) mod ast_printer;
 
pub(crate) mod lexer;
 

	
 
lazy_static::lazy_static! {
 
    /// Conveniently-provided protocol description initialized with a zero-length PDL string.
 
    /// Exposed to minimize repeated initializations of this common protocol description.
 
    pub static ref TRIVIAL_PD: std::sync::Arc<ProtocolDescription> = {
 
        std::sync::Arc::new(ProtocolDescription::parse(b"").unwrap())
 
    };
 
}
 

	
 
use crate::common::*;
 
use crate::protocol::ast::*;
 
use crate::protocol::eval::*;
 
use crate::protocol::inputsource::*;
 
use crate::protocol::parser::*;
 

	
 
/// Description of a protocol object, used to configure new connectors.
 
/// (De)serializable.
 
#[derive(serde::Serialize, serde::Deserialize)]
 
#[repr(C)]
 
pub struct ProtocolDescription {
 
    heap: Heap,
 
    source: InputSource,
 
    root: RootId,
 
}
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone)]
 
pub(crate) struct ComponentState {
 
    prompt: Prompt,
 
}
 
pub(crate) enum EvalContext<'a> {
 
    Nonsync(&'a mut NonsyncProtoContext<'a>),
 
    Sync(&'a mut SyncProtoContext<'a>),
 
    // None,
 
}
 
//////////////////////////////////////////////
 

	
 
impl std::fmt::Debug for ProtocolDescription {
 
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
 
        write!(f, "(An opaque protocol description)")
 
    }
 
}
 
impl ProtocolDescription {
 
    // TODO: Allow for multi-file compilation
 
    pub fn parse(buffer: &[u8]) -> Result<Self, String> {
 
        // TODO: @fixme, keep code compilable, but needs support for multiple
 
        //  input files.
 
        let source = InputSource::from_buffer(buffer).unwrap();
 
        let mut parser = Parser::new();
 
        parser.feed(source).expect("failed to lex source");
 
        
 
        if let Err(err) = parser.parse() {
 
            println!("ERROR:\n{}", err);
 
            return Err(format!("{}", err))
 
        }
 

	
 
        debug_assert_eq!(parser.modules.len(), 1, "only supporting one module here for now");
 
        let root = parser.modules[0].root_id;
 
        return Ok(ProtocolDescription { heap: parser.heap, source: parser.modules[0].source.clone(), root });
 
    }
 
    pub(crate) fn component_polarities(
 
        &self,
 
        identifier: &[u8],
 
    ) -> Result<Vec<Polarity>, AddComponentError> {
 
        use AddComponentError::*;
 
        let h = &self.heap;
 
        let root = &h[self.root];
 
        let def = root.get_definition_ident(h, identifier);
 
        if def.is_none() {
 
            return Err(NoSuchComponent);
 
        }
 
        let def = &h[def.unwrap()];
 
        if !def.is_component() {
 
            return Err(NoSuchComponent);
 
        }
 
        for &param in def.parameters().iter() {
 
            let param = &h[param];
 
            let parser_type = &h[param.parser_type];
 

	
 
            match parser_type.variant {
 
                ParserTypeVariant::Input(_) | ParserTypeVariant::Output(_) => continue,
 
                _ => {
 
                    return Err(NonPortTypeParameters);
 
                }
 
            }
 
        }
 
        let mut result = Vec::new();
 
        for &param in def.parameters().iter() {
 
            let param = &h[param];
 
            let parser_type = &h[param.parser_type];
 

	
 
            if let ParserTypeVariant::Input(_) = parser_type.variant {
 
                result.push(Polarity::Getter)
 
            } else if let ParserTypeVariant::Output(_) = parser_type.variant {
 
                result.push(Polarity::Putter)
 
            } else {
 
                unreachable!()
 
            }
 
        }
 
        Ok(result)
 
    }
 
    // expects port polarities to be correct
 
    pub(crate) fn new_component(&self, identifier: &[u8], ports: &[PortId]) -> ComponentState {
 
        let mut args = Vec::new();
 
        for (&x, y) in ports.iter().zip(self.component_polarities(identifier).unwrap()) {
 
            match y {
 
                Polarity::Getter => args.push(Value::Input(InputValue(x))),
 
                Polarity::Putter => args.push(Value::Output(OutputValue(x))),
 
            }
 
        }
 
        let h = &self.heap;
 
        let root = &h[self.root];
 
        let def = root.get_definition_ident(h, identifier).unwrap();
 
        ComponentState { prompt: Prompt::new(h, def, &args) }
 
    }
 
}
 
impl ComponentState {
 
    pub(crate) fn nonsync_run<'a: 'b, 'b>(
 
        &'a mut self,
 
        context: &'b mut NonsyncProtoContext<'b>,
 
        pd: &'a ProtocolDescription,
 
    ) -> NonsyncBlocker {
 
        let mut context = EvalContext::Nonsync(context);
 
        loop {
 
            let result = self.prompt.step(&pd.heap, &mut context);
 
            match result {
 
                // In component definitions, there are no return statements
 
                Ok(_) => unreachable!(),
 
                Err(cont) => match cont {
 
                    EvalContinuation::Stepping => continue,
 
                    EvalContinuation::Inconsistent => return NonsyncBlocker::Inconsistent,
 
                    EvalContinuation::Terminal => return NonsyncBlocker::ComponentExit,
 
                    EvalContinuation::SyncBlockStart => return NonsyncBlocker::SyncBlockStart,
 
                    // Not possible to end sync block if never entered one
 
                    EvalContinuation::SyncBlockEnd => unreachable!(),
 
                    EvalContinuation::NewComponent(definition_id, args) => {
 
                        // Look up definition (TODO for now, assume it is a definition)
 
                        let h = &pd.heap;
 
                        let init_state = ComponentState { prompt: Prompt::new(h, definition_id, &args) };
 
                        context.new_component(&args, init_state);
 
                        // Continue stepping
 
                        continue;
 
                    }
 
                    // Outside synchronous blocks, no fires/get/put happens
 
                    EvalContinuation::BlockFires(_) => unreachable!(),
 
                    EvalContinuation::BlockGet(_) => unreachable!(),
 
                    EvalContinuation::Put(_, _) => unreachable!(),
 
                },
 
            }
 
        }
 
    }
 

	
 
    pub(crate) fn sync_run<'a: 'b, 'b>(
 
        &'a mut self,
 
        context: &'b mut SyncProtoContext<'b>,
 
        pd: &'a ProtocolDescription,
 
    ) -> SyncBlocker {
 
        let mut context = EvalContext::Sync(context);
 
        loop {
 
            let result = self.prompt.step(&pd.heap, &mut context);
 
            match result {
 
                // Inside synchronous blocks, there are no return statements
 
                Ok(_) => unreachable!(),
 
                Err(cont) => match cont {
 
                    EvalContinuation::Stepping => continue,
 
                    EvalContinuation::Inconsistent => return SyncBlocker::Inconsistent,
 
                    // First need to exit synchronous block before definition may end
 
                    EvalContinuation::Terminal => unreachable!(),
 
                    // No nested synchronous blocks
 
                    EvalContinuation::SyncBlockStart => unreachable!(),
 
                    EvalContinuation::SyncBlockEnd => return SyncBlocker::SyncBlockEnd,
 
                    // Not possible to create component in sync block
 
                    EvalContinuation::NewComponent(_, _) => unreachable!(),
 
                    EvalContinuation::BlockFires(port) => match port {
 
                        Value::Output(OutputValue(port)) => {
 
                            return SyncBlocker::CouldntCheckFiring(port);
 
                        }
 
                        Value::Input(InputValue(port)) => {
 
                            return SyncBlocker::CouldntCheckFiring(port);
 
                        }
 
                        _ => unreachable!(),
 
                    },
 
                    EvalContinuation::BlockGet(port) => match port {
 
                        Value::Output(OutputValue(port)) => {
 
                            return SyncBlocker::CouldntReadMsg(port);
 
                        }
 
                        Value::Input(InputValue(port)) => {
 
                            return SyncBlocker::CouldntReadMsg(port);
 
                        }
 
                        _ => unreachable!(),
 
                    },
 
                    EvalContinuation::Put(port, message) => {
 
                        let value;
 
                        match port {
 
                            Value::Output(OutputValue(port_value)) => {
 
                                value = port_value;
 
                            }
 
                            Value::Input(InputValue(port_value)) => {
 
                                value = port_value;
 
                            }
 
                            _ => unreachable!(),
 
                        }
 
                        let payload;
 
                        match message {
 
                            Value::Message(MessageValue(None)) => {
 
                                // Putting a null message is inconsistent
 
                                return SyncBlocker::Inconsistent;
 
                            }
 
                            Value::Message(MessageValue(Some(buffer))) => {
 
                                // Create a copy of the payload
 
                                payload = buffer;
 
                            }
 
                            _ => unreachable!(),
 
                        }
 
                        return SyncBlocker::PutMsg(value, payload);
 
                    }
 
                },
 
            }
 
        }
 
    }
 
}
 
impl EvalContext<'_> {
 
    // fn random(&mut self) -> LongValue {
 
    //     match self {
 
    //         // EvalContext::None => unreachable!(),
 
    //         EvalContext::Nonsync(_context) => todo!(),
 
    //         EvalContext::Sync(_) => unreachable!(),
 
    //     }
 
    // }
 
    fn new_component(&mut self, args: &[Value], init_state: ComponentState) -> () {
 
        match self {
 
            // EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(context) => {
 
                let mut moved_ports = HashSet::new();
 
                for arg in args.iter() {
 
                    match arg {
 
                        Value::Output(OutputValue(port)) => {
 
                            moved_ports.insert(*port);
 
                        }
 
                        Value::Input(InputValue(port)) => {
 
                            moved_ports.insert(*port);
 
                        }
 
                        _ => {}
 
                    }
 
                }
 
                context.new_component(moved_ports, init_state)
 
            }
 
            EvalContext::Sync(_) => unreachable!(),
 
        }
 
    }
 
    fn new_channel(&mut self) -> [Value; 2] {
 
        match self {
 
            // EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(context) => {
 
                let [from, to] = context.new_port_pair();
 
                let from = Value::Output(OutputValue(from));
 
                let to = Value::Input(InputValue(to));
 
                return [from, to];
 
            }
 
            EvalContext::Sync(_) => unreachable!(),
 
        }
 
    }
 
    fn fires(&mut self, port: Value) -> Option<Value> {
 
        match self {
 
            // EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(_) => unreachable!(),
 
            EvalContext::Sync(context) => match port {
 
                Value::Output(OutputValue(port)) => context.is_firing(port).map(Value::from),
 
                Value::Input(InputValue(port)) => context.is_firing(port).map(Value::from),
 
                _ => unreachable!(),
 
            },
 
        }
 
    }
 
    fn get(&mut self, port: Value) -> Option<Value> {
 
        match self {
 
            // EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(_) => unreachable!(),
 
            EvalContext::Sync(context) => match port {
 
                Value::Output(OutputValue(port)) => {
 
                    context.read_msg(port).map(Value::receive_message)
 
                }
 
                Value::Input(InputValue(port)) => {
 
                    context.read_msg(port).map(Value::receive_message)
 
                }
 
                _ => unreachable!(),
 
            },
 
        }
 
    }
 
    fn did_put(&mut self, port: Value) -> bool {
 
        match self {
 
            EvalContext::Nonsync(_) => unreachable!("did_put in nonsync context"),
 
            EvalContext::Sync(context) => match port {
 
                Value::Output(OutputValue(port)) => {
 
                    context.did_put_or_get(port)
 
                },
 
                Value::Input(_) => unreachable!("did_put on input port"),
 
                _ => unreachable!("did_put on non-port value")
 
            }
 
        }
 
    }
 
}
src/runtime/mod.rs
Show inline comments
 
/// cbindgen:ignore
 
mod communication;
 
/// cbindgen:ignore
 
mod endpoints;
 
pub mod error;
 
/// cbindgen:ignore
 
mod logging;
 
/// cbindgen:ignore
 
mod setup;
 

	
 
#[cfg(test)]
 
mod tests;
 

	
 
use crate::common::*;
 
use error::*;
 
use mio::net::UdpSocket;
 

	
 
/// The interface between the user's application and a communication session,
 
/// in which the application plays the part of a (native) component. This structure provides the application
 
/// with functionality available to all components: the ability to add new channels (port pairs), and to
 
/// instantiate new components whose definitions are defined in the connector's configured protocol
 
/// description. Native components have the additional ability to add `dangling' ports backed by local/remote
 
/// IP addresses, to be coupled with a counterpart once the connector's setup is completed by `connect`.
 
/// This allows sets of applications to cooperate in constructing shared sessions that span the network.
 
#[derive(Debug)]
 
pub struct Connector {
 
    unphased: ConnectorUnphased,
 
    phased: ConnectorPhased,
 
}
 

	
 
/// Characterizes a type which can write lines of logging text.
 
/// The implementations provided in the `logging` module are likely to be sufficient,
 
/// but for added flexibility, users are able to implement their own loggers for use
 
/// by connectors.
 
pub trait Logger: Debug + Send + Sync {
 
    fn line_writer(&mut self) -> Option<&mut dyn std::io::Write>;
 
}
 

	
 
/// A logger that appends the logged strings to a growing byte buffer
 
#[derive(Debug)]
 
pub struct VecLogger(ConnectorId, Vec<u8>);
 

	
 
/// A trivial logger that always returns None, such that no logging information is ever written.
 
#[derive(Debug)]
 
pub struct DummyLogger;
 

	
 
/// A logger that writes the logged lines to a given file.
 
#[derive(Debug)]
 
pub struct FileLogger(ConnectorId, std::fs::File);
 

	
 
// Interface between protocol state and the connector runtime BEFORE all components
 
// ave begun their branching speculation. See ComponentState::nonsync_run.
 
pub(crate) struct NonsyncProtoContext<'a> {
 
    ips: &'a mut IdAndPortState,
 
    logger: &'a mut dyn Logger,
 
    unrun_components: &'a mut Vec<(ComponentId, ComponentState)>, // lives for Nonsync phase
 
    proto_component_id: ComponentId,                              // KEY in id->component map
 
}
 

	
 
// Interface between protocol state and the connector runtime AFTER all components
 
// have begun their branching speculation. See ComponentState::sync_run.
 
pub(crate) struct SyncProtoContext<'a> {
 
    rctx: &'a RoundCtx,
 
    branch_inner: &'a mut ProtoComponentBranchInner, // sub-structure of component branch
 
    predicate: &'a Predicate,                        // KEY in pred->branch map
 
}
 

	
 
// The data coupled with a particular protocol component branch, but crucially omitting
 
// the `ComponentState` such that this may be passed by reference to the state with separate
 
// access control.
 
#[derive(Default, Debug, Clone)]
 
struct ProtoComponentBranchInner {
 
    did_put_or_get: HashSet<PortId>,
 
    inbox: HashMap<PortId, Payload>,
 
}
 

	
 
// A speculative variable that lives for the duration of the synchronous round.
 
// Each is assigned a value in domain `SpecVal`.
 
#[derive(
 
    Copy, Clone, Eq, PartialEq, Ord, Hash, PartialOrd, serde::Serialize, serde::Deserialize,
 
)]
 
struct SpecVar(PortId);
 

	
 
// The codomain of SpecVal. Has two associated constants for values FIRING and SILENT,
 
// but may also enumerate many more values to facilitate finer-grained nondeterministic branching.
 
#[derive(
 
    Copy, Clone, Eq, PartialEq, Ord, Hash, PartialOrd, serde::Serialize, serde::Deserialize,
 
)]
 
struct SpecVal(u16);
 

	
 
// Data associated with a successful synchronous round, retained afterwards such that the
 
// native component can freely reflect on how it went, reading the messages received at their
 
// inputs, and reflecting on which of their connector's synchronous batches succeeded.
 
#[derive(Debug)]
 
struct RoundEndedNative {
 
    batch_index: usize,
 
    gotten: HashMap<PortId, Payload>,
 
}
 

	
 
// Implementation of a set in terms of a vector (optimized for reading, not writing)
 
#[derive(Default)]
 
struct VecSet<T: std::cmp::Ord> {
 
    // invariant: ordered, deduplicated
 
    vec: Vec<T>,
 
}
 

	
 
// Allows a connector to remember how to forward payloads towards the component that
 
// owns their destination port. `LocalComponent` corresponds with messages for components
 
// managed by the connector itself (hinting for it to look it up in a local structure),
 
// whereas the other variants direct the connector to forward the messages over the network.
 
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
 
enum Route {
 
    LocalComponent,
 
    NetEndpoint { index: usize },
 
    UdpEndpoint { index: usize },
 
}
 

	
 
// The outcome of a synchronous round, representing the distributed consensus.
 
// In the success case, the attached predicate encodes a row in the session's trace table.
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
enum Decision {
 
    Failure, // some connector timed out!
 
    Success(Predicate),
 
}
 

	
 
// The type of control messages exchanged between connectors over the network
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
enum Msg {
 
    SetupMsg(SetupMsg),
 
    CommMsg(CommMsg),
 
}
 

	
 
// Control messages exchanged during the setup phase only
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
enum SetupMsg {
 
    MyPortInfo(MyPortInfo),
 
    LeaderWave { wave_leader: ConnectorId },
 
    LeaderAnnounce { tree_leader: ConnectorId },
 
    YouAreMyParent,
 
    SessionGather { unoptimized_map: HashMap<ConnectorId, SessionInfo> },
 
    SessionScatter { optimized_map: HashMap<ConnectorId, SessionInfo> },
 
}
 

	
 
// A data structure encoding the state of a connector, passed around
 
// during the session optimization procedure.
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
struct SessionInfo {
 
    serde_proto_description: SerdeProtocolDescription,
 
    port_info: PortInfoMap,
 
    endpoint_incoming_to_getter: Vec<PortId>,
 
    proto_components: HashMap<ComponentId, ComponentState>,
 
}
 

	
 
// Newtype wrapper for an Arc<ProtocolDescription>,
 
// such that it can be (de)serialized for transmission over the network.
 
#[derive(Debug, Clone)]
 
struct SerdeProtocolDescription(Arc<ProtocolDescription>);
 

	
 
// Control message particular to the communication phase.
 
// as such, it's annotated with a round_index
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
struct CommMsg {
 
    round_index: usize,
 
    contents: CommMsgContents,
 
}
 

	
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
enum CommMsgContents {
 
    SendPayload(SendPayloadMsg),
 
    CommCtrl(CommCtrlMsg),
 
}
 

	
 
// Connector <-> connector control messages for use in the communication phase
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
enum CommCtrlMsg {
 
    Suggest { suggestion: Decision }, // child->parent
 
    Announce { decision: Decision },  // parent->child
 
}
 

	
 
// Speculative payload message, communicating the value for the given
 
// port's message predecated on the given speculative variable assignments.
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
struct SendPayloadMsg {
 
    predicate: Predicate,
 
    payload: Payload,
 
}
 

	
 
// Return result of `Predicate::assignment_union`, communicating the contents
 
// of the predicate which represents the (consistent) union of their mappings,
 
// if it exists (no variable mapped distinctly by the input predicates)
 
#[derive(Debug, PartialEq)]
 
enum AssignmentUnionResult {
 
    FormerNotLatter,
 
    LatterNotFormer,
 
    Equivalent,
 
    New(Predicate),
 
    Nonexistant,
 
}
 

	
 
// One of two endpoints for a control channel with a connector on either end.
 
// The underlying transport is TCP, so we use an inbox buffer to allow
 
// discrete payload receipt.
 
struct NetEndpoint {
 
    inbox: Vec<u8>,
 
    stream: TcpStream,
 
}
 

	
 
// Datastructure used during the setup phase representing a NetEndpoint TO BE SETUP
 
#[derive(Debug, Clone)]
 
struct NetEndpointSetup {
 
    getter_for_incoming: PortId,
 
    sock_addr: SocketAddr,
 
    endpoint_polarity: EndpointPolarity,
 
}
 

	
 
// Datastructure used during the setup phase representing a UdpEndpoint TO BE SETUP
 
#[derive(Debug, Clone)]
 
struct UdpEndpointSetup {
 
    getter_for_incoming: PortId,
 
    local_addr: SocketAddr,
 
    peer_addr: SocketAddr,
 
}
 

	
 
// NetEndpoint annotated with the ID of the port that receives payload
 
// messages received through the endpoint. This approach assumes that NetEndpoints
 
// DO NOT multiplex port->port channels, and so a mapping such as this is possible.
 
// As a result, the messages themselves don't need to carry the PortID with them.
 
#[derive(Debug)]
 
struct NetEndpointExt {
 
    net_endpoint: NetEndpoint,
 
    getter_for_incoming: PortId,
 
}
 

	
 
// Endpoint for a "raw" UDP endpoint. Corresponds to the "Udp Mediator Component"
 
// described in the literature.
 
// It acts as an endpoint by receiving messages via the poller etc. (managed by EndpointManager),
 
// It acts as a native component by managing a (speculative) set of payload messages (an outbox,
 
//  protecting the peer on the other side of the network).
 
#[derive(Debug)]
 
struct UdpEndpointExt {
 
    sock: UdpSocket, // already bound and connected
 
    received_this_round: bool,
 
    outgoing_payloads: HashMap<Predicate, Payload>,
 
    getter_for_incoming: PortId,
 
}
 

	
 
// Meta-data for the connector: its role in the consensus tree.
 
#[derive(Debug)]
 
struct Neighborhood {
 
    parent: Option<usize>,
 
    children: VecSet<usize>,
 
}
 

	
 
// Manages the connector's ID, and manages allocations for connector/port IDs.
 
#[derive(Debug, Clone)]
 
struct IdManager {
 
    connector_id: ConnectorId,
 
    port_suffix_stream: U32Stream,
 
    component_suffix_stream: U32Stream,
 
}
 

	
 
// Newtype wrapper around a byte buffer, used for UDP mediators to receive incoming datagrams.
 
struct IoByteBuffer {
 
    byte_vec: Vec<u8>,
 
}
 

	
 
// A generator of speculative variables. Created on-demand during the synchronous round
 
// by the IdManager.
 
#[derive(Debug)]
 
struct SpecVarStream {
 
    connector_id: ConnectorId,
 
    port_suffix_stream: U32Stream,
 
}
 

	
 
// Manages the messy state of the various endpoints, pollers, buffers, etc.
 
#[derive(Debug)]
 
struct EndpointManager {
 
    // invariants:
 
    // 1. net and udp endpoints are registered with poll with tokens computed with TargetToken::into
 
    // 2. Events is empty
 
    poll: Poll,
 
    events: Events,
 
    delayed_messages: Vec<(usize, Msg)>,
 
    undelayed_messages: Vec<(usize, Msg)>, // ready to yield
 
    net_endpoint_store: EndpointStore<NetEndpointExt>,
 
    udp_endpoint_store: EndpointStore<UdpEndpointExt>,
 
    io_byte_buffer: IoByteBuffer,
 
}
 

	
 
// A storage of endpoints, which keeps track of which components have raised
 
// an event during poll(), signifying that they need to be checked for new incoming data
 
#[derive(Debug)]
 
struct EndpointStore<T> {
 
    endpoint_exts: Vec<T>,
 
    polled_undrained: VecSet<usize>,
 
}
 

	
 
// The information associated with a port identifier, designed for local storage.
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
#[derive(Clone, Debug)]
 
struct PortInfo {
 
    owner: ComponentId,
 
    peer: Option<PortId>,
 
    polarity: Polarity,
 
    route: Route,
 
}
 

	
 
// Similar to `PortInfo`, but designed for communication during the setup procedure.
 
#[derive(Clone, Debug, serde::Serialize, serde::Deserialize)]
 
struct MyPortInfo {
 
    polarity: Polarity,
 
    port: PortId,
 
    owner: ComponentId,
 
}
 

	
 
// Newtype around port info map, allowing the implementation of some
 
// useful methods
 
#[derive(Default, Debug, Clone, serde::Serialize, serde::Deserialize)]
 
#[derive(Default, Debug, Clone)]
 
struct PortInfoMap {
 
    // invariant: self.invariant_preserved()
 
    // `owned` is redundant information, allowing for fast lookup
 
    // of a component's owned ports (which occurs during the sync round a lot)
 
    map: HashMap<PortId, PortInfo>,
 
    owned: HashMap<ComponentId, HashSet<PortId>>,
 
}
 

	
 
// A convenient substructure for containing port info and the ID manager.
 
// Houses the bulk of the connector's persistent state between rounds.
 
// It turns out several situations require access to both things.
 
#[derive(Debug, Clone)]
 
struct IdAndPortState {
 
    port_info: PortInfoMap,
 
    id_manager: IdManager,
 
}
 

	
 
// A component's setup-phase-specific data
 
#[derive(Debug)]
 
struct ConnectorCommunication {
 
    round_index: usize,
 
    endpoint_manager: EndpointManager,
 
    neighborhood: Neighborhood,
 
    native_batches: Vec<NativeBatch>,
 
    round_result: Result<Option<RoundEndedNative>, SyncError>,
 
}
 

	
 
// A component's data common to both setup and communication phases
 
#[derive(Debug)]
 
struct ConnectorUnphased {
 
    proto_description: Arc<ProtocolDescription>,
 
    proto_components: HashMap<ComponentId, ComponentState>,
 
    logger: Box<dyn Logger>,
 
    ips: IdAndPortState,
 
    native_component_id: ComponentId,
 
}
 

	
 
// A connector's phase-specific data
 
#[derive(Debug)]
 
enum ConnectorPhased {
 
    Setup(Box<ConnectorSetup>),
 
    Communication(Box<ConnectorCommunication>),
 
}
 

	
 
// A connector's setup-phase-specific data
 
#[derive(Debug)]
 
struct ConnectorSetup {
 
    net_endpoint_setups: Vec<NetEndpointSetup>,
 
    udp_endpoint_setups: Vec<UdpEndpointSetup>,
 
}
 

	
 
// A newtype wrapper for a map from speculative variable to speculative value
 
// A missing mapping corresponds with "unspecified".
 
#[derive(Default, Clone, Eq, PartialEq, Hash, serde::Serialize, serde::Deserialize)]
 
struct Predicate {
 
    assigned: BTreeMap<SpecVar, SpecVal>,
 
}
 

	
 
// Identifies a child of this connector in the _solution tree_.
 
// Each connector creates its own local solutions for the consensus procedure during `sync`,
 
// from the solutions of its children. Those children are either locally-managed components,
 
// (which are leaves in the solution tree), or other connectors reachable through the given
 
// network endpoint (which are internal nodes in the solution tree).
 
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash, serde::Serialize, serde::Deserialize)]
 
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
 
enum SubtreeId {
 
    LocalComponent(ComponentId),
 
    NetEndpoint { index: usize },
 
}
 

	
 
// An accumulation of the connector's knowledge of all (a) the local solutions its children
 
// in the solution tree have found, and (b) its own solutions derivable from those of its children.
 
// This structure starts off each round with an empty set, and accumulates solutions as they are found
 
// by local components, or received over the network in control messages.
 
// IMPORTANT: solutions, once found, don't go away until the end of the round. That is to
 
// say that these sets GROW until the round is over, and all solutions are reset.
 
#[derive(Debug)]
 
struct SolutionStorage {
 
    // invariant: old_local U new_local solutions are those that can be created from
 
    // the UNION of one element from each set in `subtree_solution`.
 
    // invariant is maintained by potentially populating new_local whenever subtree_solutions is populated.
 
    old_local: HashSet<Predicate>, // already sent to this connector's parent OR decided
 
    new_local: HashSet<Predicate>, // not yet sent to this connector's parent OR decided
 
    // this pair acts as SubtreeId -> HashSet<Predicate> which is friendlier to iteration
 
    subtree_solutions: Vec<HashSet<Predicate>>,
 
    subtree_id_to_index: HashMap<SubtreeId, usize>,
 
}
 

	
 
// Stores the transient data of a synchronous round.
 
// Some of it is for bookkeeping, and the rest is a temporary mirror of fields of
 
// `ConnectorUnphased`, such that any changes are safely contained within RoundCtx,
 
// and can be undone if the round fails.
 
struct RoundCtx {
 
    solution_storage: SolutionStorage,
 
    spec_var_stream: SpecVarStream,
 
    payload_inbox: Vec<(PortId, SendPayloadMsg)>,
 
    deadline: Option<Instant>,
 
    ips: IdAndPortState,
 
}
 

	
 
// A trait intended to limit the access of the ConnectorUnphased structure
 
// such that we don't accidentally modify any important component/port data
 
// while the results of the round are undecided. Why? Any actions during Connector::sync
 
// are _speculative_ until the round is decided, and we need a safe way of rolling
 
// back any changes.
 
trait CuUndecided {
 
    fn logger(&mut self) -> &mut dyn Logger;
 
    fn proto_description(&self) -> &ProtocolDescription;
 
    fn native_component_id(&self) -> ComponentId;
 
    fn logger_and_protocol_description(&mut self) -> (&mut dyn Logger, &ProtocolDescription);
 
    fn logger_and_protocol_components(
 
        &mut self,
 
    ) -> (&mut dyn Logger, &mut HashMap<ComponentId, ComponentState>);
 
}
 

	
 
// Represents a set of synchronous port operations that the native component
 
// has described as an "option" for completing during the synchronous rounds.
 
// Operations contained here succeed together or not at all.
 
// A native with N=2+ batches are expressing an N-way nondeterministic choice
 
#[derive(Debug, Default)]
 
struct NativeBatch {
 
    // invariant: putters' and getters' polarities respected
 
    to_put: HashMap<PortId, Payload>,
 
    to_get: HashSet<PortId>,
 
}
 

	
 
// Parallels a mio::Token type, but more clearly communicates
 
// the way it identifies the evented structre it corresponds to.
 
// See runtime/setup for methods converting between TokenTarget and mio::Token
 
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
 
enum TokenTarget {
 
    NetEndpoint { index: usize },
 
    UdpEndpoint { index: usize },
 
}
 

	
 
// Returned by the endpoint manager as a result of comm_recv, telling the connector what happened,
 
// such that it can know when to continue polling, and when to block.
 
enum CommRecvOk {
 
    TimeoutWithoutNew,
 
    NewPayloadMsgs,
 
    NewControlMsg { net_index: usize, msg: CommCtrlMsg },
 
}
 
////////////////
 
fn err_would_block(err: &std::io::Error) -> bool {
 
    err.kind() == std::io::ErrorKind::WouldBlock
 
}
 
impl<T: std::cmp::Ord> VecSet<T> {
 
    fn new(mut vec: Vec<T>) -> Self {
 
        // establish the invariant
 
        vec.sort();
 
        vec.dedup();
 
        Self { vec }
 
    }
 
    fn contains(&self, element: &T) -> bool {
 
        self.vec.binary_search(element).is_ok()
 
    }
 
    // Insert the given element. Returns whether it was already present.
 
    fn insert(&mut self, element: T) -> bool {
 
        match self.vec.binary_search(&element) {
 
            Ok(_) => false,
 
            Err(index) => {
 
                self.vec.insert(index, element);
 
                true
 
            }
 
        }
 
    }
 
    fn iter(&self) -> std::slice::Iter<T> {
 
        self.vec.iter()
 
    }
 
    fn pop(&mut self) -> Option<T> {
 
        self.vec.pop()
 
    }
 
}
 
impl PortInfoMap {
 
    fn ports_owned_by(&self, owner: ComponentId) -> impl Iterator<Item = &PortId> {
 
        self.owned.get(&owner).into_iter().flat_map(HashSet::iter)
 
    }
 
    fn spec_var_for(&self, port: PortId) -> SpecVar {
 
        // Every port maps to a speculative variable
 
        // Two distinct ports map to the same variable
 
        // IFF they are two ends of the same logical channel.
 
        let info = self.map.get(&port).unwrap();
 
        SpecVar(match info.polarity {
 
            Getter => port,
 
            Putter => info.peer.unwrap(),
 
        })
 
    }
 
    fn invariant_preserved(&self) -> bool {
 
        // for every port P with some owner O,
 
        // P is in O's owned set
 
        for (port, info) in self.map.iter() {
 
            match self.owned.get(&info.owner) {
 
                Some(set) if set.contains(port) => {}
 
                _ => {
 
                    println!("{:#?}\n WITH port {:?}", self, port);
 
                    return false;
 
                }
 
            }
 
        }
 
        // for every port P owned by every owner O,
 
        // P's owner is O
 
        for (&owner, set) in self.owned.iter() {
 
            for port in set {
 
                match self.map.get(port) {
 
                    Some(info) if info.owner == owner => {}
 
                    _ => {
 
                        println!("{:#?}\n WITH owner {:?} port {:?}", self, owner, port);
 
                        return false;
 
                    }
 
                }
 
            }
 
        }
 
        true
 
    }
 
}
 
impl SpecVarStream {
 
    fn next(&mut self) -> SpecVar {
 
        let phantom_port: PortId =
 
            Id { connector_id: self.connector_id, u32_suffix: self.port_suffix_stream.next() }
 
                .into();
 
        SpecVar(phantom_port)
 
    }
 
}
 
impl IdManager {
 
    fn new(connector_id: ConnectorId) -> Self {
 
        Self {
 
            connector_id,
 
            port_suffix_stream: Default::default(),
 
            component_suffix_stream: Default::default(),
 
        }
 
    }
 
    fn new_spec_var_stream(&self) -> SpecVarStream {
 
        // Spec var stream starts where the current port_id stream ends, with gap of SKIP_N.
 
        // This gap is entirely unnecessary (i.e. 0 is fine)
 
        // It's purpose is only to make SpecVars easier to spot in logs.
 
        // E.g. spot the spec var: { v0_0, v1_2, v1_103 }
 
        const SKIP_N: u32 = 100;
 
        let port_suffix_stream = self.port_suffix_stream.clone().n_skipped(SKIP_N);
 
        SpecVarStream { connector_id: self.connector_id, port_suffix_stream }
 
    }
 
    fn new_port_id(&mut self) -> PortId {
 
        Id { connector_id: self.connector_id, u32_suffix: self.port_suffix_stream.next() }.into()
 
    }
 
    fn new_component_id(&mut self) -> ComponentId {
 
        Id { connector_id: self.connector_id, u32_suffix: self.component_suffix_stream.next() }
 
            .into()
 
    }
 
}
 
impl Drop for Connector {
 
    fn drop(&mut self) {
 
        log!(self.unphased.logger(), "Connector dropping. Goodbye!");
 
    }
 
}
 
// Given a slice of ports, return the first, if any, port is present repeatedly
 
fn duplicate_port(slice: &[PortId]) -> Option<PortId> {
 
    let mut vec = Vec::with_capacity(slice.len());
 
    for port in slice.iter() {
 
        match vec.binary_search(port) {
 
            Err(index) => vec.insert(index, *port),
 
            Ok(_) => return Some(*port),
 
        }
 
    }
 
    None
 
}
 
impl Connector {
 
    /// Generate a random connector identifier from the system's source of randomness.
 
    pub fn random_id() -> ConnectorId {
 
        type Bytes8 = [u8; std::mem::size_of::<ConnectorId>()];
 
        unsafe {
 
            let mut bytes = std::mem::MaybeUninit::<Bytes8>::uninit();
 
            // getrandom is the canonical crate for a small, secure rng
 
            getrandom::getrandom(&mut *bytes.as_mut_ptr()).unwrap();
 
            // safe! representations of all valid Byte8 values are valid ConnectorId values
 
            std::mem::transmute::<_, _>(bytes.assume_init())
 
        }
 
    }
 

	
 
    /// Returns true iff the connector is in connected state, i.e., it's setup phase is complete,
 
    /// and it is ready to participate in synchronous rounds of communication.
 
    pub fn is_connected(&self) -> bool {
 
        // If designed for Rust usage, connectors would be exposed as an enum type from the start.
 
        // consequently, this "phased" business would also include connector variants and this would
 
        // get a lot closer to the connector impl. itself.
 
        // Instead, the C-oriented implementation doesn't distinguish connector states as types,
 
        // and distinguish them as enum variants instead
 
        match self.phased {
 
            ConnectorPhased::Setup(..) => false,
 
            ConnectorPhased::Communication(..) => true,
 
        }
 
    }
 

	
 
    /// Enables the connector's current logger to be swapped out for another
 
    pub fn swap_logger(&mut self, mut new_logger: Box<dyn Logger>) -> Box<dyn Logger> {
 
        std::mem::swap(&mut self.unphased.logger, &mut new_logger);
 
        new_logger
 
    }
 

	
 
    /// Access the connector's current logger
 
    pub fn get_logger(&mut self) -> &mut dyn Logger {
 
        &mut *self.unphased.logger
 
    }
 

	
 
    /// Create a new synchronous channel, returning its ends as a pair of ports,
 
    /// with polarity output, input respectively. Available during either setup/communication phase.
 
    /// # Panics
 
    /// This function panics if the connector's (large) port id space is exhausted.
 
    pub fn new_port_pair(&mut self) -> [PortId; 2] {
 
        let cu = &mut self.unphased;
 
        // adds two new associated ports, related to each other, and exposed to the native
 
        let mut new_cid = || cu.ips.id_manager.new_port_id();
 
        // allocate two fresh port identifiers
 
        let [o, i] = [new_cid(), new_cid()];
 
        // store info for each:
 
        // - they are each others' peers
 
        // - they are owned by a local component with id `cid`
 
        // - polarity putter, getter respectively
 
        cu.ips.port_info.map.insert(
 
            o,
 
            PortInfo {
 
                route: Route::LocalComponent,
 
                peer: Some(i),
 
                owner: cu.native_component_id,
 
                polarity: Putter,
 
            },
 
        );
 
        cu.ips.port_info.map.insert(
 
            i,
 
            PortInfo {
 
                route: Route::LocalComponent,
 
                peer: Some(o),
 
                owner: cu.native_component_id,
 
                polarity: Getter,
 
            },
 
        );
 
        cu.ips
 
            .port_info
 
            .owned
 
            .entry(cu.native_component_id)
 
            .or_default()
 
            .extend([o, i].iter().copied());
 

	
 
        log!(cu.logger, "Added port pair (out->in) {:?} -> {:?}", o, i);
 
        [o, i]
 
    }
 

	
 
    /// Instantiates a new component for the connector runtime to manage, and passing
 
    /// the given set of ports from the interface of the native component, to that of the
 
    /// newly created component (passing their ownership).
 
    /// # Errors
 
    /// Error is returned if the moved ports are not owned by the native component,
 
    /// if the given component name is not defined in the connector's protocol,
 
    /// the given sequence of ports contains a duplicate port,
 
    /// or if the component is unfit for instantiation with the given port sequence.
 
    /// # Panics
 
    /// This function panics if the connector's (large) component id space is exhausted.
 
    pub fn add_component(
 
        &mut self,
 
        identifier: &[u8],
 
        ports: &[PortId],
 
    ) -> Result<(), AddComponentError> {
 
        // Check for error cases first before modifying `cu`
 
        use AddComponentError as Ace;
 
        let cu = &self.unphased;
 
        if let Some(port) = duplicate_port(ports) {
 
            return Err(Ace::DuplicatePort(port));
 
        }
 
        let expected_polarities = cu.proto_description.component_polarities(identifier)?;
 
        if expected_polarities.len() != ports.len() {
 
            return Err(Ace::WrongNumberOfParamaters { expected: expected_polarities.len() });
 
        }
 
        for (&expected_polarity, &port) in expected_polarities.iter().zip(ports.iter()) {
 
            let info = cu.ips.port_info.map.get(&port).ok_or(Ace::UnknownPort(port))?;
 
            if info.owner != cu.native_component_id {
 
                return Err(Ace::UnknownPort(port));
 
            }
 
            if info.polarity != expected_polarity {
 
                return Err(Ace::WrongPortPolarity { port, expected_polarity });
 
            }
 
        }
 
        // No errors! Time to modify `cu`
 
        // create a new component and identifier
 
        let Connector { phased, unphased: cu } = self;
 
        let new_cid = cu.ips.id_manager.new_component_id();
 
        cu.proto_components.insert(new_cid, cu.proto_description.new_component(identifier, ports));
 
        // update the ownership of moved ports
 
        for port in ports.iter() {
 
            match cu.ips.port_info.map.get_mut(port) {
 
                Some(port_info) => port_info.owner = new_cid,
 
                None => unreachable!(),
 
            }
 
        }
 
        if let Some(set) = cu.ips.port_info.owned.get_mut(&cu.native_component_id) {
 
            set.retain(|x| !ports.contains(x));
 
        }
 
        let moved_port_set: HashSet<PortId> = ports.iter().copied().collect();
 
        if let ConnectorPhased::Communication(comm) = phased {
 
            // Preserve invariant: batches only reason about native's ports.
 
            // Remove batch puts/gets for moved ports.
 
            for batch in comm.native_batches.iter_mut() {
 
                batch.to_put.retain(|port, _| !moved_port_set.contains(port));
 
                batch.to_get.retain(|port| !moved_port_set.contains(port));
 
            }
 
        }
 
        cu.ips.port_info.owned.insert(new_cid, moved_port_set);
 
        Ok(())
 
    }
 
}
 
impl Predicate {
 
    #[inline]
 
    pub fn singleton(k: SpecVar, v: SpecVal) -> Self {
 
        Self::default().inserted(k, v)
 
    }
 
    #[inline]
 
    pub fn inserted(mut self, k: SpecVar, v: SpecVal) -> Self {
 
        self.assigned.insert(k, v);
 
        self
 
    }
 

	
 
    // Return true whether `self` is a subset of `maybe_superset`
 
    pub fn assigns_subset(&self, maybe_superset: &Self) -> bool {
 
        for (var, val) in self.assigned.iter() {
 
            match maybe_superset.assigned.get(var) {
 
                Some(val2) if val2 == val => {}
 
                _ => return false, // var unmapped, or mapped differently
 
            }
 
        }
 
        // `maybe_superset` mirrored all my assignments!
 
        true
 
    }
 

	
 
    /// Given the two predicates {self, other}, return that whose
 
    /// assignments are the union of those of both.
 
    fn assignment_union(&self, other: &Self) -> AssignmentUnionResult {
 
        use AssignmentUnionResult as Aur;
 
        // iterators over assignments of both predicates. Rely on SORTED ordering of BTreeMap's keys.
 
        let [mut s_it, mut o_it] = [self.assigned.iter(), other.assigned.iter()];
 
        let [mut s, mut o] = [s_it.next(), o_it.next()];
 
        // populate lists of assignments in self but not other and vice versa.
 
        // do this by incrementally unfolding the iterators, keeping an eye
 
        // on the ordering between the head elements [s, o].
 
        // whenever s<o, other is certainly missing element 's', etc.
 
        let [mut s_not_o, mut o_not_s] = [vec![], vec![]];
 
        loop {
 
            match [s, o] {
 
                [None, None] => break, // both iterators are empty
 
                [None, Some(x)] => {
 
                    // self's iterator is empty.
 
                    // all remaning elements are in other but not self
 
                    o_not_s.push(x);
 
                    o_not_s.extend(o_it);
 
                    break;
 
                }
 
                [Some(x), None] => {
 
                    // other's iterator is empty.
 
                    // all remaning elements are in self but not other
 
                    s_not_o.push(x);
 
                    s_not_o.extend(s_it);
 
                    break;
 
                }
 
                [Some((sid, sb)), Some((oid, ob))] => {
 
                    if sid < oid {
 
                        // o is missing this element
 
                        s_not_o.push((sid, sb));
 
                        s = s_it.next();
 
                    } else if sid > oid {
 
                        // s is missing this element
 
                        o_not_s.push((oid, ob));
 
                        o = o_it.next();
 
                    } else if sb != ob {
 
                        assert_eq!(sid, oid);
 
                        // both predicates assign the variable but differ on the value
 
                        // No predicate exists which satisfies both!
 
                        return Aur::Nonexistant;
 
                    } else {
 
                        // both predicates assign the variable to the same value
 
                        s = s_it.next();
 
                        o = o_it.next();
 
                    }
 
                }
 
            }
 
        }
 
        // Observed zero inconsistencies. A unified predicate exists...
 
        match [s_not_o.is_empty(), o_not_s.is_empty()] {
 
            [true, true] => Aur::Equivalent,       // ... equivalent to both.
 
            [false, true] => Aur::FormerNotLatter, // ... equivalent to self.
 
            [true, false] => Aur::LatterNotFormer, // ... equivalent to other.
 
            [false, false] => {
 
                // ... which is the union of the predicates' assignments but
 
                //     is equivalent to neither self nor other.
 
                let mut new = self.clone();
 
                for (&id, &b) in o_not_s {
 
                    new.assigned.insert(id, b);
 
                }
 
                Aur::New(new)
 
            }
 
        }
 
    }
 

	
 
    // Compute the union of the assignments of the two given predicates, if it exists.
 
    // It doesn't exist if there is some value which the predicates assign to different values.
 
    pub(crate) fn union_with(&self, other: &Self) -> Option<Self> {
 
        let mut res = self.clone();
 
        for (&channel_id, &assignment_1) in other.assigned.iter() {
 
            match res.assigned.insert(channel_id, assignment_1) {
 
                Some(assignment_2) if assignment_1 != assignment_2 => return None,
 
                _ => {}
 
            }
 
        }
 
        Some(res)
 
    }
 
    pub(crate) fn query(&self, var: SpecVar) -> Option<SpecVal> {
 
        self.assigned.get(&var).copied()
 
    }
 
}
 

	
 
impl RoundCtx {
 
    // remove an arbitrary buffered message, along with the ID of the getter who receives it
 
    fn getter_pop(&mut self) -> Option<(PortId, SendPayloadMsg)> {
 
        self.payload_inbox.pop()
 
    }
 

	
 
    // buffer a message along with the ID of the getter who receives it
 
    fn getter_push(&mut self, getter: PortId, msg: SendPayloadMsg) {
 
        self.payload_inbox.push((getter, msg));
 
    }
 

	
 
    // buffer a message along with the ID of the putter who sent it
 
    fn putter_push(&mut self, cu: &mut impl CuUndecided, putter: PortId, msg: SendPayloadMsg) {
 
        if let Some(getter) = self.ips.port_info.map.get(&putter).unwrap().peer {
 
            log!(cu.logger(), "Putter add (putter:{:?} => getter:{:?})", putter, getter);
 
            self.getter_push(getter, msg);
 
        } else {
 
            log!(cu.logger(), "Putter {:?} has no known peer!", putter);
 
            panic!("Putter {:?} has no known peer!", putter);
 
        }
 
    }
 
}
 

	
 
impl<T: Debug + std::cmp::Ord> Debug for VecSet<T> {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        f.debug_set().entries(self.vec.iter()).finish()
 
    }
 
}
 
impl Debug for Predicate {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        struct Assignment<'a>((&'a SpecVar, &'a SpecVal));
 
        impl Debug for Assignment<'_> {
 
            fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
                write!(f, "{:?}={:?}", (self.0).0, (self.0).1)
 
            }
 
        }
 
        f.debug_set().entries(self.assigned.iter().map(Assignment)).finish()
 
    }
 
}
 
impl serde::Serialize for SerdeProtocolDescription {
 
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
 
    where
 
        S: serde::Serializer,
 
    {
 
        let inner: &ProtocolDescription = &self.0;
 
        inner.serialize(serializer)
 
    }
 
}
 
impl<'de> serde::Deserialize<'de> for SerdeProtocolDescription {
 
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
 
    where
 
        D: serde::Deserializer<'de>,
 
    {
 
        let inner: ProtocolDescription = ProtocolDescription::deserialize(deserializer)?;
 
        Ok(Self(Arc::new(inner)))
 
    }
 
}
 
impl IdParts for SpecVar {
 
    fn id_parts(self) -> (ConnectorId, U32Suffix) {
 
        self.0.id_parts()
 
    }
 
}
 
impl Debug for SpecVar {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        let (a, b) = self.id_parts();
 
        write!(f, "v{}_{}", a, b)
 
    }
 
}
 
impl SpecVal {
 
    const FIRING: Self = SpecVal(1);
 
    const SILENT: Self = SpecVal(0);
 
    fn is_firing(self) -> bool {
 
        self == Self::FIRING
 
        // all else treated as SILENT
 
    }
 
    fn iter_domain() -> impl Iterator<Item = Self> {
 
        (0..).map(SpecVal)
 
    }
 
}
 
impl Debug for SpecVal {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        self.0.fmt(f)
 
    }
 
}
 
impl Default for IoByteBuffer {
 
    fn default() -> Self {
 
        let mut byte_vec = Vec::with_capacity(Self::CAPACITY);
 
        unsafe {
 
            // safe! this vector is guaranteed to have sufficient capacity
 
            byte_vec.set_len(Self::CAPACITY);
 
        }
 
        Self { byte_vec }
 
    }
 
}
 
impl IoByteBuffer {
 
    const CAPACITY: usize = u16::MAX as usize + 1000;
 
    fn as_mut_slice(&mut self) -> &mut [u8] {
 
        self.byte_vec.as_mut_slice()
 
    }
 
}
 

	
 
impl Debug for IoByteBuffer {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        write!(f, "IoByteBuffer")
 
    }
 
}

Changeset was too big and was cut off... Show full diff anyway

0 comments (0 inline, 0 general)