Changeset - 070174891230
[Not reviewed]
0 3 0
mh - 3 years ago 2022-04-29 11:13:14
contact@maxhenger.nl
Fix invalid cmp in debug level
3 files changed with 14 insertions and 14 deletions:
0 comments (0 inline, 0 general)
src/runtime2/runtime.rs
Show inline comments
 
use std::sync::{Arc, Mutex, Condvar};
 
use std::sync::atomic::{AtomicU32, AtomicBool, Ordering};
 
use std::thread;
 
use std::collections::VecDeque;
 

	
 
use crate::protocol::*;
 
use crate::runtime2::poll::{PollingThread, PollingThreadHandle};
 
use crate::runtime2::RtError;
 

	
 
use super::communication::Message;
 
use super::component::{Component, wake_up_if_sleeping, CompPDL, CompCtx};
 
use super::store::{ComponentStore, ComponentReservation, QueueDynMpsc, QueueDynProducer};
 
use super::scheduler::*;
 

	
 
#[derive(PartialOrd, PartialEq, Copy, Clone)]
 
pub enum LogLevel {
 
    None, // no logging
 
    Debug, // all logging (includes messages)
 
    Info, // rough logging
 
    None, // no logging
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// Component
 
// -----------------------------------------------------------------------------
 

	
 
/// Key to a component. Type system somewhat ensures that there can only be one
 
/// of these. Only with a key one may retrieve privately-accessible memory for
 
/// a component. Practically just a generational index, like `CompId` is.
 
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
 
pub(crate) struct CompKey(pub u32);
 

	
 
impl CompKey {
 
    pub(crate) fn downgrade(&self) -> CompId {
 
        return CompId(self.0);
 
    }
 
}
 

	
 
/// Generational ID of a component.
 
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
 
pub struct CompId(pub u32);
 

	
 
impl CompId {
 
    pub(crate) fn new_invalid() -> CompId {
 
        return CompId(u32::MAX);
 
    }
 

	
 
    /// Upgrade component ID to component key. Unsafe because the caller needs
 
    /// to make sure that only one component key can exist at a time (to ensure
 
    /// a component can only be scheduled/executed by one thread).
 
    pub(crate) unsafe fn upgrade(&self) -> CompKey {
 
        return CompKey(self.0);
 
    }
 
}
 

	
 
/// Handle to a component that is being created.
 
pub(crate) struct CompReserved {
 
    reservation: ComponentReservation,
 
}
 

	
 
impl CompReserved {
 
    pub(crate) fn id(&self) -> CompId {
 
        return CompId(self.reservation.index)
 
    }
 
}
 

	
 
/// Representation of a runtime component. Contains the bookkeeping variables
 
/// for the schedulers, the publicly accessible fields, and the private fields
 
/// that should only be accessed by the thread running the component's routine.
 
pub(crate) struct RuntimeComp {
 
    pub public: CompPublic,
 
    pub component: Box<dyn Component>,
 
    pub ctx: CompCtx,
 
    pub inbox: QueueDynMpsc<Message>,
 
    pub exiting: bool,
 
}
 

	
 
/// Should contain everything that is accessible in a thread-safe manner
 
// TODO: Do something about the `num_handles` thing. This needs to be a bit more
 
//  "foolproof" to lighten the mental burden of using the `num_handles`
 
//  variable.
 
pub(crate) struct CompPublic {
 
    pub sleeping: AtomicBool,
 
    pub num_handles: AtomicU32, // manually modified (!)
 
    inbox: QueueDynProducer<Message>,
 
}
 

	
 
/// Handle to public part of a component. Would be nice if we could
 
/// automagically manage the `num_handles` counter. But when it reaches zero we
 
/// need to manually remove the handle from the runtime. So we just have debug
 
/// code to make sure this actually happens.
 
pub(crate) struct CompHandle {
 
    target: *const CompPublic,
 
    id: CompId,
 
    #[cfg(debug_assertions)] decremented: bool,
 
}
 

	
 
impl CompHandle {
 
    fn new(id: CompId, public: &CompPublic) -> CompHandle {
 
        let handle = CompHandle{
 
            target: public,
 
            id,
 
            #[cfg(debug_assertions)] decremented: false,
 
        };
 
        handle.increment_users();
 
        return handle;
 
    }
 

	
 
    pub(crate) fn send_message(&self, runtime: &RuntimeInner, message: Message, try_wake_up: bool) {
 
        self.inbox.push(message);
 
        if try_wake_up {
 
            wake_up_if_sleeping(runtime, self.id, self);
 
        }
 
    }
 

	
 
    #[inline]
 
    pub(crate) fn send_message_logged(&self, sched_ctx: &SchedulerCtx, message: Message, try_wake_up: bool) {
 
        sched_ctx.debug(&format!("Sending message to comp:{} ... {:?}", self.id.0, message));
 
        self.send_message(&sched_ctx.runtime, message, try_wake_up);
 
    }
 

	
 
    pub(crate) fn id(&self) -> CompId {
 
        return self.id;
 
    }
 

	
 
    fn increment_users(&self) {
 
        let old_count = self.num_handles.fetch_add(1, Ordering::AcqRel);
 
        debug_assert!(old_count > 0); // because we should never be able to retrieve a handle when the component is (being) destroyed
 
    }
 

	
 
    /// Returns the `CompKey` to the component if it should be destroyed
 
    pub(crate) fn decrement_users(&mut self) -> Option<CompKey> {
 
        dbg_code!(assert!(!self.decremented, "illegal to 'decrement_users' twice"));
 
        let old_count = self.num_handles.fetch_sub(1, Ordering::AcqRel);
 
        let new_count = old_count - 1;
 
        dbg_code!(self.decremented = true);
 
        if new_count == 0 {
 
            return Some(unsafe{ self.id.upgrade() });
 
        }
 

	
 
        return None;
 
    }
 
}
 

	
 
impl Clone for CompHandle {
 
    fn clone(&self) -> Self {
 
        dbg_code!(assert!(!self.decremented, "illegal to clone after 'decrement_users'"));
 
        self.increment_users();
 
        return CompHandle{
 
            target: self.target,
 
            id: self.id,
 
            #[cfg(debug_assertions)] decremented: false,
 
        };
 
    }
 
}
 

	
 
impl std::ops::Deref for CompHandle {
 
    type Target = CompPublic;
 

	
 
    fn deref(&self) -> &Self::Target {
 
        dbg_code!(assert!(!self.decremented)); // cannot access if control is relinquished
 
        return unsafe{ &*self.target };
 
    }
 
}
 

	
 
impl Drop for CompHandle {
 
    fn drop(&mut self) {
 
        dbg_code!(assert!(self.decremented, "need call to 'decrement_users' before dropping"));
 
    }
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// Runtime
 
// -----------------------------------------------------------------------------
 

	
 
pub struct Runtime {
 
    pub(crate) inner: Arc<RuntimeInner>,
 
    scheduler_threads: Vec<thread::JoinHandle<()>>,
 
    polling_handle: PollingThreadHandle,
 
}
 

	
 
impl Runtime {
 
    // TODO: debug_logging should be removed at some point
 
    pub fn new(num_threads: u32, log_level: LogLevel, protocol_description: ProtocolDescription) -> Result<Runtime, RtError> {
 
        if num_threads == 0 {
 
            return Err(rt_error!("need at least one thread to create the runtime"));
 
        }
 
        let runtime_inner = Arc::new(RuntimeInner {
 
            protocol: protocol_description,
 
            components: ComponentStore::new(128),
 
            work_queue: Mutex::new(VecDeque::with_capacity(128)),
 
            work_condvar: Condvar::new(),
 
            active_elements: AtomicU32::new(1),
 
        });
 
        let (polling_handle, polling_clients) = rt_error_try!(
 
            PollingThread::new(runtime_inner.clone(), log_level),
 
            "failed to build polling thread"
 
        );
 

	
 
        let mut scheduler_threads = Vec::with_capacity(num_threads as usize);
 

	
 
        for thread_index in 0..num_threads {
 
            let mut scheduler = Scheduler::new(
 
                runtime_inner.clone(), polling_clients.client(),
 
                thread_index, log_level
 
            );
 

	
 
            let thread_handle = thread::Builder::new()
 
                .name(format!("scheduler:{}", thread_index))
 
                .spawn(move || {
 
                    scheduler.run();
 
                })
 
                .map_err(|reason|
 
                    rt_error!(
 
                        "failed to spawn scheduler thread {}, because: {}",
 
                        thread_index, reason
 
                    )
 
                )?;
 

	
 
            scheduler_threads.push(thread_handle);
 
        }
 

	
 
        return Ok(Runtime{
 
            inner: runtime_inner,
 
            scheduler_threads,
 
            polling_handle,
 
        });
 
    }
 

	
 
    pub fn create_component(&self, module_name: &[u8], routine_name: &[u8]) -> Result<(), ComponentCreationError> {
 
        use crate::protocol::eval::ValueGroup;
 
        let prompt = self.inner.protocol.new_component(
 
            module_name, routine_name,
 
            ValueGroup::new_stack(Vec::new())
 
        )?;
 
        let reserved = self.inner.start_create_pdl_component();
 
        let ctx = CompCtx::new(&reserved);
 
        let component = Box::new(CompPDL::new(prompt, 0));
 
        let (key, _) = self.inner.finish_create_pdl_component(reserved, component, ctx, false);
 
        self.inner.enqueue_work(key);
 

	
 
        return Ok(())
 
    }
 
}
 

	
 
impl Drop for Runtime {
 
    fn drop(&mut self) {
 
        self.inner.decrement_active_components();
 
        for handle in self.scheduler_threads.drain(..) {
 
            handle.join().expect("join scheduler thread");
 
        }
 

	
 
        self.polling_handle.shutdown().expect("shutdown polling thread");
 
    }
 
}
 

	
 
/// Memory that is maintained by "the runtime". In practice it is maintained by
 
/// multiple schedulers, and this serves as the common interface to that memory.
 
pub(crate) struct RuntimeInner {
 
    pub protocol: ProtocolDescription,
 
    components: ComponentStore<RuntimeComp>,
 
    work_queue: Mutex<VecDeque<CompKey>>, // TODO: should be MPMC queue
 
    work_condvar: Condvar,
 
    active_elements: AtomicU32, // active components and APIs (i.e. component creators)
 
}
 

	
 
impl RuntimeInner {
 
    // Scheduling and retrieving work
 

	
 
    pub(crate) fn take_work(&self) -> Option<CompKey> {
 
        let mut lock = self.work_queue.lock().unwrap();
 
        while lock.is_empty() && self.active_elements.load(Ordering::Acquire) != 0 {
 
            lock = self.work_condvar.wait(lock).unwrap();
 
        }
 

	
 
        // We have work, or the schedulers should exit.
 
        return lock.pop_front();
 
    }
 

	
 
    pub(crate) fn enqueue_work(&self, key: CompKey) {
 
        let mut lock = self.work_queue.lock().unwrap();
 
        lock.push_back(key);
 
        self.work_condvar.notify_one();
 
    }
 

	
 
    // Creating/destroying components
 

	
 
    pub(crate) fn start_create_pdl_component(&self) -> CompReserved {
 
        self.increment_active_components();
 
        let reservation = self.components.reserve();
 
        return CompReserved{ reservation };
 
    }
 

	
 
    pub(crate) fn finish_create_pdl_component(
 
        &self, reserved: CompReserved,
 
        component: Box<dyn Component>, mut context: CompCtx, initially_sleeping: bool,
 
    ) -> (CompKey, &mut RuntimeComp) {
 
        let inbox_queue = QueueDynMpsc::new(16);
 
        let inbox_producer = inbox_queue.producer();
 

	
 
        let _id = reserved.id();
 
        context.id = reserved.id();
 
        let component = RuntimeComp {
 
            public: CompPublic{
 
                sleeping: AtomicBool::new(initially_sleeping),
 
                num_handles: AtomicU32::new(1), // the component itself acts like a handle
 
                inbox: inbox_producer,
 
            },
 
            component,
 
            ctx: context,
 
            inbox: inbox_queue,
 
            exiting: false,
 
        };
 

	
 
        let index = self.components.submit(reserved.reservation, component);
 
        debug_assert_eq!(index, _id.0);
 
        let component = self.components.get_mut(index);
 

	
 
        return (CompKey(index), component);
 
    }
 

	
 
    pub(crate) fn get_component(&self, key: CompKey) -> &mut RuntimeComp {
 
        let component = self.components.get_mut(key.0);
 
        return component;
 
    }
 

	
 
    pub(crate) fn get_component_public(&self, id: CompId) -> CompHandle {
 
        let component = self.components.get(id.0);
 
        return CompHandle::new(id, &component.public);
 
    }
 

	
 
    /// Will remove a component and its memory from the runtime. May only be
 
    /// called if the necessary conditions for destruction have been met.
 
    pub(crate) fn destroy_component(&self, key: CompKey) {
 
        dbg_code!({
 
            let component = self.get_component(key);
 
            debug_assert!(component.exiting);
 
            debug_assert_eq!(component.public.num_handles.load(Ordering::Acquire), 0);
 
        });
 

	
 
        self.decrement_active_components();
 
        self.components.destroy(key.0);
 
    }
 

	
 
    // Tracking number of active interfaces and the active components
 

	
 
    #[inline]
 
    fn increment_active_components(&self) {
 
        let _old_val = self.active_elements.fetch_add(1, Ordering::AcqRel);
 
        debug_assert!(_old_val > 0); // can only create a component from a API/component, so can never be 0.
 
    }
 

	
 
    fn decrement_active_components(&self) {
 
        let old_val = self.active_elements.fetch_sub(1, Ordering::AcqRel);
 
        debug_assert!(old_val > 0); // something wrong with incr/decr logic
 
        let new_val = old_val - 1;
 
        if new_val == 0 {
 
            // Just to be sure, in case the last thing that gets destroyed is an
 
            // API instead of a thread.
 
            let _lock = self.work_queue.lock();
 
            self.work_condvar.notify_all();
 
        }
 
    }
 
}
src/runtime2/scheduler.rs
Show inline comments
 
use std::sync::Arc;
 
use std::sync::atomic::Ordering;
 
use crate::runtime2::poll::PollingClient;
 

	
 
use super::component::*;
 
use super::runtime::*;
 

	
 
/// Data associated with a scheduler thread
 
pub(crate) struct Scheduler {
 
    runtime: Arc<RuntimeInner>,
 
    polling: PollingClient,
 
    scheduler_id: u32,
 
    log_level: LogLevel,
 
}
 

	
 
pub(crate) struct SchedulerCtx<'a> {
 
    pub runtime: &'a RuntimeInner,
 
    pub polling: &'a PollingClient,
 
    pub id: u32,
 
    pub comp: u32,
 
    pub log_level: LogLevel,
 
}
 

	
 
impl<'a> SchedulerCtx<'a> {
 
    pub fn new(runtime: &'a RuntimeInner, polling: &'a PollingClient, id: u32, log_level: LogLevel) -> Self {
 
        return Self {
 
            runtime,
 
            polling,
 
            id,
 
            comp: 0,
 
            log_level,
 
        }
 
    }
 

	
 
    pub(crate) fn debug(&self, text: &str) {
 
        // TODO: Probably not always use colour
 
        if self.log_level >= LogLevel::Debug {
 
            println!("[s:{:02}, c:{:03}] \x1b[0;34m{}\x1b[0m", self.id, self.comp, text);
 
        if LogLevel::Debug >= self.log_level {
 
            println!("[s:{:02}, c:{:03}] \x1b[0;36m{}\x1b[0m", self.id, self.comp, text);
 
        }
 
    }
 

	
 
    pub(crate) fn info(&self, text: &str) {
 
        if self.log_level >= LogLevel::Info {
 
        if LogLevel::Info >= self.log_level {
 
            println!("[s:{:02}, c:{:03}] {}", self.id, self.comp, text);
 
        }
 
    }
 

	
 
    pub(crate) fn error(&self, text: &str) {
 
        // TODO: Probably not always use colour
 
        println!("[s:{:02}, c:{:03}] \x1b[0;31m{}\x1b[0m", self.id, self.comp, text);
 
    }
 
}
 

	
 
impl Scheduler {
 
    // public interface to thread
 

	
 
    pub fn new(runtime: Arc<RuntimeInner>, polling: PollingClient, scheduler_id: u32, log_level: LogLevel) -> Self {
 
        return Scheduler{ runtime, polling, scheduler_id, log_level }
 
    }
 

	
 
    pub fn run(&mut self) {
 
        let mut scheduler_ctx = SchedulerCtx::new(&*self.runtime, &self.polling, self.scheduler_id, self.log_level);
 

	
 
        'run_loop: loop {
 
            // Wait until we have something to do (or need to quit)
 
            let comp_key = self.runtime.take_work();
 
            if comp_key.is_none() {
 
                break 'run_loop;
 
            }
 

	
 
            let comp_key = comp_key.unwrap();
 
            let component = self.runtime.get_component(comp_key);
 
            scheduler_ctx.comp = comp_key.0;
 

	
 
            // Run the component until it no longer indicates that it needs to
 
            // be re-executed immediately.
 
            let mut new_scheduling = CompScheduling::Immediate;
 
            while let CompScheduling::Immediate = new_scheduling {
 
                while let Some(message) = component.inbox.pop() {
 
                    component.component.handle_message(&mut scheduler_ctx, &mut component.ctx, message);
 
                }
 
                new_scheduling = component.component.run(&mut scheduler_ctx, &mut component.ctx);
 
            }
 

	
 
            // Handle the new scheduling
 
            match new_scheduling {
 
                CompScheduling::Immediate => unreachable!(),
 
                CompScheduling::Requeue => { self.runtime.enqueue_work(comp_key); },
 
                CompScheduling::Sleep => { self.mark_component_as_sleeping(comp_key, component); },
 
                CompScheduling::Exit => {
 
                    component.component.on_shutdown(&scheduler_ctx);
 
                    self.mark_component_as_exiting(&scheduler_ctx, component);
 
                }
 
            }
 
        }
 
    }
 

	
 
    // local utilities
 

	
 
    /// Marks component as sleeping, if after marking itself as sleeping the
 
    /// inbox contains messages then the component will be immediately
 
    /// rescheduled. After calling this function the component should not be
 
    /// executed anymore.
 
    fn mark_component_as_sleeping(&self, key: CompKey, component: &mut RuntimeComp) {
 
        debug_assert_eq!(key.downgrade(), component.ctx.id); // make sure component matches key
 
        debug_assert_eq!(component.public.sleeping.load(Ordering::Acquire), false); // we're executing it, so it cannot be sleeping
 

	
 
        component.public.sleeping.store(true, Ordering::Release);
 
        if component.inbox.can_pop() {
 
            let should_reschedule = component.public.sleeping
 
                .compare_exchange(true, false, Ordering::AcqRel, Ordering::Relaxed)
 
                .is_ok();
 

	
 
            if should_reschedule {
 
                self.runtime.enqueue_work(key);
 
            }
 
        }
 
    }
 

	
 
    /// Marks the component as exiting by removing the reference it holds to
 
    /// itself. Afterward the component will enter "normal" sleeping mode (if it
 
    /// has not yet been destroyed)
 
    fn mark_component_as_exiting(&self, sched_ctx: &SchedulerCtx, component: &mut RuntimeComp) {
 
        // If we didn't yet decrement our reference count, do so now
 
        let comp_key = unsafe{ component.ctx.id.upgrade() };
 

	
 
        if !component.exiting {
 
            component.exiting = true;
 

	
 
            let old_count = component.public.num_handles.fetch_sub(1, Ordering::AcqRel);
 
            let new_count = old_count - 1;
 
            if new_count == 0 {
 
                sched_ctx.runtime.destroy_component(comp_key);
 
                return;
 
            }
 
        }
 

	
 
        // Enter "regular" sleeping mode
 
        self.mark_component_as_sleeping(comp_key, component);
 
    }
 
}
 
\ No newline at end of file
src/runtime2/tests/mod.rs
Show inline comments
 
use crate::protocol::*;
 
use crate::protocol::eval::*;
 
use crate::runtime2::runtime::*;
 
use crate::runtime2::component::{CompCtx, CompPDL};
 

	
 
mod error_handling;
 

	
 
const LOG_LEVEL: LogLevel = LogLevel::Debug;
 
const NUM_THREADS: u32 = 4;
 
const DEBUG_LOGGING: bool = true;
 

	
 
pub(crate) fn compile_and_create_component(source: &str, routine_name: &str, args: ValueGroup) {
 
    let protocol = ProtocolDescription::parse(source.as_bytes())
 
        .expect("successful compilation");
 
    let runtime = Runtime::new(NUM_THREADS, DEBUG_LOGGING, protocol)
 
    let runtime = Runtime::new(NUM_THREADS, LOG_LEVEL, protocol)
 
        .expect("successful runtime startup");
 
    create_component(&runtime, "", routine_name, args);
 
}
 

	
 
pub(crate) fn create_component(rt: &Runtime, module_name: &str, routine_name: &str, args: ValueGroup) {
 
    let prompt = rt.inner.protocol.new_component(
 
        module_name.as_bytes(), routine_name.as_bytes(), args
 
    ).expect("create prompt");
 
    let reserved = rt.inner.start_create_pdl_component();
 
    let ctx = CompCtx::new(&reserved);
 
    let component = Box::new(CompPDL::new(prompt, 0));
 
    let (key, _) = rt.inner.finish_create_pdl_component(reserved, component, ctx, false);
 
    rt.inner.enqueue_work(key);
 
}
 

	
 
pub(crate) fn no_args() -> ValueGroup { ValueGroup::new_stack(Vec::new()) }
 

	
 
#[test]
 
fn test_component_creation() {
 
    let pd = ProtocolDescription::parse(b"
 
    primitive nothing_at_all() {
 
        s32 a = 5;
 
        auto b = 5 + a;
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(1, true, pd).unwrap();
 
    let rt = Runtime::new(1, LOG_LEVEL, pd).unwrap();
 

	
 
    for _i in 0..20 {
 
        create_component(&rt, "", "nothing_at_all", no_args());
 
    }
 
}
 

	
 
#[test]
 
fn test_component_communication() {
 
    let pd = ProtocolDescription::parse(b"
 
    primitive sender(out<u32> o, u32 outside_loops, u32 inside_loops) {
 
        u32 outside_index = 0;
 
        while (outside_index < outside_loops) {
 
            u32 inside_index = 0;
 
            sync while (inside_index < inside_loops) {
 
                put(o, inside_index);
 
                inside_index += 1;
 
            }
 
            outside_index += 1;
 
        }
 
    }
 

	
 
    primitive receiver(in<u32> i, u32 outside_loops, u32 inside_loops) {
 
        u32 outside_index = 0;
 
        while (outside_index < outside_loops) {
 
            u32 inside_index = 0;
 
            sync while (inside_index < inside_loops) {
 
                auto val = get(i);
 
                while (val != inside_index) {} // infinite loop if incorrect value is received
 
                inside_index += 1;
 
            }
 
            outside_index += 1;
 
        }
 
    }
 

	
 
    composite constructor() {
 
        channel o_orom -> i_orom;
 
        channel o_mrom -> i_mrom;
 
        channel o_ormm -> i_ormm;
 
        channel o_mrmm -> i_mrmm;
 

	
 
        // one round, one message per round
 
        new sender(o_orom, 1, 1);
 
        new receiver(i_orom, 1, 1);
 

	
 
        // multiple rounds, one message per round
 
        new sender(o_mrom, 5, 1);
 
        new receiver(i_mrom, 5, 1);
 

	
 
        // one round, multiple messages per round
 
        new sender(o_ormm, 1, 5);
 
        new receiver(i_ormm, 1, 5);
 

	
 
        // multiple rounds, multiple messages per round
 
        new sender(o_mrmm, 5, 5);
 
        new receiver(i_mrmm, 5, 5);
 
    }").expect("compilation");
 
    let rt = Runtime::new(3, true, pd).unwrap();
 
    let rt = Runtime::new(3, LOG_LEVEL, pd).unwrap();
 
    create_component(&rt, "", "constructor", no_args());
 
}
 

	
 
#[test]
 
fn test_intermediate_messenger() {
 
    let pd = ProtocolDescription::parse(b"
 
    primitive receiver<T>(in<T> rx, u32 num) {
 
        auto index = 0;
 
        while (index < num) {
 
            sync { auto v = get(rx); }
 
            index += 1;
 
        }
 
    }
 

	
 
    primitive middleman<T>(in<T> rx, out<T> tx, u32 num) {
 
        auto index = 0;
 
        while (index < num) {
 
            sync { put(tx, get(rx)); }
 
            index += 1;
 
        }
 
    }
 

	
 
    primitive sender<T>(out<T> tx, u32 num) {
 
        auto index = 0;
 
        while (index < num) {
 
            sync put(tx, 1337);
 
            index += 1;
 
        }
 
    }
 

	
 
    composite constructor_template<T>() {
 
        auto num = 0;
 
        channel<T> tx_a -> rx_a;
 
        channel tx_b -> rx_b;
 
        new sender(tx_a, 3);
 
        new middleman(rx_a, tx_b, 3);
 
        new receiver(rx_b, 3);
 
    }
 

	
 
    composite constructor() {
 
        new constructor_template<u16>();
 
        new constructor_template<u32>();
 
        new constructor_template<u64>();
 
        new constructor_template<s16>();
 
        new constructor_template<s32>();
 
        new constructor_template<s64>();
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(3, true, pd).unwrap();
 
    let rt = Runtime::new(3, LOG_LEVEL, pd).unwrap();
 
    create_component(&rt, "", "constructor", no_args());
 
}
 

	
 
#[test]
 
fn test_simple_select() {
 
    let pd = ProtocolDescription::parse(b"
 
    func infinite_assert<T>(T val, T expected) -> () {
 
        while (val != expected) { print(\"nope!\"); }
 
        return ();
 
    }
 

	
 
    primitive receiver(in<u32> in_a, in<u32> in_b, u32 num_sends) {
 
        auto num_from_a = 0;
 
        auto num_from_b = 0;
 
        while (num_from_a + num_from_b < 2 * num_sends) {
 
            sync select {
 
                auto v = get(in_a) -> {
 
                    print(\"got something from A\");
 
                    auto _ = infinite_assert(v, num_from_a);
 
                    num_from_a += 1;
 
                }
 
                auto v = get(in_b) -> {
 
                    print(\"got something from B\");
 
                    auto _ = infinite_assert(v, num_from_b);
 
                    num_from_b += 1;
 
                }
 
            }
 
        }
 
    }
 

	
 
    primitive sender(out<u32> tx, u32 num_sends) {
 
        auto index = 0;
 
        while (index < num_sends) {
 
            sync {
 
                put(tx, index);
 
                index += 1;
 
            }
 
        }
 
    }
 

	
 
    composite constructor() {
 
        auto num_sends = 1;
 
        channel tx_a -> rx_a;
 
        channel tx_b -> rx_b;
 
        new sender(tx_a, num_sends);
 
        new receiver(rx_a, rx_b, num_sends);
 
        new sender(tx_b, num_sends);
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(3, true, pd).unwrap();
 
    let rt = Runtime::new(3, LOG_LEVEL, pd).unwrap();
 
    create_component(&rt, "", "constructor", no_args());
 
}
 

	
 
#[test]
 
fn test_unguarded_select() {
 
    let pd = ProtocolDescription::parse(b"
 
    primitive constructor_outside_select() {
 
        u32 index = 0;
 
        while (index < 5) {
 
            sync select { auto v = () -> print(\"hello\"); }
 
            index += 1;
 
        }
 
    }
 

	
 
    primitive constructor_inside_select() {
 
        u32 index = 0;
 
        while (index < 5) {
 
            sync select { auto v = () -> index += 1; }
 
        }
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(3, false, pd).unwrap();
 
    let rt = Runtime::new(3, LOG_LEVEL, pd).unwrap();
 
    create_component(&rt, "", "constructor_outside_select", no_args());
 
    create_component(&rt, "", "constructor_inside_select", no_args());
 
}
 

	
 
#[test]
 
fn test_empty_select() {
 
    let pd = ProtocolDescription::parse(b"
 
    primitive constructor() {
 
        u32 index = 0;
 
        while (index < 5) {
 
            sync select {}
 
            index += 1;
 
        }
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(3, false, pd).unwrap();
 
    let rt = Runtime::new(3, LOG_LEVEL, pd).unwrap();
 
    create_component(&rt, "", "constructor", no_args());
 
}
 

	
 
#[test]
 
fn test_random_u32_temporary_thingo() {
 
    let pd = ProtocolDescription::parse(b"
 
    import std.random::random_u32;
 

	
 
    primitive random_taker(in<u32> generator, u32 num_values) {
 
        auto i = 0;
 
        while (i < num_values) {
 
            sync {
 
                auto a = get(generator);
 
            }
 
            i += 1;
 
        }
 
    }
 

	
 
    composite constructor() {
 
        channel tx -> rx;
 
        auto num_values = 25;
 
        new random_u32(tx, 1, 100, num_values);
 
        new random_taker(rx, num_values);
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(1, true, pd).unwrap();
 
    let rt = Runtime::new(1, LOG_LEVEL, pd).unwrap();
 
    create_component(&rt, "", "constructor", no_args());
 
}
 

	
 
#[test]
 
fn test_tcp_socket_http_request() {
 
    let _pd = ProtocolDescription::parse(b"
 
    import std.internet::*;
 

	
 
    primitive requester(out<Cmd> cmd_tx, in<u8[]> data_rx) {
 
        print(\"*** TCPSocket: Sending request\");
 
        sync {
 
            put(cmd_tx, Cmd::Send(b\"GET / HTTP/1.1\\r\\n\\r\\n\"));
 
        }
 

	
 
        print(\"*** TCPSocket: Receiving response\");
 
        auto buffer = {};
 
        auto done_receiving = false;
 
        sync while (!done_receiving) {
 
            put(cmd_tx, Cmd::Receive);
 
            auto data = get(data_rx);
 
            buffer @= data;
 

	
 
            // Completely crap detection of end-of-document. But here we go, we
 
            // try to detect the trailing </html>. Proper way would be to parse
 
            // for 'content-length' or 'content-encoding'
 
            s32 index = 0;
 
            s32 partial_length = cast(length(data) - 7);
 
            while (index < partial_length) {
 
                // No string conversion yet, so check byte buffer one byte at
 
                // a time.
 
                auto c1 = data[index];
 
                if (c1 == cast('<')) {
 
                    auto c2 = data[index + 1];
 
                    auto c3 = data[index + 2];
 
                    auto c4 = data[index + 3];
 
                    auto c5 = data[index + 4];
 
                    auto c6 = data[index + 5];
 
                    auto c7 = data[index + 6];
 
                    if ( // i.e. if (data[index..] == '</html>'
 
                        c2 == cast('/') && c3 == cast('h') && c4 == cast('t') &&
 
                        c5 == cast('m') && c6 == cast('l') && c7 == cast('>')
 
                    ) {
 
                        print(\"*** TCPSocket: Detected </html>\");
 
                        put(cmd_tx, Cmd::Finish);
 
                        done_receiving = true;
 
                    }
 
                }
 
                index += 1;
 
            }
 
        }
 

	
 
        print(\"*** TCPSocket: Requesting shutdown\");
 
        sync {
 
            put(cmd_tx, Cmd::Shutdown);
 
        }
 
    }
 

	
 
    composite main() {
 
        channel cmd_tx -> cmd_rx;
 
        channel data_tx -> data_rx;
 
        new tcp_client({142, 250, 179, 163}, 80, cmd_rx, data_tx); // port 80 of google
 
        new requester(cmd_tx, data_rx);
 
    }
 
    ").expect("compilation");
 

	
 
    // This test is disabled because it performs a HTTP request to google.
 
    // let rt = Runtime::new(1, true, pd).unwrap();
 
    // create_component(&rt, "", "main", no_args());
 
}
 

	
 
#[test]
 
fn test_sending_receiving_union() {
 
    let pd = ProtocolDescription::parse(b"
 
    union Cmd {
 
        Set(u8[]),
 
        Get,
 
        Shutdown,
 
    }
 

	
 
    primitive database(in<Cmd> rx, out<u8[]> tx) {
 
        auto stored = {};
 
        auto done = false;
 
        while (!done) {
 
            sync {
 
                auto command = get(rx);
 
                if (let Cmd::Set(bytes) = command) {
 
                    print(\"database: storing value\");
 
                    stored = bytes;
 
                } else if (let Cmd::Get = command) {
 
                    print(\"database: returning value\");
 
                    put(tx, stored);
 
                } else if (let Cmd::Shutdown = command) {
 
                    print(\"database: shutting down\");
 
                    done = true;
 
                } else while (true) print(\"impossible\"); // no other case possible
 
            }
 
        }
 
    }
 

	
 
    primitive client(out<Cmd> tx, in<u8[]> rx, u32 num_rounds) {
 
        auto round = 0;
 
        while (round < num_rounds) {
 
            auto set_value = b\"hello there\";
 
            print(\"client: putting a value\");
 
            sync put(tx, Cmd::Set(set_value));
 

	
 
            auto retrieved = {};
 
            print(\"client: retrieving what was sent\");
 
            sync {
 
                put(tx, Cmd::Get);
 
                retrieved = get(rx);
 
            }
 

	
 
            if (set_value != retrieved) while (true) print(\"wrong!\");
 

	
 
            round += 1;
 
        }
 

	
 
        sync put(tx, Cmd::Shutdown);
 
    }
 

	
 
    composite main() {
 
        auto num_rounds = 5;
 
        channel cmd_tx -> cmd_rx;
 
        channel data_tx -> data_rx;
 
        new database(cmd_rx, data_tx);
 
        new client(cmd_tx, data_rx, num_rounds);
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(1, false, pd).unwrap();
 
    let rt = Runtime::new(1, LOG_LEVEL, pd).unwrap();
 
    create_component(&rt, "", "main", no_args());
 
}
 
\ No newline at end of file
0 comments (0 inline, 0 general)