Changeset - 11fd959b348a
[Not reviewed]
0 14 0
Max Henger - 3 years ago 2022-03-04 19:21:00
henger@cwi.nl
fix: refactor 1.2.5
4 files changed:
0 comments (0 inline, 0 general)
docs/runtime/sync.md
Show inline comments
 
# Synchronous Communication
 
# Synchronous Communication and Component Orchestration
 

	
 
## 
 
\ No newline at end of file
 
## Introduction
 

	
 
The Reowolf runtime consists of a system that allows multiple components to run within their own thread of execution. These components are able to exchange messages with one another. Components are capable of creating other components, and of creating channels. We may visualise the runtime as a cloud of all kinds of components, connected by the communication channels between them, hence a kind of communication graph.
 

	
 
With this version of the runtime there were several main drivers. For performance reasons we want:
 

	
 
- As little centralized information as possible (because centralization of information implies synchronization to access it).
 
- As much parallelism as possible (when information *must* be exchanged, then make sure as little components are affected as possible).
 

	
 
To keep the complexity of the runtime to a reasonable minimum, the following requirements have to be met as well:
 

	
 
- A component may terminate, therefore potentially not being able to participate in synchronous communication or receive messages. Experimentation showed that the system that ensures that termination is broadcast to all peers should be kept simple (earlier systems depended on a state-machine with assumptions about the order in which messages were exchanged, which greatly complicates the messaging subsystem of the runtime).
 
- Messages should arrive in order (with some exceptions). As we'll see later in this document we have different types of messages. Reasoning about a component's operational state becomes much simpler if we can assume that the transmission of messages between components is ordered.
 

	
 
As we will see there are several types of messages that can be exchanged. Among them we have:
 

	
 
- Data messages: these messages contain the data that is "transmitted from and to PDL code". For each `put` a data message is annotated by the runtime and sent along to the receiving component, which will then hopefully retrieve the data with a `get`. These messages are conceptually sent over channels.
 
- Sync messages: these messages are sent between components to communicate their consensus-state. These messages are not necessarily associated with channels.
 
- Control messages: these messages are sent between components to ensure that the entire runtime is reliably facilitating data exchange. That is: they ensure that the language is working as intended. As an example: sending a port to a different component requires a bit of bookkeeping to ensure that all involved components are aware of the port exchange.
 

	
 
The remainder of this document tries to describe the various technical aspects of synchronous communication and component orchestration.
 

	
 
## Brief Description of Schedulers
 

	
 
Each component conceptually has its own thread of execution. It is executing a program with at any given point in time a particular memory state. In reality there are a limited number of threads that execute components. Making sure that components are scheduled correctly is based on the fact that components are generally executing programs that are blocked at some point: a message needs to be received, or a port is blocked so we cannot send any information. At that point a component is considered "sleeping". Should another component, scheduled on a particular thread, send a message to this sleeping component, then it is "woken up" by putting it into the execution queue.
 

	
 
The job of the scheduler is then to: execute a component scheduled for execution, wait until a component is scheduled, or shut down in case there are no more components to execute.
 

	
 
The details of the execution queue (currently rather simplistically implemented) is not of interest. What is of interest is that a component can only be scheduled once.
 

	
 
## Creation of Channels
 

	
 
Within PDL code it is possible to create new channels. And so a component will always (that is to say: for now) create both endpoints of the channel, hence own both endpoints of the channel upon creation. Identifiers for these ports are generated locally (we don't want to resolve to having to synchronize on some kind of global port ID counter).
 

	
 
As these IDs are generated locally there is no real technical challenge, but note that ports at different components may have the same port ID.
 

	
 
## Creation of Components
 

	
 
Within PDL code it is possible to create components. Upon their creation they can be given endpoints of channels. Hence at component creation we are changing the configuration of the communication graph. All of the relevant components need to be informed about the port changing ownership.
 

	
 
Here we run into a plethora of problems. The other endpoint might have been given away to another created component. The other endpoint may have already been used in communication, such that we already have messages underway for the port we're trying to give to a newly created component. We may have that the local port ID assigned by the creating component is not the same as the local port ID that the newly created component may want to assign to it. We may have that this port has been passed along multiple times already, etc.
 

	
 
We cannot help that messages have already arrived, or are in transit, for the transferred port. But we can make some assumptions that simplify the transfer of ports. As a first one, we have that the creating component decides when the created component is scheduled for execution. We'll choose not to execute it initially, such that we can be sure that it will not send messages over its ports the moment is created. To further simplify the problem, we have assumed that messages arrive in order. So although messages might still be underway for the transferred ports, if we ask the sender to stop sending, and the sender blocks the port and acknowledges that it has received this command. Then the moment the creator receives the acknowledgement it is certain that it has received all messages intended for the transferred ports. We'll also disallow the creation of components during synchronous interactions.
 

	
 
And so here we have our first control protocol. If a port is transferred then we might have:
 

	
 
1. That the peer port is transferred to the new component as well. All is fine and we can take care of the exchange immediately.
 
2. That the peer port stays with the creating component. Here all is fine as well, everything is running in a single thread of execution so we diligently do our bookkeeping on the data associated with the port and the channel and we can transfer the port.
 
3. The peer port is already owned by a different component. Here we need to have a slightly more complicated protocol
 

	
 
In this last case we take the following actions, `C` for creating component, `N` for newly created component, and `P` for the peer component that holds the other port of the same channel.
 

	
 
1. `C` transfers the port to the newly created component `N`, and ask it to come up with a new ID for that port. The port had an ID that was decided by its old owner `C`, and now has one that is agreeable with component `N`.
 
2. `C` sends a control message `PeerChangeBlockPort` to the peer `P`.
 
3. `P` receives the `PeerChangeBlockPort` message. It causes the peer port to be temporarily blocked. `P` may still continue executing its code, but the moment it wishes to send something over this port it is forced to block its execution. In response `P` sends an `Acknowledge` message back to `C`.
 
4. `C` waits for the `Acknowledge` message of `C`. Since the `Acknowledge` message was sent after the last data message that `P` sent to the port under consideration, and because `P` has blocked that port, we are certain that we received all messages. We transfer these messages to `N`.
 
5. Note that there may be multiple ports being transferred from `C` to `N`, each with a potentially different peer. And so here `C` waits until steps 2 through 4 are completed for all of the transferred ports.
 
6. Once `C` has received all of the `Acknowledge` messages it was waiting for, it will send a `PeerChangeUnblockPort` message to each peer `P`. This message contains the new port ID, such that `P` can unblock its port, and continue sending messages over this channel, but now correctly arriving at `N`. Additionally, `C` will now schedule the new component `N`.
 

	
 
There is a bit of extra overhead here with the `PeerChangeBlockPort` -> `Acknowledge` -> `PeerChangeUnblockPort` sequence with respect to other possible schemes. But this one allows `P` to continue executing its code as long as it does not use its blocked port. It also ensures that messages arrive in order: they're all collected by `C`, given to `N`, and only then may `P` continue creating messages to `N`, hence arriving after the earlier messages have been handed off to `N`.
 

	
 
As we'll later introduce, ports can end up being closed. When a port is closed the above procedure is not initiated. A port cannot be reopened, and once a port is closed its peer is also notified that the channel cannot be used anymore. As such, it is not needed (and perhaps impossible, if the memory backing the peer component has already been freed) to notify that the port will change peer.
 

	
 
## Managing the Lifetime of Components
 

	
 
Components are created by other components or by the API. Note that the API may for intents and purposes be viewed as a component. It may own and create channels, and it may create components. Component start, like a function, executing at the top of their program listing and may end in two ways. Either they encounter an unrecoverable error, or they neatly reach the end of their execution.
 

	
 
In either case we want to free up the memory that was occupied by the component during its execution. And we want to make sure that any kind of pending message/action is correctly handled. Apart from that the component contains somekind of message inbox, whose memory is associated with that component. Hence we want to make sure that all peers are aware that they're no longer able to send messages to a terminated component.
 

	
 
A small interlude before we continue: trying to take care of unrecoverable errors that occur during a sync round by incorporating the appropriate logic into the consensus algorithm proved to be rather hard. It caused a large increase in the number of states a component could be in, and as a result made the code much harder to reason about. That is: not so much communicating that an error had ocurred (that needs to occur in every synchronous algorithm), but keeping track of which messages can be sent to which component during the consensus algorithm.
 

	
 
For this reason there are two systems that make sure that components stay alive as long as needed. Firstly components will have a reference counter. For simplicity the component also holds a reference to itself. The component will remove this self-reference when it terminates. Each channel causes two components to also hold references to eachother. *If* a consensus algorithm is implemented such that a central components ends up communicating to all participating parties (using channels or not using channels), then we can make sure that it can reach all participating components by incrementing their reference counts (note that this is not yet properly implemented in the runtime). 
 

	
 
Through this mechanism the consensus algorithm can be greatly simplified. If a component encounters a critical error and is already participated in a sync round, then it can notify the other participants, but remain reachable to all other components until the round ends (and the reference counts are decreased again).
 

	
 
A second system is needed to ensure that a component actually exits (because all the peers hold a reference, and we need all of those references to drop to 0 to truly remove the component from the runtime). And so when a component exits it will send `ClosePort` messages to all of its peers. These peers will `Acknowledge` those messages and close the respective ports, meaning that they will no longer allow sending messages over those ports, that will be a fatal error. However, messages that were sent to the exiting component before receiving the `ClosePort` message might still be underway. And so the terminating component will wait for all of the `Acknowledge` messages for all of its channels such that it knows that it has received all data messages. The component will respond to these intermediate messages with a `DataMessageFailed` message, meaning that the message has been received the moment the component was already terminated, hence the sender should consider this a failed message transmission.
 

	
 
Bringing these systems together: apart from data messages there might still be control messages in transit, or the exiting component might still have some control/sync work to do. And so we need to modify something we said earlier: instead of a component removing its self-reference the moment it terminates, we do this the moment we have received all the `Acknowledge` messages we were expecting. This way if a component is busy creating another component, we're certain that the appropriate protocols are observed. So:
 

	
 
Concluding everything described above, two separate mechanisms will act in conjunction:
 

	
 
- A. The exiting component `E` waiting until it has finished notifying all peers `P` of its termination:
 
  1. Component `E` sends a `ClosePort` message to each peer `P` for each of the shared channels (except when the port is already closed because `P` is also in the process of shutting down).
 
  2. The peer `P` receives the `ClosePort` message and closes the port as a result. This is a change of port state that will cause any subsequent `put` operations on that port to become a fatal error for component `P`. In response the peer `P` sends an `Acknowledge` message to component `E`, unless component `P` exited itself (that is: sending a `ClosePort` message to `E` before the `ClosePort` message from `P` arrived). After closing the port the component `P` will remove the reference to `E`.
 
  3. Component `E` waits until all of its pending control operations are finished (i.e. waiting for the `Acknowledge` messages following `ClosePort` messages, `PeerChangeBlockPort` messages, etc.). Once all of these are finished, note that we can no longer participate in any future control actions: component `E` will not create channels/components itself. Since all of its ports are closed, the peers `P` will also not send any data or control messages.
 
  4. Component `E` now checks its inbox for any remaining messages. It will respond to any data messages that arrived after `E` sending `ClosePort` and before `E` receiving `Acknowledge` with a `DataMessageFailed` message (except for ports that were closed before the `Acknowledge`). Then it removes the reference to itself, therefore decrementing the reference counter for the component by 1.
 

	
 
- B. The reference counting mechanism. Any sync round the exiting component `E` is participating in will conceptually hold a reference to `E`. The component `E` will always respond to sync messages as if it were alive (albeit trying to indicate to everyone that it is actually exiting). The component that removes the last reference to the component `E` (which may be `E` itself, but also a peer `P`) will truly remove the associated memory from the runtime. 
 

	
 
**Note**: We did not consider machine termination. That is to say: once we reach the runtime maturity where communication occurs over different machines, then we have to consider that machines encounter fatal errors. However these can only be resolved by embedding the possibility of failure inside the protocol over which these machines communicate. 
 

	
 
## Sending Data Messages
 

	
 
So far we've discussed the following properties associated with sending data messages:
 

	
 
1. Port IDs are decided locally. So a peer may have an ID that is outdated for the intended recipient.
 
2. Ports can move from owner to owner. So a peer might have a component ID that is outdated for the intended recipient.
 
3. Ports may be closed.
 
4. Message intended for specific ports may end up at an intermediate component that is passing that message along.
 

	
 
However, there are some properties that we can take advantage of:
 

	
 
1. When a component sends a message, it knows for certain what its own component ID and port ID is. So a transmitting port always sends the correct source component/port ID.
 
2. When a component receives a message, it knows for certain what its own component ID and port ID is. So once a receiving port receives a properly annotated message from a transmitted port, the receiving end can be certain about the component IDs and port IDs that make up the channel.
 

	
 
Note that although the message transmitter may not be certain about its final recipient, the components along the way *are* aware of the routing that is necessary to make the message arrive at the intended target. Combing back to the case where we have a creator `C`, new component `N` and peer `P`. Then `P` will send a message intended for `N`, but arriving at `C`. Here `C` can change the target port and component to `N` (as it is in the process of transferring that port, so knows both its original and new port ID). Once the message arrives and is accepted by the recipient then it is certain about the component and port IDs.
 

	
 
## Sending Sync Messages
 

	
 
Sync messages have the purpose of making sure that consensus is reached about the interactions that took place in all of the participating components' sync blocks. The previous runtime featured speculative execution and a branching execution model: a component could exhibit multiple behaviours, and at the end all components decide which combination of local behaviours constitute a satisfying single global behaviour (if one exists at all). Without speculative execution the model can be a lot simpler.
 

	
 
We'll only shortly discuss the mechanisms that are present in the synchronization algorithm. A component has a local counter, that is reset for each synchronous interaction, that is used when transmitting data messages. Such a message will be annotated with the counter at `N`, after which the component sends the next message with annotation `N+1`. At the same time the component will keep track of a local mapping from port ID to port annotation, we'll call this the port mapping. Likewise, when a component receives a data message it will assign the received annotation in its own port mapping. If two components assign the same annotation to the ports that constitute a channel, then there is an agreeable interaction there.
 

	
 
And so at the end of the synchronous round a component will somehow broadcast its port mapping. Note from the discussion above that a transmitting port's annotation is only associated with that transmitting port, since a transmitting port can only truly ever know its own component/port ID. While the receiving port's annotation knows about the peer's component/port ID as well. And so a component can broadcast `(component ID, port ID, mapping)` for each of its transmitting ports, while it can broadcast `(own component ID, own port ID, peer component ID, peer port ID, mapping)` for each receiving port. Then a recipient of these mappings can match them up and make sure that the mappings agree.
 

	
 
Note that this broadcasting of synchronous messages is essentially a component-to-component operation. However these messages must still be sent over ports anyway (and any port that was used to transmit messages to a particular receiving component will do). There are two reasons:
 

	
 
1. The sync message may need to be rerouted (e.g. a sender quickly fires both a data message and a subsequent sync message while the receiving port is being transferred to a new component), but needs to arrive at the same target as the data message. This is essentially restating that a transmitter never knows about the component ID of the recipient.
 
2. The sync message must not be taken into account by the recipient if it has not accepted any messages from the sender yet. Ofcourse this can be achieved in various ways but a simple way to achieve this is to send the sync message over ports.
 

	
 
## Annotating Data Messages
 

	
 
These port mappings are also sent along when sending data messages. We will not go into details but here the mapping makes sure that messages arrive in the right order, and certain kinds of deadlock or inconsistent protocol behaviour may be detected. This port mapping is checked for consistency by the recipient and, when consistent, the target port is updated with its new mapping.
 

	
 
As we'll send along this mapping we will only consider the ports that are shared between the two components. But in the most general case the transmitting ports of the component do not have knowledge about the peer component. And so the sent port mapping will have to contain the annotation for *all* transmitting ports. Receiving port mappings only have to be sent along if they received a message, and here we can indeed apply filtering. Likewise, if the recipient of a port mapping has not yet received anything on its receiving port, then it cannot be sure about the identity of the sender.
 

	
 
This leads to problems both for ensuring the correct ordering of the messages. For finding consensus it is not. Suppose that a port `a` sends a message to a port `b`. Port `b` does not accept it. Upon trying to find consensus we see that `a` will submit an entry in its port mapping, and `b` does not submit anything at all. Hence no solution can be found, as desired.
 

	
 
For the message ordering we require from the receiver that it confirms that, for all of the shared channels, it has the same mapping as the sender sends along. Suppose a component `A` has ports `a_put` and `b_put`, while a component `B` has ports `a_get` and `b_get` (where `a_put -> a_get` and `b_put -> b_get`). Suppose component `A` sends on `a_put` and `b_put` consecutively. And component `B` only receives from `b_get`. Then since `a_get` did not receive from `a_put` (hence did not learn that component/port ID pair of `a_put` is associated with `a_get`), the component `B` cannot figure out that `a_get` should precede a `b_get`. Likewise component `A` has no way to know that `a_put` and `b_put` are sending to the same component, hence it cannot indicate to component `B` that `a_get` should precede `b_get`.
 

	
 
There are some simple assumptions we can make that makes the problem a little bit easier to think about. Suppose again `a_put -> a_get` and `b_put -> b_get`. Suppose `a_put` is used first, where we send along the mapping of `a_put` and `b_put`. Then we send along `b_put`, again sending along the mapping. Then it is possible for the receiving component to accept the wrong message first (e.g. `b_get`, therefore learning about `b`), but it will be impossible to get from `a_get` later, since that one requires `b_put` (of which we learned that it matches `b_get`) to not have sent any messages.
 

	
 
Without adding any extra overhead (e.g. some kind of discovery round per synchronous interaction), we can take three approaches:
 

	
 
1. We simply don't care. It is impossible for a round where messages are received out of order to complete. Hence we temporarily allow a component to take the wrong actions, therefore wasting some CPU time, and to crash/error afterward.
 
2. We remove the entire concept of ordering of channels at a single component. Channels are always independent entities. This way we truly do not have to care. All we care about is that the messages that have been sent over a channel arrive at the other side.
 
3. We slightly modify the algorithm to detect these problems. This can be done in reasonable fashion, albeit a bit "hacky". For each channel there is a slot to receive messages. Messages wait there until the receiver performs a `get` in the PDL code. So far we've only considered learning about the component/port IDs that constitute a channel the moment they're received with a `get`. The algorithm could be changed to already learn about the peer component/port ID the moment the message arrives in the slot.
 

	
 
We'll go with the last option in the current implementation. We return to the problematic example above. Note that messages between components are sent in ordered fashion, and `a_put` happens before `b_put`. Then component `B` will first learn that `a_put` is the peer of `a_get`, then it performs the first `get` on the message from `b_put` to `b_get`. This message is annotated with a port mapping that `a_put` has been used before. We're now able to detect at component `B` that we cannot accept `b_get` before `a_get`.
 

	
 
Concluding:
 

	
 
- Every data message that is transmitted needs to contain the port mapping of all `put`ting ports (annotating them appropriately if they have not yet been used). We also need to include the port mapping of all `get`ting ports that have a pending/received message. The port mapping for `put`ting ports will only include their own ID, the port mapping for `get`ting ports will include the IDs of their peer as well.
 
- Every arriving data message will immediately be used to identify the sender as the peer of the corresponding `get`ter port. Since messages between components arrive in order this allows us to detect when the `put`s are in a different order at the sender as the `get`s at the receiver.
 
\ No newline at end of file
src/protocol/eval/executor.rs
Show inline comments
 

	
 
use std::collections::VecDeque;
 

	
 
use super::value::*;
 
use super::store::*;
 
use super::error::*;
 
use crate::protocol::*;
 
use crate::protocol::ast::*;
 
use crate::protocol::type_table::*;
 

	
 
macro_rules! debug_enabled { () => { false }; }
 
macro_rules! debug_log {
 
    ($format:literal) => {
 
        enabled_debug_print!(false, "exec", $format);
 
    };
 
    ($format:literal, $($args:expr),*) => {
 
        enabled_debug_print!(false, "exec", $format, $($args),*);
 
    };
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub(crate) enum ExprInstruction {
 
    EvalExpr(ExpressionId),
 
    PushValToFront,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub(crate) struct Frame {
 
    pub(crate) definition: ProcedureDefinitionId,
 
    pub(crate) monomorph_type_id: TypeId,
 
    pub(crate) monomorph_index: usize,
 
    pub(crate) position: StatementId,
 
    pub(crate) expr_stack: VecDeque<ExprInstruction>, // hack for expression evaluation, evaluated by popping from back
 
    pub(crate) expr_values: VecDeque<Value>, // hack for expression results, evaluated by popping from front/back
 
    pub(crate) max_stack_size: u32,
 
}
 

	
 
impl Frame {
 
    /// Creates a new execution frame. Does not modify the stack in any way.
 
    pub fn new(heap: &Heap, definition_id: ProcedureDefinitionId, monomorph_type_id: TypeId, monomorph_index: u32) -> Self {
 
    pub fn new(heap: &Heap, definition_id: ProcedureDefinitionId, _monomorph_type_id: TypeId, monomorph_index: u32) -> Self {
 
        let definition = &heap[definition_id];
 
        let outer_scope_id = definition.scope;
 
        let first_statement_id = definition.body;
 

	
 
        // Another not-so-pretty thing that has to be replaced somewhere in the
 
        // future...
 
        fn determine_max_stack_size(heap: &Heap, scope_id: ScopeId, max_size: &mut u32) {
 
            let scope = &heap[scope_id];
 

	
 
            // Check current block
 
            let cur_size = scope.next_unique_id_in_scope as u32;
 
            if cur_size > *max_size { *max_size = cur_size; }
 

	
 
            // And child blocks
 
            for child_scope in &scope.nested {
 
                determine_max_stack_size(heap, *child_scope, max_size);
 
            }
 
        }
 

	
 
        let mut max_stack_size = 0;
 
        determine_max_stack_size(heap, outer_scope_id, &mut max_stack_size);
 

	
 
        Frame{
 
            definition: definition_id,
 
            monomorph_type_id,
 
            monomorph_index: monomorph_index as usize,
 
            position: first_statement_id.upcast(),
 
            expr_stack: VecDeque::with_capacity(128),
 
            expr_values: VecDeque::with_capacity(128),
 
            max_stack_size,
 
        }
 
    }
 

	
 
    /// Prepares a single expression for execution. This involves walking the
 
    /// expression tree and putting them in the `expr_stack` such that
 
    /// continuously popping from its back will evaluate the expression. The
 
    /// results of each expression will be stored by pushing onto `expr_values`.
 
    pub fn prepare_single_expression(&mut self, heap: &Heap, expr_id: ExpressionId) {
 
        debug_assert!(self.expr_stack.is_empty());
 
        self.expr_values.clear(); // May not be empty if last expression result(s) were discarded
 

	
 
        self.serialize_expression(heap, expr_id);
 
    }
 

	
 
    /// Prepares multiple expressions for execution (i.e. evaluating all
 
    /// function arguments or all elements of an array/union literal). Per
 
    /// expression this works the same as `prepare_single_expression`. However
 
    /// after each expression is evaluated we insert a `PushValToFront`
 
    /// instruction
 
    pub fn prepare_multiple_expressions(&mut self, heap: &Heap, expr_ids: &[ExpressionId]) {
 
        debug_assert!(self.expr_stack.is_empty());
 
        self.expr_values.clear();
 

	
 
        for expr_id in expr_ids {
 
            self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
            self.serialize_expression(heap, *expr_id);
 
        }
 
    }
 

	
 
    /// Performs depth-first serialization of expression tree. Let's not care
 
    /// about performance for a temporary runtime implementation
 
    fn serialize_expression(&mut self, heap: &Heap, id: ExpressionId) {
 
        self.expr_stack.push_back(ExprInstruction::EvalExpr(id));
 

	
 
        match &heap[id] {
 
            Expression::Assignment(expr) => {
 
                self.serialize_expression(heap, expr.left);
 
                self.serialize_expression(heap, expr.right);
 
            },
 
            Expression::Binding(expr) => {
 
                self.serialize_expression(heap, expr.bound_to);
 
                self.serialize_expression(heap, expr.bound_from);
 
            },
 
            Expression::Conditional(expr) => {
 
                self.serialize_expression(heap, expr.test);
 
            },
 
            Expression::Binary(expr) => {
 
                self.serialize_expression(heap, expr.left);
 
                self.serialize_expression(heap, expr.right);
 
            },
 
            Expression::Unary(expr) => {
 
                self.serialize_expression(heap, expr.expression);
 
            },
 
            Expression::Indexing(expr) => {
 
                self.serialize_expression(heap, expr.index);
 
                self.serialize_expression(heap, expr.subject);
 
            },
 
            Expression::Slicing(expr) => {
 
                self.serialize_expression(heap, expr.from_index);
 
                self.serialize_expression(heap, expr.to_index);
 
                self.serialize_expression(heap, expr.subject);
 
            },
 
            Expression::Select(expr) => {
 
                self.serialize_expression(heap, expr.subject);
 
            },
 
            Expression::Literal(expr) => {
 
                // Here we only care about literals that have subexpressions
 
                match &expr.value {
 
                    Literal::Null | Literal::True | Literal::False |
 
                    Literal::Character(_) | Literal::String(_) |
 
                    Literal::Integer(_) | Literal::Enum(_) => {
 
                        // No subexpressions
 
                    },
 
                    Literal::Struct(literal) => {
 
                        // Note: fields expressions are evaluated in programmer-
 
                        // specified order. But struct construction expects them
 
                        // in type-defined order. I might want to come back to
 
                        // this.
 
                        let mut _num_pushed = 0;
 
                        for want_field_idx in 0..literal.fields.len() {
 
                            for field in &literal.fields {
 
                                if field.field_idx == want_field_idx {
 
                                    _num_pushed += 1;
 
                                    self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                                    self.serialize_expression(heap, field.value);
 
                                }
 
                            }
 
                        }
 
                        debug_assert_eq!(_num_pushed, literal.fields.len())
 
                    },
 
                    Literal::Union(literal) => {
 
                        for value_expr_id in &literal.values {
 
                            self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                            self.serialize_expression(heap, *value_expr_id);
 
                        }
 
                    },
 
                    Literal::Array(value_expr_ids) => {
 
                        for value_expr_id in value_expr_ids {
 
                            self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                            self.serialize_expression(heap, *value_expr_id);
 
                        }
 
                    },
 
                    Literal::Tuple(value_expr_ids) => {
 
                        for value_expr_id in value_expr_ids {
 
                            self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                            self.serialize_expression(heap, *value_expr_id);
 
                        }
 
                    }
 
                }
 
            },
 
            Expression::Cast(expr) => {
 
                self.serialize_expression(heap, expr.subject);
 
            }
 
            Expression::Call(expr) => {
 
                for arg_expr_id in &expr.arguments {
 
                    self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                    self.serialize_expression(heap, *arg_expr_id);
 
                }
 
            },
 
            Expression::Variable(_expr) => {
 
                // No subexpressions
 
            }
 
        }
 
    }
 
}
 

	
 
pub type EvalResult = Result<EvalContinuation, EvalError>;
 

	
 
#[derive(Debug)]
 
pub enum EvalContinuation {
 
    // Returned in both sync and non-sync modes
 
    Stepping,
 
    // Returned only in sync mode
 
    BranchInconsistent,
 
    SyncBlockEnd,
 
    NewFork,
 
    BlockFires(PortId),
 
    BlockGet(PortId),
 
    Put(PortId, ValueGroup),
 
    SelectStart(u32, u32), // (num_cases, num_ports_total)
 
    SelectRegisterPort(u32, u32, PortId), // (case_index, port_index_in_case, port_id)
 
    SelectWait, // wait until select can continue
 
    // Returned only in non-sync mode
 
    ComponentTerminated,
 
    SyncBlockStart,
 
    NewComponent(ProcedureDefinitionId, TypeId, ValueGroup),
 
    NewChannel,
 
}
 

	
 
// Note: cloning is fine, methinks. cloning all values and the heap regions then
 
// we end up with valid "pointers" to heap regions.
 
#[derive(Debug, Clone)]
 
pub struct Prompt {
 
    pub(crate) frames: Vec<Frame>,
 
    pub(crate) store: Store,
 
}
 

	
 
impl Prompt {
 
    pub fn new(types: &TypeTable, heap: &Heap, def: ProcedureDefinitionId, type_id: TypeId, args: ValueGroup) -> Self {
 
        let mut prompt = Self{
 
            frames: Vec::new(),
 
            store: Store::new(),
 
        };
 

	
 
        // Maybe do typechecking in the future?
 
        let monomorph_index = types.get_monomorph(type_id).variant.as_procedure().monomorph_index;
 
        let new_frame = Frame::new(heap, def, type_id, monomorph_index);
 
        let max_stack_size = new_frame.max_stack_size;
 
        prompt.frames.push(new_frame);
 
        args.into_store(&mut prompt.store);
 
        prompt.store.reserve_stack(max_stack_size);
 

	
 
        prompt
 
    }
 

	
 
    /// Big 'ol function right here. Didn't want to break it up unnecessarily.
 
    /// It consists of, in sequence: executing any expressions that should be
 
    /// executed before the next statement can be evaluated, then a section that
 
    /// performs debug printing, and finally a section that takes the next
 
    /// statement and executes it. If the statement requires any expressions to
 
    /// be evaluated, then they will be added such that the next time `step` is
 
    /// called, all of these expressions are indeed evaluated.
 
    pub(crate) fn step(&mut self, types: &TypeTable, heap: &Heap, modules: &[Module], ctx: &mut impl RunContext) -> EvalResult {
 
        // Helper function to transfer multiple values from the expression value
 
        // array into a heap region (e.g. constructing arrays or structs).
 
        fn transfer_expression_values_front_into_heap(cur_frame: &mut Frame, store: &mut Store, num_values: usize) -> HeapPos {
 
            let heap_pos = store.alloc_heap();
 

	
 
            // Do the transformation first (because Rust...)
 
            for val_idx in 0..num_values {
 
                cur_frame.expr_values[val_idx] = store.read_take_ownership(cur_frame.expr_values[val_idx].clone());
 
            }
 

	
 
            // And now transfer to the heap region
 
            let values = &mut store.heap_regions[heap_pos as usize].values;
 
            debug_assert!(values.is_empty());
 
            values.reserve(num_values);
 
            for _ in 0..num_values {
 
                values.push(cur_frame.expr_values.pop_front().unwrap());
 
            }
 

	
 
            heap_pos
 
        }
 

	
 
        // Helper function to make sure that an index into an aray is valid.
 
        fn array_inclusive_index_is_invalid(store: &Store, array_heap_pos: u32, idx: i64) -> bool {
 
            let array_len = store.heap_regions[array_heap_pos as usize].values.len();
 
            return idx < 0 || idx >= array_len as i64;
 
        }
 

	
 
        fn array_exclusive_index_is_invalid(store: &Store, array_heap_pos: u32, idx: i64) -> bool {
 
            let array_len = store.heap_regions[array_heap_pos as usize].values.len();
 
            return idx < 0 || idx > array_len as i64;
 
        }
 

	
 
        fn construct_array_error(prompt: &Prompt, modules: &[Module], heap: &Heap, expr_id: ExpressionId, heap_pos: u32, idx: i64) -> EvalError {
 
            let array_len = prompt.store.heap_regions[heap_pos as usize].values.len();
 
            return EvalError::new_error_at_expr(
 
                prompt, modules, heap, expr_id,
 
                format!("index {} is out of bounds: array length is {}", idx, array_len)
 
            )
 
        }
 

	
 
        // Checking if we're at the end of execution
 
        let cur_frame = self.frames.last_mut().unwrap();
 
        if cur_frame.position.is_invalid() {
 
            if heap[cur_frame.definition].kind == ProcedureKind::Function {
 
                todo!("End of function without return, return an evaluation error");
 
            }
 
            return Ok(EvalContinuation::ComponentTerminated);
 
        }
 

	
 
        debug_log!("Taking step in '{}'", heap[cur_frame.definition].identifier.value.as_str());
 

	
 
        // Execute all pending expressions
 
        while !cur_frame.expr_stack.is_empty() {
 
            let next = cur_frame.expr_stack.pop_back().unwrap();
 
            debug_log!("Expr stack: {:?}", next);
 
            match next {
 
                ExprInstruction::PushValToFront => {
 
                    cur_frame.expr_values.rotate_right(1);
 
                },
 
                ExprInstruction::EvalExpr(expr_id) => {
 
                    let expr = &heap[expr_id];
 
                    match expr {
 
                        Expression::Assignment(expr) => {
 
                            let to = cur_frame.expr_values.pop_back().unwrap().as_ref();
 
                            let rhs = cur_frame.expr_values.pop_back().unwrap();
 

	
 
                            // Note: although not pretty, the assignment operator takes ownership
 
                            // of the right-hand side value when possible. So we do not drop the
 
                            // rhs's optionally owned heap data.
 
                            let rhs = self.store.read_take_ownership(rhs);
 
                            apply_assignment_operator(&mut self.store, to, expr.operation, rhs);
 
                        },
 
                        Expression::Binding(_expr) => {
 
                            let bind_to = cur_frame.expr_values.pop_back().unwrap();
 
                            let bind_from = cur_frame.expr_values.pop_back().unwrap();
 
                            let bind_to_heap_pos = bind_to.get_heap_pos();
 
                            let bind_from_heap_pos = bind_from.get_heap_pos();
 

	
 
                            let result = apply_binding_operator(&mut self.store, bind_to, bind_from);
 
                            self.store.drop_value(bind_to_heap_pos);
 
                            self.store.drop_value(bind_from_heap_pos);
 
                            cur_frame.expr_values.push_back(Value::Bool(result));
 
                        },
 
                        Expression::Conditional(expr) => {
 
                            // Evaluate testing expression, then extend the
 
                            // expression stack with the appropriate expression
 
                            let test_result = cur_frame.expr_values.pop_back().unwrap().as_bool();
 
                            if test_result {
 
                                cur_frame.serialize_expression(heap, expr.true_expression);
 
                            } else {
 
                                cur_frame.serialize_expression(heap, expr.false_expression);
 
                            }
 
                        },
 
                        Expression::Binary(expr) => {
 
                            let lhs = cur_frame.expr_values.pop_back().unwrap();
 
                            let rhs = cur_frame.expr_values.pop_back().unwrap();
 
                            let result = apply_binary_operator(&mut self.store, &lhs, expr.operation, &rhs);
 
                            cur_frame.expr_values.push_back(result);
 
                            self.store.drop_value(lhs.get_heap_pos());
 
                            self.store.drop_value(rhs.get_heap_pos());
 
                        },
 
                        Expression::Unary(expr) => {
 
                            let val = cur_frame.expr_values.pop_back().unwrap();
 
                            let result = apply_unary_operator(&mut self.store, expr.operation, &val);
 
                            cur_frame.expr_values.push_back(result);
 
                            self.store.drop_value(val.get_heap_pos());
 
                        },
 
                        Expression::Indexing(_expr) => {
 
                            // Evaluate index. Never heap allocated so we do
 
                            // not have to drop it.
 
                            let index = cur_frame.expr_values.pop_back().unwrap();
 
                            let index = self.store.maybe_read_ref(&index);
 

	
 
                            debug_assert!(index.is_integer());
 
                            let index = if index.is_signed_integer() {
 
                                index.as_signed_integer() as i64
 
                            } else {
 
                                index.as_unsigned_integer() as i64
 
                            };
 

	
 
                            let subject = cur_frame.expr_values.pop_back().unwrap();
 

	
 
                            let (deallocate_heap_pos, value_to_push) = match subject {
 
                                Value::Ref(value_ref) => {
 
                                    // Our expression stack value is a reference to something that
 
                                    // exists in the normal stack/heap. We don't want to deallocate
 
                                    // this thing. Rather we want to return a reference to it.
 
                                    let subject = self.store.read_ref(value_ref);
 
                                    let subject_heap_pos = match subject {
 
                                        Value::String(v) => *v,
 
                                        Value::Array(v) => *v,
 
                                        Value::Message(v) => *v,
 
                                        _ => unreachable!(),
 
                                    };
 

	
 
                                    if array_inclusive_index_is_invalid(&self.store, subject_heap_pos, index) {
 
                                        return Err(construct_array_error(self, modules, heap, expr_id, subject_heap_pos, index));
 
                                    }
 

	
 
                                    (None, Value::Ref(ValueId::Heap(subject_heap_pos, index as u32)))
 
                                },
 
                                _ => {
 
                                    // Our value lives on the expression stack, hence we need to
 
                                    // clone whatever we're referring to. Then drop the subject.
 
                                    let subject_heap_pos = match &subject {
 
                                        Value::String(v) => *v,
 
                                        Value::Array(v) => *v,
 
                                        Value::Message(v) => *v,
 
                                        _ => unreachable!(),
 
                                    };
 

	
 
                                    if array_inclusive_index_is_invalid(&self.store, subject_heap_pos, index) {
 
                                        return Err(construct_array_error(self, modules, heap, expr_id, subject_heap_pos, index));
 
                                    }
 

	
 
                                    let subject_indexed = Value::Ref(ValueId::Heap(subject_heap_pos, index as u32));
 
                                    (Some(subject_heap_pos), self.store.clone_value(subject_indexed))
 
                                },
 
                            };
 

	
 
                            cur_frame.expr_values.push_back(value_to_push);
 
                            self.store.drop_value(deallocate_heap_pos);
 
                        },
 
                        Expression::Slicing(expr) => {
 
                            // Evaluate indices
 
                            let from_index = cur_frame.expr_values.pop_back().unwrap();
 
                            let from_index = self.store.maybe_read_ref(&from_index);
 
                            let to_index = cur_frame.expr_values.pop_back().unwrap();
 
                            let to_index = self.store.maybe_read_ref(&to_index);
 

	
 
                            debug_assert!(from_index.is_integer() && to_index.is_integer());
 
                            let from_index = if from_index.is_signed_integer() {
 
                                from_index.as_signed_integer()
 
                            } else {
 
                                from_index.as_unsigned_integer() as i64
 
                            };
 
                            let to_index = if to_index.is_signed_integer() {
 
                                to_index.as_signed_integer()
 
                            } else {
 
                                to_index.as_unsigned_integer() as i64
 
                            };
 

	
 
                            // Dereference subject if needed
 
                            let subject = cur_frame.expr_values.pop_back().unwrap();
 
                            let deref_subject = self.store.maybe_read_ref(&subject);
 

	
 
                            // Slicing needs to produce a copy anyway (with the
 
                            // current evaluator implementation)
 
                            enum ValueKind{ Array, String, Message }
 
                            let (value_kind, array_heap_pos) = match deref_subject {
 
                                Value::Array(v) => (ValueKind::Array, *v),
 
                                Value::String(v) => (ValueKind::String, *v),
 
                                Value::Message(v) => (ValueKind::Message, *v),
 
                                _ => unreachable!()
 
                            };
 

	
 
                            if array_inclusive_index_is_invalid(&self.store, array_heap_pos, from_index) {
 
                                return Err(construct_array_error(self, modules, heap, expr.from_index, array_heap_pos, from_index));
 
                            }
 
                            if array_exclusive_index_is_invalid(&self.store, array_heap_pos, to_index) {
 
                                return Err(construct_array_error(self, modules, heap, expr.to_index, array_heap_pos, to_index));
 
                            }
 

	
 
                            // Again: would love to push directly, but rust...
 
                            let new_heap_pos = self.store.alloc_heap();
 
                            debug_assert!(self.store.heap_regions[new_heap_pos as usize].values.is_empty());
 
                            if to_index > from_index {
 
                                let from_index = from_index as usize;
 
                                let to_index = to_index as usize;
 
                                let mut values = Vec::with_capacity(to_index - from_index);
 
                                for idx in from_index..to_index {
 
                                    let value = self.store.heap_regions[array_heap_pos as usize].values[idx].clone();
 
                                    values.push(self.store.clone_value(value));
 
                                }
 

	
 
                                self.store.heap_regions[new_heap_pos as usize].values = values;
 

	
 
                            } // else: empty range
 

	
 
                            cur_frame.expr_values.push_back(match value_kind {
 
                                ValueKind::Array => Value::Array(new_heap_pos),
 
                                ValueKind::String => Value::String(new_heap_pos),
 
                                ValueKind::Message => Value::Message(new_heap_pos),
 
                            });
 

	
 
                            // Dropping the original subject, because we don't
 
                            // want to drop something on the stack
 
                            self.store.drop_value(subject.get_heap_pos());
 
                        },
 
                        Expression::Select(expr) => {
 
                            let subject= cur_frame.expr_values.pop_back().unwrap();
 
                            let mono_data = &heap[cur_frame.definition].monomorphs[cur_frame.monomorph_index];
 
                            let field_idx = mono_data.expr_info[expr.type_index as usize].variant.as_select() as u32;
 

	
 
                            // Note: same as above: clone if value lives on expr stack, simply
 
                            // refer to it if it already lives on the stack/heap.
 
                            let (deallocate_heap_pos, value_to_push) = match subject {
 
                                Value::Ref(value_ref) => {
 
                                    let subject = self.store.read_ref(value_ref);
 
                                    let subject_heap_pos = match expr.kind {
 
                                        SelectKind::StructField(_) => subject.as_struct(),
 
                                        SelectKind::TupleMember(_) => subject.as_tuple(),
 
                                    };
 

	
 
                                    (None, Value::Ref(ValueId::Heap(subject_heap_pos, field_idx)))
 
                                },
 
                                _ => {
 
                                    let subject_heap_pos = match expr.kind {
 
                                        SelectKind::StructField(_) => subject.as_struct(),
 
                                        SelectKind::TupleMember(_) => subject.as_tuple(),
 
                                    };
 
                                    let subject_indexed = Value::Ref(ValueId::Heap(subject_heap_pos, field_idx));
 
                                    (Some(subject_heap_pos), self.store.clone_value(subject_indexed))
 
                                },
 
                            };
 

	
 
                            cur_frame.expr_values.push_back(value_to_push);
 
                            self.store.drop_value(deallocate_heap_pos);
 
                        },
 
                        Expression::Literal(expr) => {
 
                            let value = match &expr.value {
 
                                Literal::Null => Value::Null,
 
                                Literal::True => Value::Bool(true),
 
                                Literal::False => Value::Bool(false),
 
                                Literal::Character(lit_value) => Value::Char(*lit_value),
 
                                Literal::String(lit_value) => {
 
                                    let heap_pos = self.store.alloc_heap();
 
                                    let values = &mut self.store.heap_regions[heap_pos as usize].values;
 
                                    let value = lit_value.as_str();
 
                                    debug_assert!(values.is_empty());
 
                                    values.reserve(value.len());
 
                                    for character in value.as_bytes() {
 
                                        debug_assert!(character.is_ascii());
 
                                        values.push(Value::Char(*character as char));
 
                                    }
 
                                    Value::String(heap_pos)
 
                                }
 
                                Literal::Integer(lit_value) => {
 
                                    use ConcreteTypePart as CTP;
 
                                    let mono_data = &heap[cur_frame.definition].monomorphs[cur_frame.monomorph_index];
 
                                    let type_id = mono_data.expr_info[expr.type_index as usize].type_id;
 
                                    let concrete_type = &types.get_monomorph(type_id).concrete_type;
 

	
 
                                    debug_assert_eq!(concrete_type.parts.len(), 1);
 
                                    match concrete_type.parts[0] {
 
                                        CTP::UInt8  => Value::UInt8(lit_value.unsigned_value as u8),
 
                                        CTP::UInt16 => Value::UInt16(lit_value.unsigned_value as u16),
 
                                        CTP::UInt32 => Value::UInt32(lit_value.unsigned_value as u32),
 
                                        CTP::UInt64 => Value::UInt64(lit_value.unsigned_value as u64),
 
                                        CTP::SInt8  => Value::SInt8(lit_value.unsigned_value as i8),
 
                                        CTP::SInt16 => Value::SInt16(lit_value.unsigned_value as i16),
 
                                        CTP::SInt32 => Value::SInt32(lit_value.unsigned_value as i32),
 
                                        CTP::SInt64 => Value::SInt64(lit_value.unsigned_value as i64),
 
                                        _ => unreachable!("got concrete type {:?} for integer literal at expr {:?}", concrete_type, expr_id),
 
                                    }
 
                                }
 
                                Literal::Struct(lit_value) => {
 
                                    let heap_pos = transfer_expression_values_front_into_heap(
 
                                        cur_frame, &mut self.store, lit_value.fields.len()
 
                                    );
 
                                    Value::Struct(heap_pos)
 
                                }
 
                                Literal::Enum(lit_value) => {
 
                                    Value::Enum(lit_value.variant_idx as i64)
 
                                }
 
                                Literal::Union(lit_value) => {
 
                                    let heap_pos = transfer_expression_values_front_into_heap(
 
                                        cur_frame, &mut self.store, lit_value.values.len()
 
                                    );
 
                                    Value::Union(lit_value.variant_idx as i64, heap_pos)
 
                                }
 
                                Literal::Array(lit_value) => {
 
                                    let heap_pos = transfer_expression_values_front_into_heap(
 
                                        cur_frame, &mut self.store, lit_value.len()
 
                                    );
 
                                    Value::Array(heap_pos)
 
                                }
 
                                Literal::Tuple(lit_value) => {
 
                                    let heap_pos = transfer_expression_values_front_into_heap(
 
                                        cur_frame, &mut self.store, lit_value.len()
 
                                    );
 
                                    Value::Tuple(heap_pos)
 
                                }
 
                            };
 

	
 
                            cur_frame.expr_values.push_back(value);
 
                        },
 
                        Expression::Cast(expr) => {
 
                            let mono_data = &heap[cur_frame.definition].monomorphs[cur_frame.monomorph_index];
 
                            let type_id = mono_data.expr_info[expr.type_index as usize].type_id;
 
                            let concrete_type = &types.get_monomorph(type_id).concrete_type;
 

	
 
                            // Typechecking reduced this to two cases: either we
 
                            // have casting noop (same types), or we're casting
 
                            // between integer/bool/char types.
 
                            let subject = cur_frame.expr_values.pop_back().unwrap();
 
                            match apply_casting(&mut self.store, concrete_type, &subject) {
 
                                Ok(value) => cur_frame.expr_values.push_back(value),
 
                                Err(msg) => {
 
                                    return Err(EvalError::new_error_at_expr(self, modules, heap, expr.this.upcast(), msg));
 
                                }
 
                            }
 

	
 
                            self.store.drop_value(subject.get_heap_pos());
 
                        }
 
                        Expression::Call(expr) => {
 
                            // If we're dealing with a builtin we don't do any
 
                            // fancy shenanigans at all, just push the result.
 
                            match expr.method {
 
                                Method::Get => {
 
                                    let value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let value = self.store.maybe_read_ref(&value).clone();
 

	
 
                                    let port_id = if let Value::Input(port_id) = value {
 
                                        port_id
 
                                    } else {
 
                                        unreachable!("executor calling 'get' on value {:?}", value)
 
                                    };
 

	
 
                                    match ctx.performed_get(port_id) {
 
                                        Some(result) => {
 
                                            // We have the result. Merge the `ValueGroup` with the
 
                                            // stack/heap storage.
 
                                            debug_assert_eq!(result.values.len(), 1);
 
                                            result.into_stack(&mut cur_frame.expr_values, &mut self.store);
 
                                        },
 
                                        None => {
 
                                            // Don't have the result yet, prepare the expression to
 
                                            // get run again after we've received a message.
 
                                            cur_frame.expr_values.push_front(value.clone());
 
                                            cur_frame.expr_stack.push_back(ExprInstruction::EvalExpr(expr_id));
 
                                            return Ok(EvalContinuation::BlockGet(port_id));
 
                                        }
 
                                    }
 
                                },
 
                                Method::Put => {
 
                                    let port_value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let deref_port_value = self.store.maybe_read_ref(&port_value).clone();
 

	
 
                                    let port_id = if let Value::Output(port_id) = deref_port_value {
 
                                        port_id
 
                                    } else {
 
                                        unreachable!("executor calling 'put' on value {:?}", deref_port_value)
 
                                    };
 

	
 
                                    let msg_value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let deref_msg_value = self.store.maybe_read_ref(&msg_value).clone();
 

	
 
                                    if ctx.performed_put(port_id) {
 
                                        // We're fine, deallocate in case the expression value stack
 
                                        // held an owned value
 
                                        self.store.drop_value(msg_value.get_heap_pos());
 
                                    } else {
 
                                        // Prepare to execute again
 
                                        cur_frame.expr_values.push_front(msg_value);
 
                                        cur_frame.expr_values.push_front(port_value);
 
                                        cur_frame.expr_stack.push_back(ExprInstruction::EvalExpr(expr_id));
 
                                        let value_group = ValueGroup::from_store(&self.store, &[deref_msg_value]);
 
                                        return Ok(EvalContinuation::Put(port_id, value_group));
 
                                    }
 
                                },
 
                                Method::Fires => {
 
                                    let port_value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let port_value_deref = self.store.maybe_read_ref(&port_value).clone();
 
                                    let port_id = port_value_deref.as_port_id();
 

	
 
                                    match ctx.fires(port_id) {
 
                                        None => {
 
                                            cur_frame.expr_values.push_front(port_value);
 
                                            cur_frame.expr_stack.push_back(ExprInstruction::EvalExpr(expr_id));
 
                                            return Ok(EvalContinuation::BlockFires(port_id));
 
                                        },
 
                                        Some(value) => {
 
                                            cur_frame.expr_values.push_back(value);
 
                                        }
 
                                    }
 
                                },
 
                                Method::Create => {
 
                                    let length_value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let length_value = self.store.maybe_read_ref(&length_value);
 
                                    let length = if length_value.is_signed_integer() {
 
                                        let length_value = length_value.as_signed_integer();
 
                                        if length_value < 0 {
 
                                            return Err(EvalError::new_error_at_expr(
 
                                                self, modules, heap, expr_id,
 
                                                format!("got length '{}', can only create a message with a non-negative length", length_value)
 
                                            ));
 
                                        }
 

	
 
                                        length_value as u64
 
                                    } else {
 
                                        debug_assert!(length_value.is_unsigned_integer());
 
                                        length_value.as_unsigned_integer()
 
                                    };
 

	
 
                                    let heap_pos = self.store.alloc_heap();
 
                                    let values = &mut self.store.heap_regions[heap_pos as usize].values;
 
                                    debug_assert!(values.is_empty());
 
                                    values.resize(length as usize, Value::UInt8(0));
 
                                    cur_frame.expr_values.push_back(Value::Message(heap_pos));
 
                                },
 
                                Method::Length => {
 
                                    let value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let value_heap_pos = value.get_heap_pos();
 
                                    let value = self.store.maybe_read_ref(&value);
 

	
 
                                    let heap_pos = match value {
 
                                        Value::Array(pos) => *pos,
 
                                        Value::String(pos) => *pos,
 
                                        _ => unreachable!("length(...) on {:?}", value),
 
                                    };
 

	
 
                                    let len = self.store.heap_regions[heap_pos as usize].values.len();
 

	
 
                                    // TODO: @PtrInt
 
                                    cur_frame.expr_values.push_back(Value::UInt32(len as u32));
 
                                    self.store.drop_value(value_heap_pos);
 
                                },
 
                                Method::Assert => {
 
                                    let value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let value = self.store.maybe_read_ref(&value).clone();
 
                                    if !value.as_bool() {
 
                                        return Ok(EvalContinuation::BranchInconsistent)
 
                                    }
 
                                },
 
                                Method::Print => {
 
                                    // Convert the runtime-variant of a string
 
                                    // into an actual string.
 
                                    let value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let value_heap_pos = value.as_string();
 
                                    let elements = &self.store.heap_regions[value_heap_pos as usize].values;
 

	
 
                                    let mut message = String::with_capacity(elements.len());
 
                                    for element in elements {
 
                                        message.push(element.as_char());
 
                                    }
 

	
 
                                    // Drop the heap-allocated value from the
 
                                    // store
 
                                    self.store.drop_heap_pos(value_heap_pos);
 
                                    println!("{}", message);
 
                                },
 
                                Method::SelectStart => {
 
                                    let num_cases = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_uint32();
 
                                    let num_ports = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_uint32();
 

	
 
                                    return Ok(EvalContinuation::SelectStart(num_cases, num_ports));
 
                                },
 
                                Method::SelectRegisterCasePort => {
 
                                    let case_index = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_uint32();
 
                                    let port_index = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_uint32();
 
                                    let port_value = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_port_id();
 

	
 
                                    return Ok(EvalContinuation::SelectRegisterPort(case_index, port_index, port_value));
 
                                },
 
                                Method::SelectWait => {
 
                                    match ctx.performed_select_wait() {
 
                                        Some(select_index) => {
 
                                            cur_frame.expr_values.push_back(Value::UInt32(select_index));
 
                                        },
 
                                        None => {
 
                                            cur_frame.expr_stack.push_back(ExprInstruction::EvalExpr(expr.this.upcast()));
 
                                            return Ok(EvalContinuation::SelectWait)
 
                                        },
 
                                    }
 
                                },
 
                                Method::UserComponent => {
 
                                    // This is actually handled by the evaluation
 
                                    // of the statement.
 
                                    debug_assert_eq!(heap[expr.procedure].parameters.len(), cur_frame.expr_values.len());
 
                                    debug_assert_eq!(heap[cur_frame.position].as_new().expression, expr.this)
 
                                },
 
                                Method::UserFunction => {
 
                                    // Push a new frame. Note that all expressions have
 
                                    // been pushed to the front, so they're in the order
 
                                    // of the definition.
 
                                    let num_args = expr.arguments.len();
 

	
 
                                    // Determine stack boundaries
 
                                    let cur_stack_boundary = self.store.cur_stack_boundary;
 
                                    let new_stack_boundary = self.store.stack.len();
 

	
 
                                    // Push new boundary and function arguments for new frame
 
                                    self.store.stack.push(Value::PrevStackBoundary(cur_stack_boundary as isize));
 
                                    for _ in 0..num_args {
 
                                        let argument = self.store.read_take_ownership(cur_frame.expr_values.pop_front().unwrap());
 
                                        self.store.stack.push(argument);
 
                                    }
 

	
 
                                    // Determine the monomorph index of the function we're calling
 
                                    let mono_data = &heap[cur_frame.definition].monomorphs[cur_frame.monomorph_index];
 
                                    let (type_id, monomorph_index) = mono_data.expr_info[expr.type_index as usize].variant.as_procedure();
 

	
 
                                    // Push the new frame and reserve its stack size
 
                                    let new_frame = Frame::new(heap, expr.procedure, type_id, monomorph_index);
 
                                    let new_stack_size = new_frame.max_stack_size;
 
                                    self.frames.push(new_frame);
 
                                    self.store.cur_stack_boundary = new_stack_boundary;
 
                                    self.store.reserve_stack(new_stack_size);
 

	
 
                                    // To simplify the logic a little bit we will now
 
                                    // return and ask our caller to call us again
 
                                    return Ok(EvalContinuation::Stepping);
 
                                }
 
                            }
 
                        },
 
                        Expression::Variable(expr) => {
 
                            let variable = &heap[expr.declaration.unwrap()];
 
                            let ref_value = if expr.used_as_binding_target {
 
                                Value::Binding(variable.unique_id_in_scope as StackPos)
 
                            } else {
 
                                Value::Ref(ValueId::Stack(variable.unique_id_in_scope as StackPos))
 
                            };
 
                            cur_frame.expr_values.push_back(ref_value);
 
                        }
 
                    }
 
                }
 
            }
 
        }
 

	
 
        debug_log!("Frame [{:?}] at {:?}", cur_frame.definition, cur_frame.position);
 
        if debug_enabled!() {
 
            debug_log!("Expression value stack (size = {}):", cur_frame.expr_values.len());
 
            for (_stack_idx, _stack_val) in cur_frame.expr_values.iter().enumerate() {
 
                debug_log!("  [{:03}] {:?}", _stack_idx, _stack_val);
 
            }
 

	
 
            debug_log!("Stack (size = {}):", self.store.stack.len());
 
            for (_stack_idx, _stack_val) in self.store.stack.iter().enumerate() {
 
                debug_log!("  [{:03}] {:?}", _stack_idx, _stack_val);
 
            }
 

	
 
            debug_log!("Heap:");
 
            for (_heap_idx, _heap_region) in self.store.heap_regions.iter().enumerate() {
 
                let _is_free = self.store.free_regions.iter().any(|idx| *idx as usize == _heap_idx);
 
                debug_log!("  [{:03}] in_use: {}, len: {}, vals: {:?}", _heap_idx, !_is_free, _heap_region.values.len(), &_heap_region.values);
 
            }
 
        }
 
        // No (more) expressions to evaluate. So evaluate statement (that may
 
        // depend on the result on the last evaluated expression(s))
 
        let stmt = &heap[cur_frame.position];
 
        let return_value = match stmt {
 
            Statement::Block(stmt) => {
 
                debug_assert!(stmt.statements.is_empty() || stmt.next == stmt.statements[0]);
 
                cur_frame.position = stmt.next;
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::EndBlock(stmt) => {
 
                let block = &heap[stmt.start_block];
 
                let scope = &heap[block.scope];
 
                self.store.clear_stack(scope.first_unique_id_in_scope as usize);
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Local(stmt) => {
 
                match stmt {
 
                    LocalStatement::Memory(stmt) => {
 
                        dbg_code!({
 
                            let variable = &heap[stmt.variable];
 
                            debug_assert!(match self.store.read_ref(ValueId::Stack(variable.unique_id_in_scope as u32)) {
 
                                Value::Unassigned => false,
 
                                _ => true,
 
                            });
 
                        });
 

	
 
                        cur_frame.position = stmt.next;
 
                        Ok(EvalContinuation::Stepping)
 
                    },
 
                    LocalStatement::Channel(stmt) => {
 
                        // Need to create a new channel by requesting it from
 
                        // the runtime.
 
                        match ctx.created_channel() {
 
                            None => {
 
                                // No channel is pending. So request one
 
                                    Ok(EvalContinuation::NewChannel)
 
                            },
 
                            Some((put_port, get_port)) => {
 
                                self.store.write(ValueId::Stack(heap[stmt.from].unique_id_in_scope as u32), put_port);
 
                                self.store.write(ValueId::Stack(heap[stmt.to].unique_id_in_scope as u32), get_port);
 
                                cur_frame.position = stmt.next;
 
                                Ok(EvalContinuation::Stepping)
 
                            }
 
                        }
 
                    }
 
                }
 
            },
 
            Statement::Labeled(stmt) => {
 
                cur_frame.position = stmt.body;
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::If(stmt) => {
 
                debug_assert_eq!(cur_frame.expr_values.len(), 1, "expected one expr value for if statement");
 
                let test_value = cur_frame.expr_values.pop_back().unwrap();
 
                let test_value = self.store.maybe_read_ref(&test_value).as_bool();
 
                if test_value {
 
                    cur_frame.position = stmt.true_case.body;
 
                } else if let Some(false_body) = stmt.false_case {
 
                    cur_frame.position = false_body.body;
 
                } else {
 
                    // Not true, and no false body
 
                    cur_frame.position = stmt.end_if.upcast();
 
                }
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::EndIf(stmt) => {
 
                cur_frame.position = stmt.next;
 
                let if_stmt = &heap[stmt.start_if];
 
                debug_assert_eq!(
 
                    heap[if_stmt.true_case.scope].first_unique_id_in_scope,
 
                    heap[if_stmt.false_case.unwrap_or(if_stmt.true_case).scope].first_unique_id_in_scope,
 
                );
 
                let scope = &heap[if_stmt.true_case.scope];
 
                self.store.clear_stack(scope.first_unique_id_in_scope as usize);
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::While(stmt) => {
 
                debug_assert_eq!(cur_frame.expr_values.len(), 1, "expected one expr value for while statement");
 
                let test_value = cur_frame.expr_values.pop_back().unwrap();
 
                let test_value = self.store.maybe_read_ref(&test_value).as_bool();
 
                if test_value {
 
                    cur_frame.position = stmt.body;
 
                } else {
 
                    cur_frame.position = stmt.end_while.upcast();
 
                }
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::EndWhile(stmt) => {
 
                cur_frame.position = stmt.next;
 
                let start_while = &heap[stmt.start_while];
 
                let scope = &heap[start_while.scope];
 
                self.store.clear_stack(scope.first_unique_id_in_scope as usize);
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Break(stmt) => {
 
                cur_frame.position = stmt.target.upcast();
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Continue(stmt) => {
 
                cur_frame.position = stmt.target.upcast();
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Synchronous(stmt) => {
 
                cur_frame.position = stmt.body;
 

	
 
                Ok(EvalContinuation::SyncBlockStart)
 
            },
 
            Statement::EndSynchronous(stmt) => {
 
                cur_frame.position = stmt.next;
 
                let start_synchronous = &heap[stmt.start_sync];
 
                let scope = &heap[start_synchronous.scope];
 
                self.store.clear_stack(scope.first_unique_id_in_scope as usize);
 

	
 
                Ok(EvalContinuation::SyncBlockEnd)
 
            },
 
            Statement::Fork(stmt) => {
 
                if stmt.right_body.is_none() {
 
                    // No reason to fork
 
                    cur_frame.position = stmt.left_body;
 
                } else {
 
                    // Need to fork
 
                    if let Some(go_left) = ctx.performed_fork() {
 
                        // Runtime has created a fork
 
                        if go_left {
 
                            cur_frame.position = stmt.left_body;
 
                        } else {
 
                            cur_frame.position = stmt.right_body.unwrap();
 
                        }
 
                    } else {
 
                        // Request the runtime to create a fork of the current
 
                        // branch
 
                        return Ok(EvalContinuation::NewFork);
 
                    }
 
                }
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::EndFork(stmt) => {
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Select(stmt) => {
 
                // This is a trampoline for the statements that were placed by
 
                // the AST transformation pass
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::EndSelect(stmt) => {
 
                cur_frame.position = stmt.next;
 
                let start_select = &heap[stmt.start_select];
 
                if let Some(select_case) = start_select.cases.first() {
 
                    let scope = &heap[select_case.scope];
 
                    self.store.clear_stack(scope.first_unique_id_in_scope as usize);
 
                }
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Return(_stmt) => {
 
                debug_assert_eq!(cur_frame.expr_values.len(), 1, "expected one expr value for return statement");
 

	
 
                // The preceding frame has executed a call, so is expecting the
 
                // return expression on its expression value stack. Note that
 
                // we may be returning a reference to something on our stack,
 
                // so we need to read that value and clone it.
 
                let return_value = cur_frame.expr_values.pop_back().unwrap();
 
                let return_value = match return_value {
 
                    Value::Ref(value_id) => self.store.read_copy(value_id),
 
                    _ => return_value,
 
                };
 

	
 
                // Pre-emptively pop our stack frame
 
                self.frames.pop();
 

	
 
                // Clean up our section of the stack
 
                self.store.clear_stack(0);
 
                self.store.stack.truncate(self.store.cur_stack_boundary + 1);
 
                let prev_stack_idx = self.store.stack.pop().unwrap().as_stack_boundary();
 

	
 
                // TODO: Temporary hack for testing, remove at some point
 
                if self.frames.is_empty() {
 
                    debug_assert!(prev_stack_idx == -1);
 
                    debug_assert!(self.store.stack.len() == 0);
 
                    self.store.stack.push(return_value);
 
                    return Ok(EvalContinuation::ComponentTerminated);
 
                }
 

	
 
                debug_assert!(prev_stack_idx >= 0);
 
                // Return to original state of stack frame
 
                self.store.cur_stack_boundary = prev_stack_idx as usize;
 
                let cur_frame = self.frames.last_mut().unwrap();
 
                cur_frame.expr_values.push_back(return_value);
 

	
 
                // We just returned to the previous frame, which might be in
 
                // the middle of evaluating expressions for a particular
 
                // statement. So we don't want to enter the code below.
 
                return Ok(EvalContinuation::Stepping);
 
            },
 
            Statement::Goto(stmt) => {
 
                cur_frame.position = stmt.target.upcast();
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::New(stmt) => {
 
                let call_expr = &heap[stmt.expression];
 
                debug_assert_eq!(
 
                    cur_frame.expr_values.len(), heap[call_expr.procedure].parameters.len(),
 
                    "mismatch in expr stack size and number of arguments for new statement"
 
                );
 

	
 
                let mono_data = &heap[cur_frame.definition].monomorphs[cur_frame.monomorph_index];
 
                let type_id = mono_data.expr_info[call_expr.type_index as usize].variant.as_procedure().0;
 

	
 
                // Note that due to expression value evaluation they exist in
 
                // reverse order on the stack.
 
                // TODO: Revise this code, keep it as is to be compatible with current runtime
 
                let mut args = Vec::new();
 
                while let Some(value) = cur_frame.expr_values.pop_front() {
 
                    args.push(value);
 
                }
 

	
 
                // Construct argument group, thereby copying heap regions
 
                let argument_group = ValueGroup::from_store(&self.store, &args);
 

	
 
                // Clear any heap regions
 
                for arg in &args {
 
                    self.store.drop_value(arg.get_heap_pos());
 
                }
 

	
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(EvalContinuation::NewComponent(call_expr.procedure, type_id, argument_group))
 
            },
 
            Statement::Expression(stmt) => {
 
                // The expression has just been completely evaluated. Some
 
                // values might have remained on the expression value stack.
 
                // cur_frame.expr_values.clear(); PROPER CLEARING
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
        };
 

	
 
        assert!(
 
            cur_frame.expr_values.is_empty(),
 
            "This is a debugging assertion that will fail if you perform expressions without \
 
            assigning to anything. This should be completely valid, and this assertion should be \
 
            replaced by something that clears the expression values if needed, but I'll keep this \
 
            in for now for debugging purposes."
 
        );
 

	
 
        // If the next statement requires evaluating expressions then we push
 
        // these onto the expression stack. This way we will evaluate this
 
        // stack in the next loop, then evaluate the statement using the result
 
        // from the expression evaluation.
 
        if !cur_frame.position.is_invalid() {
 
            let stmt = &heap[cur_frame.position];
 

	
 
            match stmt {
 
                Statement::Local(stmt) => {
 
                    if let LocalStatement::Memory(stmt) = stmt {
 
                        // Setup as unassigned, when we execute the memory
 
                        // statement (after evaluating expression), it should no
 
                        // longer be `Unassigned`.
 
                        let variable = &heap[stmt.variable];
 
                        self.store.write(ValueId::Stack(variable.unique_id_in_scope as u32), Value::Unassigned);
 
                        cur_frame.prepare_single_expression(heap, stmt.initial_expr.upcast());
 
                    }
 
                },
 
                Statement::If(stmt) => cur_frame.prepare_single_expression(heap, stmt.test),
 
                Statement::While(stmt) => cur_frame.prepare_single_expression(heap, stmt.test),
 
                Statement::Return(stmt) => {
 
                    debug_assert_eq!(stmt.expressions.len(), 1); // TODO: @ReturnValues
 
                    cur_frame.prepare_single_expression(heap, stmt.expressions[0]);
 
                },
 
                Statement::New(stmt) => {
 
                    // Note that we will end up not evaluating the call itself.
 
                    // Rather we will evaluate its expressions and then
 
                    // instantiate the component upon reaching the "new" stmt.
 
                    let call_expr = &heap[stmt.expression];
 
                    cur_frame.prepare_multiple_expressions(heap, &call_expr.arguments);
 
                },
 
                Statement::Expression(stmt) => {
 
                    cur_frame.prepare_single_expression(heap, stmt.expression);
 
                }
 
                _ => {},
 
            }
 
        }
 

	
 
        return_value
 
    }
 

	
 
    /// Constructs an error at the current expression that lives at the top of
 
    /// the expression stack. Falls back to constructing an error at the current
 
    /// statement if there is no expression.
 
    pub(crate) fn new_error_at_expr(&self, modules: &[Module], heap: &Heap, error_message: String) -> EvalError {
 
        let last_frame = self.frames.last().unwrap();
 
        for instruction in last_frame.expr_stack.iter().rev() {
 
            if let ExprInstruction::EvalExpr(expression_id) = instruction {
 
                return EvalError::new_error_at_expr(
 
                    self, modules, heap, *expression_id, error_message
 
                );
 
            }
 
        }
 

	
 
        // If here then expression stack was empty (cannot have just rotate
 
        // instructions)
 
        panic!("attempted to construct evaluation error without any expressions to evaluate in frame");
 
    }
 
}
 
\ No newline at end of file
src/protocol/parser/pass_rewriting.rs
Show inline comments
 
use crate::collections::*;
 
use crate::protocol::*;
 

	
 
use super::visitor::*;
 

	
 
pub(crate) struct PassRewriting {
 
    current_scope: ScopeId,
 
    current_procedure_id: ProcedureDefinitionId,
 
    definition_buffer: ScopedBuffer<DefinitionId>,
 
    statement_buffer: ScopedBuffer<StatementId>,
 
    call_expr_buffer: ScopedBuffer<CallExpressionId>,
 
    expression_buffer: ScopedBuffer<ExpressionId>,
 
    scope_buffer: ScopedBuffer<ScopeId>,
 
}
 

	
 
impl PassRewriting {
 
    pub(crate) fn new() -> Self {
 
        Self{
 
            current_scope: ScopeId::new_invalid(),
 
            current_procedure_id: ProcedureDefinitionId::new_invalid(),
 
            definition_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_LARGE),
 
            statement_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
 
            call_expr_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
 
            expression_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
 
            scope_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
 
        }
 
    }
 
}
 

	
 
impl Visitor for PassRewriting {
 
    fn visit_module(&mut self, ctx: &mut Ctx) -> VisitorResult {
 
        let module = ctx.module();
 
        debug_assert_eq!(module.phase, ModuleCompilationPhase::Typed);
 

	
 
        let root_id = module.root_id;
 
        let root = &ctx.heap[root_id];
 
        let definition_section = self.definition_buffer.start_section_initialized(&root.definitions);
 
        for definition_index in 0..definition_section.len() {
 
            let definition_id = definition_section[definition_index];
 
            self.visit_definition(ctx, definition_id)?;
 
        }
 

	
 
        definition_section.forget();
 
        ctx.module_mut().phase = ModuleCompilationPhase::Rewritten;
 
        return Ok(())
 
    }
 

	
 
    // --- Visiting procedures
 

	
 
    fn visit_procedure_definition(&mut self, ctx: &mut Ctx, id: ProcedureDefinitionId) -> VisitorResult {
 
        let definition = &ctx.heap[id];
 
        let body_id = definition.body;
 
        self.current_scope = definition.scope;
 
        self.current_procedure_id = id;
 
        return self.visit_block_stmt(ctx, body_id);
 
    }
 

	
 
    // --- Visiting statements (that are not the select statement)
 

	
 
    fn visit_block_stmt(&mut self, ctx: &mut Ctx, id: BlockStatementId) -> VisitorResult {
 
        let block_stmt = &ctx.heap[id];
 
        let stmt_section = self.statement_buffer.start_section_initialized(&block_stmt.statements);
 

	
 
        self.current_scope = block_stmt.scope;
 
        for stmt_idx in 0..stmt_section.len() {
 
            self.visit_stmt(ctx, stmt_section[stmt_idx])?;
 
        }
 

	
 
        stmt_section.forget();
 
        return Ok(())
 
    }
 

	
 
    fn visit_labeled_stmt(&mut self, ctx: &mut Ctx, id: LabeledStatementId) -> VisitorResult {
 
        let labeled_stmt = &ctx.heap[id];
 
        let body_id = labeled_stmt.body;
 
        return self.visit_stmt(ctx, body_id);
 
    }
 

	
 
    fn visit_if_stmt(&mut self, ctx: &mut Ctx, id: IfStatementId) -> VisitorResult {
 
        let if_stmt = &ctx.heap[id];
 
        let true_case = if_stmt.true_case;
 
        let false_case = if_stmt.false_case;
 

	
 
        self.current_scope = true_case.scope;
 
        self.visit_stmt(ctx, true_case.body)?;
 
        if let Some(false_case) = false_case {
 
            self.current_scope = false_case.scope;
 
            self.visit_stmt(ctx, false_case.body)?;
 
        }
 

	
 
        return Ok(())
 
    }
 

	
 
    fn visit_while_stmt(&mut self, ctx: &mut Ctx, id: WhileStatementId) -> VisitorResult {
 
        let while_stmt = &ctx.heap[id];
 
        let body_id = while_stmt.body;
 
        self.current_scope = while_stmt.scope;
 
        return self.visit_stmt(ctx, body_id);
 
    }
 

	
 
    fn visit_synchronous_stmt(&mut self, ctx: &mut Ctx, id: SynchronousStatementId) -> VisitorResult {
 
        let sync_stmt = &ctx.heap[id];
 
        let body_id = sync_stmt.body;
 
        self.current_scope = sync_stmt.scope;
 
        return self.visit_stmt(ctx, body_id);
 
    }
 

	
 
    // --- Visiting the select statement
 

	
 
    fn visit_select_stmt(&mut self, ctx: &mut Ctx, id: SelectStatementId) -> VisitorResult {
 
        // Utility for the last stage of rewriting process. Note that caller
 
        // still needs to point the end of the if-statement to the end of the
 
        // replacement statement of the select statement.
 
        fn transform_select_case_code(
 
            ctx: &mut Ctx, containing_procedure_id: ProcedureDefinitionId,
 
            select_id: SelectStatementId, case_index: usize,
 
            select_var_id: VariableId, select_var_type_id: TypeIdReference
 
        ) -> (IfStatementId, EndIfStatementId, ScopeId) {
 
            // Retrieve statement IDs associated with case
 
            let case = &ctx.heap[select_id].cases[case_index];
 
            let case_guard_id = case.guard;
 
            let case_body_id = case.body;
 
            let case_scope_id = case.scope;
 

	
 
            // Create the if-statement for the result of the select statement
 
            let compare_expr_id = create_ast_equality_comparison_expr(ctx, containing_procedure_id, select_var_id, select_var_type_id, case_index as u64);
 
            let true_case = IfStatementCase{
 
                body: case_guard_id, // which is linked up to the body
 
                scope: case_scope_id,
 
            };
 
            let (if_stmt_id, end_if_stmt_id) = create_ast_if_stmt(ctx, compare_expr_id.upcast(), true_case, None);
 

	
 
            // Link up body statement to end-if
 
            set_ast_statement_next(ctx, case_body_id, end_if_stmt_id.upcast());
 

	
 
            return (if_stmt_id, end_if_stmt_id, case_scope_id);
 
        }
 

	
 
        // Precreate the block that will end up containing all of the
 
        // transformed statements. Also precreate the scope associated with it
 
        let (outer_block_id, outer_end_block_id, outer_scope_id) =
 
            create_ast_block_stmt(ctx, Vec::new());
 

	
 
        // The "select" and the "end select" statement will act like trampolines
 
        // that jump to the replacement block. So set the child/parent
 
        // relationship already.
 
        // --- for the statements
 
        let select_stmt = &mut ctx.heap[id];
 
        select_stmt.next = outer_block_id.upcast();
 
        let end_select_stmt_id = select_stmt.end_select;
 
        let select_stmt_relative_pos = select_stmt.relative_pos_in_parent;
 

	
 
        let outer_end_block_stmt = &mut ctx.heap[outer_end_block_id];
 
        outer_end_block_stmt.next = end_select_stmt_id.upcast();
 

	
 
        // --- for the scopes
 
        link_new_child_to_existing_parent_scope(ctx, &mut self.scope_buffer, self.current_scope, outer_scope_id, select_stmt_relative_pos);
 

	
 
        // Create statements that will create temporary variables for all of the
 
        // ports passed to the "get" calls in the select case guards.
 
        let select_stmt = &ctx.heap[id];
 
        let total_num_cases = select_stmt.cases.len();
 
        let mut total_num_ports = 0;
 
        let end_select_stmt_id = select_stmt.end_select;
 
        let _end_select = &ctx.heap[end_select_stmt_id];
 

	
 
        // Put heap IDs into temporary buffers to handle borrowing rules
 
        let mut call_id_section = self.call_expr_buffer.start_section();
 
        let mut expr_id_section = self.expression_buffer.start_section();
 

	
 
        for case in select_stmt.cases.iter() {
 
            total_num_ports += case.involved_ports.len();
 
            for (call_id, expr_id) in case.involved_ports.iter().copied() {
 
                call_id_section.push(call_id);
 
                expr_id_section.push(expr_id);
 
            }
 
        }
 

	
 
        // Transform all of the call expressions by takings its argument (the
 
        // port from which we `get`) and turning it into a temporary variable.
 
        let mut transformed_stmts = Vec::with_capacity(total_num_ports); // TODO: Recompute this preallocated length, put assert at the end
 
        let mut locals = Vec::with_capacity(total_num_ports);
 

	
 
        for port_var_idx in 0..call_id_section.len() {
 
            let get_call_expr_id = call_id_section[port_var_idx];
 
            let port_expr_id = expr_id_section[port_var_idx];
 
            let port_type_index = ctx.heap[port_expr_id].type_index();
 
            let port_type_ref = TypeIdReference::IndirectSameAsExpr(port_type_index);
 

	
 
            // Move the port expression such that it gets assigned to a temporary variable
 
            let variable_id = create_ast_variable(ctx, outer_scope_id);
 
            let variable_decl_stmt_id = create_ast_variable_declaration_stmt(ctx, self.current_procedure_id, variable_id, port_type_ref, port_expr_id);
 

	
 
            // Replace the original port expression in the call with a reference
 
            // to the replacement variable
 
            let variable_expr_id = create_ast_variable_expr(ctx, self.current_procedure_id, variable_id, port_type_ref);
 
            let call_expr = &mut ctx.heap[get_call_expr_id];
 
            call_expr.arguments[0] = variable_expr_id.upcast();
 

	
 
            transformed_stmts.push(variable_decl_stmt_id.upcast().upcast());
 
            locals.push((variable_id, port_type_ref));
 
        }
 

	
 
        // Insert runtime calls that facilitate the semantics of the select
 
        // block.
 

	
 
        // Create the call that indicates the start of the select block
 
        {
 
            let num_cases_expression_id = create_ast_literal_integer_expr(ctx, self.current_procedure_id, total_num_cases as u64, ctx.arch.uint32_type_id);
 
            let num_ports_expression_id = create_ast_literal_integer_expr(ctx, self.current_procedure_id, total_num_ports as u64, ctx.arch.uint32_type_id);
 
            let arguments = vec![
 
                num_cases_expression_id.upcast(),
 
                num_ports_expression_id.upcast()
 
            ];
 

	
 
            let call_expression_id = create_ast_call_expr(ctx, self.current_procedure_id, Method::SelectStart, &mut self.expression_buffer, arguments);
 
            let call_statement_id = create_ast_expression_stmt(ctx, call_expression_id.upcast());
 

	
 
            transformed_stmts.push(call_statement_id.upcast());
 
        }
 

	
 
        // Create calls for each select case that will register the ports that
 
        // we are waiting on at the runtime.
 
        {
 
            let mut total_port_index = 0;
 
            for case_index in 0..total_num_cases {
 
                let case = &ctx.heap[id].cases[case_index];
 
                let case_num_ports = case.involved_ports.len();
 

	
 
                for case_port_index in 0..case_num_ports {
 
                    // Arguments to runtime call
 
                    let (port_variable_id, port_variable_type) = locals[total_port_index]; // so far this variable contains the temporary variables for the port expressions
 
                    let case_index_expr_id = create_ast_literal_integer_expr(ctx, self.current_procedure_id, case_index as u64, ctx.arch.uint32_type_id);
 
                    let port_index_expr_id = create_ast_literal_integer_expr(ctx, self.current_procedure_id, case_port_index as u64, ctx.arch.uint32_type_id);
 
                    let port_variable_expr_id = create_ast_variable_expr(ctx, self.current_procedure_id, port_variable_id, port_variable_type);
 
                    let runtime_call_arguments = vec![
 
                        case_index_expr_id.upcast(),
 
                        port_index_expr_id.upcast(),
 
                        port_variable_expr_id.upcast()
 
                    ];
 

	
 
                    // Create runtime call, then store it
 
                    let runtime_call_expr_id = create_ast_call_expr(ctx, self.current_procedure_id, Method::SelectRegisterCasePort, &mut self.expression_buffer, runtime_call_arguments);
 
                    let runtime_call_stmt_id = create_ast_expression_stmt(ctx, runtime_call_expr_id.upcast());
 

	
 
                    transformed_stmts.push(runtime_call_stmt_id.upcast());
 

	
 
                    total_port_index += 1;
 
                }
 
            }
 
        }
 

	
 
        // Create the variable that will hold the result of a completed select
 
        // block. Then create the runtime call that will produce this result
 
        let select_variable_id = create_ast_variable(ctx, outer_scope_id);
 
        let select_variable_type = TypeIdReference::DirectTypeId(ctx.arch.uint32_type_id);
 
        locals.push((select_variable_id, select_variable_type));
 

	
 
        {
 
            let runtime_call_expr_id = create_ast_call_expr(ctx, self.current_procedure_id, Method::SelectWait, &mut self.expression_buffer, Vec::new());
 
            let variable_stmt_id = create_ast_variable_declaration_stmt(ctx, self.current_procedure_id, select_variable_id, select_variable_type, runtime_call_expr_id.upcast());
 
            transformed_stmts.push(variable_stmt_id.upcast().upcast());
 
        }
 

	
 
        call_id_section.forget();
 
        expr_id_section.forget();
 

	
 
        // Now we transform each of the select block case's guard and code into
 
        // a chained if-else statement.
 
        let mut relative_pos = transformed_stmts.len() as i32;
 
        let relative_pos = transformed_stmts.len() as i32;
 
        if total_num_cases > 0 {
 
            let (if_stmt_id, end_if_stmt_id, scope_id) = transform_select_case_code(ctx, self.current_procedure_id, id, 0, select_variable_id, select_variable_type);
 
            link_existing_child_to_new_parent_scope(ctx, &mut self.scope_buffer, outer_scope_id, scope_id, relative_pos);
 
            let first_end_if_stmt = &mut ctx.heap[end_if_stmt_id];
 
            first_end_if_stmt.next = outer_end_block_id.upcast();
 

	
 
            let mut last_if_stmt_id = if_stmt_id;
 
            let mut last_end_if_stmt_id = end_if_stmt_id;
 
            let mut last_parent_scope_id = outer_scope_id;
 
            let mut last_relative_pos = transformed_stmts.len() as i32 + 1;
 
            transformed_stmts.push(last_if_stmt_id.upcast());
 

	
 
            for case_index in 1..total_num_cases {
 
                let (if_stmt_id, end_if_stmt_id, scope_id) = transform_select_case_code(ctx, self.current_procedure_id, id, case_index, select_variable_id, select_variable_type);
 
                let false_case_scope_id = ctx.heap.alloc_scope(|this| Scope::new(this, ScopeAssociation::If(last_if_stmt_id, false)));
 
                link_existing_child_to_new_parent_scope(ctx, &mut self.scope_buffer, false_case_scope_id, scope_id, 0);
 
                link_new_child_to_existing_parent_scope(ctx, &mut self.scope_buffer, last_parent_scope_id, false_case_scope_id, last_relative_pos);
 
                set_ast_if_statement_false_body(ctx, last_if_stmt_id, last_end_if_stmt_id, IfStatementCase{ body: if_stmt_id.upcast(), scope: false_case_scope_id });
 

	
 
                let end_if_stmt = &mut ctx.heap[end_if_stmt_id];
 
                end_if_stmt.next = last_end_if_stmt_id.upcast();
 

	
 
                last_if_stmt_id = if_stmt_id;
 
                last_end_if_stmt_id = end_if_stmt_id;
 
                last_parent_scope_id = false_case_scope_id;
 
                last_relative_pos = 0;
 
            }
 
        }
 

	
 
        // Final steps: set the statements of the replacement block statement,
 
        // link all of those statements together, and update the scopes.
 
        let first_stmt_id = transformed_stmts[0];
 
        let mut last_stmt_id = transformed_stmts[0];
 
        for stmt_id in transformed_stmts.iter().skip(1).copied() {
 
            set_ast_statement_next(ctx, last_stmt_id, stmt_id);
 
            last_stmt_id = stmt_id;
 
        }
 

	
 
        if total_num_cases == 0 {
 
            // If we don't have any cases, then we didn't connect the statements
 
            // up to the end of the outer block, so do that here
 
            set_ast_statement_next(ctx, last_stmt_id, outer_end_block_id.upcast());
 
        }
 

	
 
        let outer_block_stmt = &mut ctx.heap[outer_block_id];
 
        outer_block_stmt.next = first_stmt_id;
 
        outer_block_stmt.statements = transformed_stmts;
 

	
 
        return Ok(())
 
    }
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// Utilities to create compiler-generated AST nodes
 
// -----------------------------------------------------------------------------
 

	
 
#[derive(Clone, Copy)]
 
enum TypeIdReference {
 
    DirectTypeId(TypeId),
 
    IndirectSameAsExpr(i32), // by type index
 
}
 

	
 
fn create_ast_variable(ctx: &mut Ctx, scope_id: ScopeId) -> VariableId {
 
    let variable_id = ctx.heap.alloc_variable(|this| Variable{
 
        this,
 
        kind: VariableKind::Local,
 
        parser_type: ParserType{
 
            elements: Vec::new(),
 
            full_span: InputSpan::new(),
 
        },
 
        identifier: Identifier::new_empty(InputSpan::new()),
 
        relative_pos_in_parent: -1,
 
        unique_id_in_scope: -1,
 
    });
 
    let scope = &mut ctx.heap[scope_id];
 
    scope.variables.push(variable_id);
 

	
 
    return variable_id;
 
}
 

	
 
fn create_ast_variable_expr(ctx: &mut Ctx, containing_procedure_id: ProcedureDefinitionId, variable_id: VariableId, variable_type_id: TypeIdReference) -> VariableExpressionId {
 
    let variable_type_index = add_new_procedure_expression_type(ctx, containing_procedure_id, variable_type_id);
 
    return ctx.heap.alloc_variable_expression(|this| VariableExpression{
 
        this,
 
        identifier: Identifier::new_empty(InputSpan::new()),
 
        declaration: Some(variable_id),
 
        used_as_binding_target: false,
 
        parent: ExpressionParent::None,
 
        type_index: variable_type_index,
 
    });
 
}
 

	
 
fn create_ast_call_expr(ctx: &mut Ctx, containing_procedure_id: ProcedureDefinitionId, method: Method, buffer: &mut ScopedBuffer<ExpressionId>, arguments: Vec<ExpressionId>) -> CallExpressionId {
 
    let call_type_id = match method {
 
        Method::SelectStart => ctx.arch.void_type_id,
 
        Method::SelectRegisterCasePort => ctx.arch.void_type_id,
 
        Method::SelectWait => ctx.arch.uint32_type_id, // TODO: Not pretty, this. Pretty error prone
 
        _ => unreachable!(), // if this goes of, add the appropriate method here.
 
    };
 

	
 
    let expression_ids = buffer.start_section_initialized(&arguments);
 
    let call_type_index = add_new_procedure_expression_type(ctx, containing_procedure_id, TypeIdReference::DirectTypeId(call_type_id));
 
    let call_expression_id = ctx.heap.alloc_call_expression(|this| CallExpression{
 
        func_span: InputSpan::new(),
 
        this,
 
        full_span: InputSpan::new(),
 
        parser_type: ParserType{
 
            elements: Vec::new(),
 
            full_span: InputSpan::new(),
 
        },
 
        method,
 
        arguments,
 
        procedure: ProcedureDefinitionId::new_invalid(),
 
        parent: ExpressionParent::None,
 
        type_index: call_type_index,
 
    });
 

	
 
    for argument_index in 0..expression_ids.len() {
 
        let argument_id = expression_ids[argument_index];
 
        let argument_expr = &mut ctx.heap[argument_id];
 
        *argument_expr.parent_mut() = ExpressionParent::Expression(call_expression_id.upcast(), argument_index as u32);
 
    }
 

	
 
    return call_expression_id;
 
}
 

	
 
fn create_ast_literal_integer_expr(ctx: &mut Ctx, containing_procedure_id: ProcedureDefinitionId, unsigned_value: u64, type_id: TypeId) -> LiteralExpressionId {
 
    let literal_type_index = add_new_procedure_expression_type(ctx, containing_procedure_id, TypeIdReference::DirectTypeId(type_id));
 
    return ctx.heap.alloc_literal_expression(|this| LiteralExpression{
 
        this,
 
        span: InputSpan::new(),
 
        value: Literal::Integer(LiteralInteger{
 
            unsigned_value,
 
            negated: false,
 
        }),
 
        parent: ExpressionParent::None,
 
        type_index: literal_type_index,
 
    });
 
}
 

	
 
fn create_ast_equality_comparison_expr(
 
    ctx: &mut Ctx, containing_procedure_id: ProcedureDefinitionId,
 
    variable_id: VariableId, variable_type: TypeIdReference, value: u64
 
) -> BinaryExpressionId {
 
    let var_expr_id = create_ast_variable_expr(ctx, containing_procedure_id, variable_id, variable_type);
 
    let int_expr_id = create_ast_literal_integer_expr(ctx, containing_procedure_id, value, ctx.arch.uint32_type_id);
 
    let cmp_type_index = add_new_procedure_expression_type(ctx, containing_procedure_id, TypeIdReference::DirectTypeId(ctx.arch.bool_type_id));
 
    let cmp_expr_id = ctx.heap.alloc_binary_expression(|this| BinaryExpression{
 
        this,
 
        operator_span: InputSpan::new(),
 
        full_span: InputSpan::new(),
 
        left: var_expr_id.upcast(),
 
        operation: BinaryOperator::Equality,
 
        right: int_expr_id.upcast(),
 
        parent: ExpressionParent::None,
 
        type_index: cmp_type_index,
 
    });
 

	
 
    let var_expr = &mut ctx.heap[var_expr_id];
 
    var_expr.parent = ExpressionParent::Expression(cmp_expr_id.upcast(), 0);
 
    let int_expr = &mut ctx.heap[int_expr_id];
 
    int_expr.parent = ExpressionParent::Expression(cmp_expr_id.upcast(), 1);
 

	
 
    return cmp_expr_id;
 
}
 

	
 
fn create_ast_expression_stmt(ctx: &mut Ctx, expression_id: ExpressionId) -> ExpressionStatementId {
 
    let statement_id = ctx.heap.alloc_expression_statement(|this| ExpressionStatement{
 
        this,
 
        span: InputSpan::new(),
 
        expression: expression_id,
 
        next: StatementId::new_invalid(),
 
    });
 

	
 
    let expression = &mut ctx.heap[expression_id];
 
    *expression.parent_mut() = ExpressionParent::ExpressionStmt(statement_id);
 

	
 
    return statement_id;
 
}
 

	
 
fn create_ast_variable_declaration_stmt(
 
    ctx: &mut Ctx, containing_procedure_id: ProcedureDefinitionId,
 
    variable_id: VariableId, variable_type: TypeIdReference, initial_value_expr_id: ExpressionId
 
) -> MemoryStatementId {
 
    // Create the assignment expression, assigning the initial value to the variable
 
    let variable_expr_id = create_ast_variable_expr(ctx, containing_procedure_id, variable_id, variable_type);
 
    let void_type_index = add_new_procedure_expression_type(ctx, containing_procedure_id, TypeIdReference::DirectTypeId(ctx.arch.void_type_id));
 
    let assignment_expr_id = ctx.heap.alloc_assignment_expression(|this| AssignmentExpression{
 
        this,
 
        operator_span: InputSpan::new(),
 
        full_span: InputSpan::new(),
 
        left: variable_expr_id.upcast(),
 
        operation: AssignmentOperator::Set,
 
        right: initial_value_expr_id,
 
        parent: ExpressionParent::None,
 
        type_index: void_type_index,
 
    });
 

	
 
    // Create the memory statement
 
    let memory_stmt_id = ctx.heap.alloc_memory_statement(|this| MemoryStatement{
 
        this,
 
        span: InputSpan::new(),
 
        variable: variable_id,
 
        initial_expr: assignment_expr_id,
 
        next: StatementId::new_invalid(),
 
    });
 

	
 
    // Set all parents which we can access
 
    let variable_expr = &mut ctx.heap[variable_expr_id];
 
    variable_expr.parent = ExpressionParent::Expression(assignment_expr_id.upcast(), 0);
 
    let value_expr = &mut ctx.heap[initial_value_expr_id];
 
    *value_expr.parent_mut() = ExpressionParent::Expression(assignment_expr_id.upcast(), 1);
 
    let assignment_expr = &mut ctx.heap[assignment_expr_id];
 
    assignment_expr.parent = ExpressionParent::Memory(memory_stmt_id);
 

	
 
    return memory_stmt_id;
 
}
 

	
 
fn create_ast_block_stmt(ctx: &mut Ctx, statements: Vec<StatementId>) -> (BlockStatementId, EndBlockStatementId, ScopeId) {
 
    let block_stmt_id = ctx.heap.alloc_block_statement(|this| BlockStatement{
 
        this,
 
        span: InputSpan::new(),
 
        statements,
 
        end_block: EndBlockStatementId::new_invalid(),
 
        scope: ScopeId::new_invalid(),
 
        next: StatementId::new_invalid(),
 
    });
 
    let end_block_stmt_id = ctx.heap.alloc_end_block_statement(|this| EndBlockStatement{
 
        this,
 
        start_block: block_stmt_id,
 
        next: StatementId::new_invalid(),
 
    });
 
    let scope_id = ctx.heap.alloc_scope(|this| Scope::new(this, ScopeAssociation::Block(block_stmt_id)));
 

	
 
    let block_stmt = &mut ctx.heap[block_stmt_id];
 
    block_stmt.end_block = end_block_stmt_id;
 
    block_stmt.scope = scope_id;
 

	
 
    return (block_stmt_id, end_block_stmt_id, scope_id);
 
}
 

	
 
fn create_ast_if_stmt(ctx: &mut Ctx, condition_expression_id: ExpressionId, true_case: IfStatementCase, false_case: Option<IfStatementCase>) -> (IfStatementId, EndIfStatementId) {
 
    // Create if statement and the end-if statement
 
    let if_stmt_id = ctx.heap.alloc_if_statement(|this| IfStatement{
 
        this,
 
        span: InputSpan::new(),
 
        test: condition_expression_id,
 
        true_case,
 
        false_case,
 
        end_if: EndIfStatementId::new_invalid()
 
    });
 

	
 
    let end_if_stmt_id = ctx.heap.alloc_end_if_statement(|this| EndIfStatement{
 
        this,
 
        start_if: if_stmt_id,
 
        next: StatementId::new_invalid(),
 
    });
 

	
 
    // Link the statements up as much as we can
 
    let if_stmt = &mut ctx.heap[if_stmt_id];
 
    if_stmt.end_if = end_if_stmt_id;
 

	
 
    let condition_expr = &mut ctx.heap[condition_expression_id];
 
    *condition_expr.parent_mut() = ExpressionParent::If(if_stmt_id);
 

	
 

	
 

	
 
    return (if_stmt_id, end_if_stmt_id);
 
}
 

	
 
/// Sets the false body for a given
 
fn set_ast_if_statement_false_body(ctx: &mut Ctx, if_statement_id: IfStatementId, end_if_statement_id: EndIfStatementId, false_case: IfStatementCase) {
 
    // Point if-statement to "false body"
 
    let if_stmt = &mut ctx.heap[if_statement_id];
 
    debug_assert!(if_stmt.false_case.is_none()); // simplifies logic, not necessary
 
    if_stmt.false_case = Some(false_case);
 

	
 
    // Point end of false body to the end of the if statement
 
    set_ast_statement_next(ctx, false_case.body, end_if_statement_id.upcast());
 
}
 

	
 
/// Sets the specified AST statement's control flow such that it will be
 
/// followed by the target statement. This may seem obvious, but may imply that
 
/// a statement associated with, but different from, the source statement is
 
/// modified.
 
fn set_ast_statement_next(ctx: &mut Ctx, source_stmt_id: StatementId, target_stmt_id: StatementId) {
 
    let source_stmt = &mut ctx.heap[source_stmt_id];
 
    match source_stmt {
 
        Statement::Block(stmt) => {
 
            let end_id = stmt.end_block;
 
            ctx.heap[end_id].next = target_stmt_id
 
        },
 
        Statement::EndBlock(stmt) => stmt.next = target_stmt_id,
 
        Statement::Local(stmt) => {
 
            match stmt {
 
                LocalStatement::Memory(stmt) => stmt.next = target_stmt_id,
 
                LocalStatement::Channel(stmt) => stmt.next = target_stmt_id,
 
            }
 
        },
 
        Statement::Labeled(stmt) => {
 
            let body_id = stmt.body;
 
            set_ast_statement_next(ctx, body_id, target_stmt_id);
 
        },
 
        Statement::If(stmt) => {
 
            let end_id = stmt.end_if;
 
            ctx.heap[end_id].next = target_stmt_id;
 
        },
 
        Statement::EndIf(stmt) => stmt.next = target_stmt_id,
 
        Statement::While(stmt) => {
 
            let end_id = stmt.end_while;
 
            ctx.heap[end_id].next = target_stmt_id;
 
        },
 
        Statement::EndWhile(stmt) => stmt.next = target_stmt_id,
 

	
 
        Statement::Break(_stmt) => {},
 
        Statement::Continue(_stmt) => {},
 
        Statement::Synchronous(stmt) => {
 
            let end_id = stmt.end_sync;
 
            ctx.heap[end_id].next = target_stmt_id;
 
        },
 
        Statement::EndSynchronous(stmt) => {
 
            stmt.next = target_stmt_id;
 
        },
 
        Statement::Fork(_) | Statement::EndFork(_) => {
 
            todo!("remove fork from language");
 
        },
 
        Statement::Select(stmt) => {
 
            let end_id = stmt.end_select;
 
            ctx.heap[end_id].next = target_stmt_id;
 
        },
 
        Statement::EndSelect(stmt) => stmt.next = target_stmt_id,
 
        Statement::Return(_stmt) => {},
 
        Statement::Goto(_stmt) => {},
 
        Statement::New(stmt) => stmt.next = target_stmt_id,
 
        Statement::Expression(stmt) => stmt.next = target_stmt_id,
 
    }
 
}
 

	
 
/// Links a new scope to an existing scope as its child.
 
fn link_new_child_to_existing_parent_scope(ctx: &mut Ctx, scope_buffer: &mut ScopedBuffer<ScopeId>, parent_scope_id: ScopeId, child_scope_id: ScopeId, relative_pos_hint: i32) {
 
    let child_scope = &mut ctx.heap[child_scope_id];
 
    debug_assert!(child_scope.parent.is_none());
 

	
 
    child_scope.parent = Some(parent_scope_id);
 
    child_scope.relative_pos_in_parent = relative_pos_hint;
 

	
 
    add_child_scope_to_parent(ctx, scope_buffer, parent_scope_id, child_scope_id, relative_pos_hint);
 
}
 

	
 
/// Relinks an existing scope to a new scope as its child. Will also break the
 
/// link of the child scope's old parent.
 
fn link_existing_child_to_new_parent_scope(ctx: &mut Ctx, scope_buffer: &mut ScopedBuffer<ScopeId>, new_parent_scope_id: ScopeId, child_scope_id: ScopeId, new_relative_pos_in_parent: i32) {
 
    let child_scope = &mut ctx.heap[child_scope_id];
 
    let old_parent_scope_id = child_scope.parent.unwrap();
 
    child_scope.parent = Some(new_parent_scope_id);
 
    child_scope.relative_pos_in_parent = new_relative_pos_in_parent;
 

	
 
    // Remove from old parent
 
    let old_parent = &mut ctx.heap[old_parent_scope_id];
 
    let scope_index = old_parent.nested.iter()
 
        .position(|v| *v == child_scope_id)
 
        .unwrap();
 
    old_parent.nested.remove(scope_index);
 

	
 
    // Add to new parent
 
    add_child_scope_to_parent(ctx, scope_buffer, new_parent_scope_id, child_scope_id, new_relative_pos_in_parent);
 
}
 

	
 
/// Will add a child scope to a parent scope using the relative position hint.
 
fn add_child_scope_to_parent(ctx: &mut Ctx, scope_buffer: &mut ScopedBuffer<ScopeId>, parent_scope_id: ScopeId, child_scope_id: ScopeId, relative_pos_hint: i32) {
 
    let parent_scope = &ctx.heap[parent_scope_id];
 

	
 
    let existing_scope_ids = scope_buffer.start_section_initialized(&parent_scope.nested);
 
    let mut insert_pos = existing_scope_ids.len();
 
    for index in 0..existing_scope_ids.len() {
 
        let existing_scope_id = existing_scope_ids[index];
 
        let existing_scope = &ctx.heap[existing_scope_id];
 
        if relative_pos_hint <= existing_scope.relative_pos_in_parent {
 
            insert_pos = index;
 
            break;
 
        }
 
    }
 
    existing_scope_ids.forget();
 

	
 
    let parent_scope = &mut ctx.heap[parent_scope_id];
 
    parent_scope.nested.insert(insert_pos, child_scope_id);
 
}
 

	
 
fn add_new_procedure_expression_type(ctx: &mut Ctx, procedure_id: ProcedureDefinitionId, type_id: TypeIdReference) -> i32 {
 
    let procedure = &mut ctx.heap[procedure_id];
 
    let type_index = procedure.monomorphs[0].expr_info.len();
 

	
 
    match type_id {
 
        TypeIdReference::DirectTypeId(type_id) => {
 
            for monomorph in procedure.monomorphs.iter_mut() {
 
                debug_assert_eq!(monomorph.expr_info.len(), type_index);
 
                monomorph.expr_info.push(ExpressionInfo{
 
                    type_id,
 
                    variant: ExpressionInfoVariant::Generic
 
                });
 
            }
 
        },
 
        TypeIdReference::IndirectSameAsExpr(source_type_index) => {
 
            for monomorph in procedure.monomorphs.iter_mut() {
 
                debug_assert_eq!(monomorph.expr_info.len(), type_index);
 
                let copied_expr_info = monomorph.expr_info[source_type_index as usize];
 
                monomorph.expr_info.push(copied_expr_info)
 
            }
 
        }
 
    }
 

	
 
    return type_index as i32;
 
}
 
\ No newline at end of file
src/protocol/parser/pass_validation_linking.rs
Show inline comments
 
/*
 
 * pass_validation_linking.rs
 
 *
 
 * The pass that will validate properties of the AST statements (one is not
 
 * allowed to nest synchronous statements, instantiating components occurs in
 
 * the right places, etc.) and expressions (assignments may not occur in
 
 * arbitrary expressions).
 
 *
 
 * Furthermore, this pass will also perform "linking", in the sense of: some AST
 
 * nodes have something to do with one another, so we link them up in this pass
 
 * (e.g. setting the parents of expressions, linking the control flow statements
 
 * like `continue` and `break` up to the respective loop statement, etc.).
 
 *
 
 * There are several "confusing" parts about this pass:
 
 *
 
 * Setting expression parents: this is the simplest one. The pass struct acts
 
 * like a little state machine. When visiting an expression it will set the
 
 * "parent expression" field of the pass to itself, then visit its child. The
 
 * child will look at this "parent expression" field to determine its parent.
 
 *
 
 * Setting the `next` statement: the AST is a tree, but during execution we walk
 
 * a linear path through all statements. So where appropriate a statement may
 
 * set the "previous statement" field of the pass to itself. When visiting the
 
 * subsequent statement it will check this "previous statement", and if set, it
 
 * will link this previous statement up to itself. Not every statement has a
 
 * previous statement. Hence there are two patterns that occur: assigning the
 
 * `next` value, then clearing the "previous statement" field. And assigning the
 
 * `next` value, and then putting the current statement's ID in the "previous
 
 * statement" field. Because it is so common, this file contain two macros that
 
 * perform that operation.
 
 *
 
 * To make storing types for polymorphic procedures simpler and more efficient,
 
 * we assign to each expression in the procedure a unique ID. This is what the
 
 * "next expression index" field achieves. Each expression simply takes the
 
 * current value, and then increments this counter.
 
 */
 

	
 
use crate::collections::{ScopedBuffer};
 
use crate::protocol::ast::*;
 
use crate::protocol::input_source::*;
 
use crate::protocol::parser::symbol_table::*;
 
use crate::protocol::parser::type_table::*;
 

	
 
use super::visitor::{
 
    BUFFER_INIT_CAP_SMALL,
 
    BUFFER_INIT_CAP_LARGE,
 
    Ctx,
 
    Visitor,
 
    VisitorResult
 
};
 
use crate::protocol::parser::ModuleCompilationPhase;
 

	
 
struct ControlFlowStatement {
 
    in_sync: SynchronousStatementId,
 
    in_while: WhileStatementId,
 
    in_scope: ScopeId,
 
    statement: StatementId, // of 'break', 'continue' or 'goto'
 
}
 

	
 
/// This particular visitor will go through the entire AST in a recursive manner
 
/// and check if all statements and expressions are legal (e.g. no "return"
 
/// statements in component definitions), and will link certain AST nodes to
 
/// their appropriate targets (e.g. goto statements, or function calls).
 
///
 
/// This visitor will not perform control-flow analysis (e.g. making sure that
 
/// each function actually returns) and will also not perform type checking. So
 
/// the linking of function calls and component instantiations will be checked
 
/// and linked to the appropriate definitions, but the return types and/or
 
/// arguments will not be checked for validity.
 
///
 
/// The main idea is, because we're visiting nodes in a tree, to do as much as
 
/// we can while we have the memory in cache.
 
pub(crate) struct PassValidationLinking {
 
    // Traversal state, all valid IDs if inside a certain AST element. Otherwise
 
    // `id.is_invalid()` returns true.
 
    in_sync: SynchronousStatementId,
 
    in_while: WhileStatementId, // to resolve labeled continue/break
 
    in_select_guard: SelectStatementId, // for detection/rejection of builtin calls
 
    in_select_arm: u32,
 
    in_test_expr: StatementId, // wrapping if/while stmt id
 
    in_binding_expr: BindingExpressionId, // to resolve variable expressions
 
    in_binding_expr_lhs: bool,
 
    // Traversal state, current scope (which can be used to find the parent
 
    // scope) and the definition variant we are considering.
 
    cur_scope: ScopeId,
 
    proc_id: ProcedureDefinitionId,
 
    proc_kind: ProcedureKind,
 
    // "Trailing" traversal state, set be child/prev stmt/expr used by next one
 
    prev_stmt: StatementId,
 
    expr_parent: ExpressionParent,
 
    // Set by parent to indicate that child expression must be assignable. The
 
    // child will throw an error if it is not assignable. The stored span is
 
    // used for the error's position
 
    must_be_assignable: Option<InputSpan>,
 
    // Keeping track of relative positions and unique IDs.
 
    relative_pos_in_parent: i32, // of statements: to determine when variables are visible
 
    // Control flow statements that require label resolving
 
    control_flow_stmts: Vec<ControlFlowStatement>,
 
    // Various temporary buffers for traversal. Essentially working around
 
    // Rust's borrowing rules since it cannot understand we're modifying AST
 
    // members but not the AST container.
 
    variable_buffer: ScopedBuffer<VariableId>,
 
    definition_buffer: ScopedBuffer<DefinitionId>,
 
    statement_buffer: ScopedBuffer<StatementId>,
 
    expression_buffer: ScopedBuffer<ExpressionId>,
 
    scope_buffer: ScopedBuffer<ScopeId>,
 
}
 

	
 
impl PassValidationLinking {
 
    pub(crate) fn new() -> Self {
 
        Self{
 
            in_sync: SynchronousStatementId::new_invalid(),
 
            in_while: WhileStatementId::new_invalid(),
 
            in_select_guard: SelectStatementId::new_invalid(),
 
            in_select_arm: 0,
 
            in_test_expr: StatementId::new_invalid(),
 
            in_binding_expr: BindingExpressionId::new_invalid(),
 
            in_binding_expr_lhs: false,
 
            cur_scope: ScopeId::new_invalid(),
 
            prev_stmt: StatementId::new_invalid(),
 
            expr_parent: ExpressionParent::None,
 
            proc_id: ProcedureDefinitionId::new_invalid(),
 
            proc_kind: ProcedureKind::Function,
 
            must_be_assignable: None,
 
            relative_pos_in_parent: 0,
 
            control_flow_stmts: Vec::with_capacity(BUFFER_INIT_CAP_SMALL),
 
            variable_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
 
            definition_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
 
            statement_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_LARGE),
 
            expression_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_LARGE),
 
            scope_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
 
        }
 
    }
 

	
 
    fn reset_state(&mut self) {
 
        self.in_sync = SynchronousStatementId::new_invalid();
 
        self.in_while = WhileStatementId::new_invalid();
 
        self.in_select_guard = SelectStatementId::new_invalid();
 
        self.in_test_expr = StatementId::new_invalid();
 
        self.in_binding_expr = BindingExpressionId::new_invalid();
 
        self.in_binding_expr_lhs = false;
 
        self.cur_scope = ScopeId::new_invalid();
 
        self.proc_id = ProcedureDefinitionId::new_invalid();
 
        self.proc_kind = ProcedureKind::Function;
 
        self.prev_stmt = StatementId::new_invalid();
 
        self.expr_parent = ExpressionParent::None;
 
        self.must_be_assignable = None;
 
        self.relative_pos_in_parent = 0;
 
        self.control_flow_stmts.clear();
 
    }
 
}
 

	
 
macro_rules! assign_then_erase_next_stmt {
 
    ($self:ident, $ctx:ident, $stmt_id:expr) => {
 
        if !$self.prev_stmt.is_invalid() {
 
            $ctx.heap[$self.prev_stmt].link_next($stmt_id);
 
            $self.prev_stmt = StatementId::new_invalid();
 
        }
 
    }
 
}
 

	
 
macro_rules! assign_and_replace_next_stmt {
 
    ($self:ident, $ctx:ident, $stmt_id:expr) => {
 
        if !$self.prev_stmt.is_invalid() {
 
            $ctx.heap[$self.prev_stmt].link_next($stmt_id);
 
        }
 
        $self.prev_stmt = $stmt_id;
 
    }
 
}
 

	
 
impl Visitor for PassValidationLinking {
 
    fn visit_module(&mut self, ctx: &mut Ctx) -> VisitorResult {
 
        debug_assert_eq!(ctx.module().phase, ModuleCompilationPhase::TypesAddedToTable);
 

	
 
        let root = &ctx.heap[ctx.module().root_id];
 
        let section = self.definition_buffer.start_section_initialized(&root.definitions);
 
        for definition_id in section.iter_copied() {
 
            self.visit_definition(ctx, definition_id)?;
 
        }
 
        section.forget();
 

	
 
        ctx.module_mut().phase = ModuleCompilationPhase::ValidatedAndLinked;
 
        Ok(())
 
    }
 
    //--------------------------------------------------------------------------
 
    // Definition visitors
 
    //--------------------------------------------------------------------------
 

	
 
    fn visit_procedure_definition(&mut self, ctx: &mut Ctx, id: ProcedureDefinitionId) -> VisitorResult {
 
        self.reset_state();
 

	
 
        let definition = &ctx.heap[id];
 
        self.proc_id = id;
 
        self.proc_kind = definition.kind;
 
        self.expr_parent = ExpressionParent::None;
 

	
 
        // Visit parameters
 
        let scope_id = definition.scope;
 
        let old_scope = self.push_scope(ctx, true, scope_id);
 

	
 
        let definition = &ctx.heap[id];
 
        let body_id = definition.body;
 
        let section = self.variable_buffer.start_section_initialized(&definition.parameters);
 
        for variable_idx in 0..section.len() {
 
            let variable_id = section[variable_idx];
 
            self.checked_at_single_scope_add_local(ctx, self.cur_scope, -1, variable_id)?;
 
        }
 
        section.forget();
 

	
 
        // Visit statements in function body
 
        self.visit_block_stmt(ctx, body_id)?;
 
        self.pop_scope(old_scope);
 

	
 
        self.resolve_pending_control_flow_targets(ctx)?;
 

	
 
        Ok(())
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Statement visitors
 
    //--------------------------------------------------------------------------
 

	
 
    fn visit_block_stmt(&mut self, ctx: &mut Ctx, id: BlockStatementId) -> VisitorResult {
 
        // Get end of block
 
        let block_stmt = &ctx.heap[id];
 
        let end_block_id = block_stmt.end_block;
 
        let scope_id = block_stmt.scope;
 

	
 
        // Traverse statements in block
 
        let statement_section = self.statement_buffer.start_section_initialized(&block_stmt.statements);
 
        let old_scope = self.push_scope(ctx, false, scope_id);
 
        assign_and_replace_next_stmt!(self, ctx, id.upcast());
 

	
 
        for stmt_idx in 0..statement_section.len() {
 
            self.relative_pos_in_parent = stmt_idx as i32;
 
            self.visit_stmt(ctx, statement_section[stmt_idx])?;
 
        }
 

	
 
        statement_section.forget();
 
        assign_and_replace_next_stmt!(self, ctx, end_block_id.upcast());
 

	
 
        self.pop_scope(old_scope);
 
        Ok(())
 
    }
 

	
 
    fn visit_local_memory_stmt(&mut self, ctx: &mut Ctx, id: MemoryStatementId) -> VisitorResult {
 
        let stmt = &ctx.heap[id];
 
        let expr_id = stmt.initial_expr;
 
        let variable_id = stmt.variable;
 

	
 
        self.checked_add_local(ctx, self.cur_scope, self.relative_pos_in_parent, variable_id)?;
 

	
 
        assign_and_replace_next_stmt!(self, ctx, id.upcast().upcast());
 
        debug_assert_eq!(self.expr_parent, ExpressionParent::None);
 
        self.expr_parent = ExpressionParent::Memory(id);
 
        self.visit_assignment_expr(ctx, expr_id)?;
 
        self.expr_parent = ExpressionParent::None;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_local_channel_stmt(&mut self, ctx: &mut Ctx, id: ChannelStatementId) -> VisitorResult {
 
        let stmt = &ctx.heap[id];
 
        let from_id = stmt.from;
 
        let to_id = stmt.to;
 

	
 
        self.checked_add_local(ctx, self.cur_scope, self.relative_pos_in_parent, from_id)?;
 
        self.checked_add_local(ctx, self.cur_scope, self.relative_pos_in_parent, to_id)?;
 

	
 
        assign_and_replace_next_stmt!(self, ctx, id.upcast().upcast());
 
        Ok(())
 
    }
 

	
 
    fn visit_labeled_stmt(&mut self, ctx: &mut Ctx, id: LabeledStatementId) -> VisitorResult {
 
        let stmt = &ctx.heap[id];
 
        let body_id = stmt.body;
 

	
 
        self.checked_add_label(ctx, self.relative_pos_in_parent, self.in_sync, id)?;
 

	
 
        self.visit_stmt(ctx, body_id)?;
 
        Ok(())
 
    }
 

	
 
    fn visit_if_stmt(&mut self, ctx: &mut Ctx, id: IfStatementId) -> VisitorResult {
 
        let if_stmt = &ctx.heap[id];
 
        let end_if_id = if_stmt.end_if;
 
        let test_expr_id = if_stmt.test;
 
        let true_case = if_stmt.true_case;
 
        let false_case = if_stmt.false_case;
 

	
 
        // Visit test expression
 
        debug_assert_eq!(self.expr_parent, ExpressionParent::None);
 
        debug_assert!(self.in_test_expr.is_invalid());
 

	
 
        self.in_test_expr = id.upcast();
 
        self.expr_parent = ExpressionParent::If(id);
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.in_test_expr = StatementId::new_invalid();
 

	
 
        self.expr_parent = ExpressionParent::None;
 

	
 
        // Visit true and false branch. Executor chooses next statement based on
 
        // test expression, not on if-statement itself. Hence the if statement
 
        // does not have a static subsequent statement.
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 
        let old_scope = self.push_scope(ctx, false, true_case.scope);
 
        self.visit_stmt(ctx, true_case.body)?;
 
        self.pop_scope(old_scope);
 
        assign_then_erase_next_stmt!(self, ctx, end_if_id.upcast());
 

	
 
        if let Some(false_case) = false_case {
 
            let old_scope = self.push_scope(ctx, false, false_case.scope);
 
            self.visit_stmt(ctx, false_case.body)?;
 
            self.pop_scope(old_scope);
 
            assign_then_erase_next_stmt!(self, ctx, end_if_id.upcast());
 
        }
 

	
 
        self.prev_stmt = end_if_id.upcast();
 
        Ok(())
 
    }
 

	
 
    fn visit_while_stmt(&mut self, ctx: &mut Ctx, id: WhileStatementId) -> VisitorResult {
 
        let stmt = &ctx.heap[id];
 
        let end_while_id = stmt.end_while;
 
        let test_expr_id = stmt.test;
 
        let body_stmt_id = stmt.body;
 
        let scope_id = stmt.scope;
 

	
 
        let old_while = self.in_while;
 
        self.in_while = id;
 

	
 
        // Visit test expression
 
        debug_assert_eq!(self.expr_parent, ExpressionParent::None);
 
        debug_assert!(self.in_test_expr.is_invalid());
 
        self.in_test_expr = id.upcast();
 
        self.expr_parent = ExpressionParent::While(id);
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.in_test_expr = StatementId::new_invalid();
 

	
 
        // Link up to body statement
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 

	
 
        self.expr_parent = ExpressionParent::None;
 
        let old_scope = self.push_scope(ctx, false, scope_id);
 
        self.visit_stmt(ctx, body_stmt_id)?;
 
        self.pop_scope(old_scope);
 
        self.in_while = old_while;
 

	
 
        // Link final entry in while's block statement back to the while. The
 
        // executor will go to the end-while statement if the test expression
 
        // is false, so put that in as the new previous stmt
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 
        self.prev_stmt = end_while_id.upcast();
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_break_stmt(&mut self, ctx: &mut Ctx, id: BreakStatementId) -> VisitorResult {
 
        self.control_flow_stmts.push(ControlFlowStatement{
 
            in_sync: self.in_sync,
 
            in_while: self.in_while,
 
            in_scope: self.cur_scope,
 
            statement: id.upcast()
 
        });
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_continue_stmt(&mut self, ctx: &mut Ctx, id: ContinueStatementId) -> VisitorResult {
 
        self.control_flow_stmts.push(ControlFlowStatement{
 
            in_sync: self.in_sync,
 
            in_while: self.in_while,
 
            in_scope: self.cur_scope,
 
            statement: id.upcast()
 
        });
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_synchronous_stmt(&mut self, ctx: &mut Ctx, id: SynchronousStatementId) -> VisitorResult {
 
        // Check for validity of synchronous statement
 
        let sync_stmt = &ctx.heap[id];
 
        let end_sync_id = sync_stmt.end_sync;
 
        let cur_sync_span = sync_stmt.span;
 
        let scope_id = sync_stmt.scope;
 

	
 
        if !self.in_sync.is_invalid() {
 
            // Nested synchronous statement
 
            let old_sync_span = ctx.heap[self.in_sync].span;
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, cur_sync_span, "Illegal nested synchronous statement"
 
            ).with_info_str_at_span(
 
                &ctx.module().source, old_sync_span, "It is nested in this synchronous statement"
 
            ));
 
        }
 

	
 
        if self.proc_kind != ProcedureKind::Primitive {
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, cur_sync_span,
 
                "synchronous statements may only be used in primitive components"
 
            ));
 
        }
 

	
 
        // Synchronous statement implicitly moves to its block
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 

	
 
        // Visit block statement. Note that we explicitly push the scope here
 
        // (and the `visit_block_stmt` will also push, but without effect) to
 
        // ensure the scope contains the sync ID.
 
        let sync_body = ctx.heap[id].body;
 
        debug_assert!(self.in_sync.is_invalid());
 
        self.in_sync = id;
 
        let old_scope = self.push_scope(ctx, false, scope_id);
 
        self.visit_stmt(ctx, sync_body)?;
 
        self.pop_scope(old_scope);
 
        assign_and_replace_next_stmt!(self, ctx, end_sync_id.upcast());
 

	
 
        self.in_sync = SynchronousStatementId::new_invalid();
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_fork_stmt(&mut self, ctx: &mut Ctx, id: ForkStatementId) -> VisitorResult {
 
        let fork_stmt = &ctx.heap[id];
 
        let end_fork_id = fork_stmt.end_fork;
 
        let left_body_id = fork_stmt.left_body;
 
        let right_body_id = fork_stmt.right_body;
 

	
 
        // Fork statements may only occur inside sync blocks
 
        if self.in_sync.is_invalid() {
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, fork_stmt.span,
 
                "Forking may only occur inside sync blocks"
 
            ));
 
        }
 

	
 
        // Visit the respective bodies. Like the if statement, a fork statement
 
        // does not have a single static subsequent statement. It forks and then
 
        // each fork has a different next statement.
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 
        self.visit_stmt(ctx, left_body_id)?;
 
        assign_then_erase_next_stmt!(self, ctx, end_fork_id.upcast());
 

	
 
        if let Some(right_body_id) = right_body_id {
 
            self.visit_stmt(ctx, right_body_id)?;
 
            assign_then_erase_next_stmt!(self, ctx, end_fork_id.upcast());
 
        }
 

	
 
        self.prev_stmt = end_fork_id.upcast();
 
        Ok(())
 
    }
 

	
 
    fn visit_select_stmt(&mut self, ctx: &mut Ctx, id: SelectStatementId) -> VisitorResult {
 
        let select_stmt = &mut ctx.heap[id];
 
        select_stmt.relative_pos_in_parent = self.relative_pos_in_parent;
 
        self.relative_pos_in_parent += 1;
 

	
 
        let select_stmt = &ctx.heap[id];
 
        let end_select_id = select_stmt.end_select;
 

	
 
        // Select statements may only occur inside sync blocks
 
        if self.in_sync.is_invalid() {
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, select_stmt.span,
 
                "select statements may only occur inside sync blocks"
 
            ));
 
        }
 

	
 
        if self.proc_kind != ProcedureKind::Primitive {
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, select_stmt.span,
 
                "select statements may only be used in primitive components"
 
            ));
 
        }
 

	
 
        // Visit the various arms in the select block
 
        let mut case_stmt_ids = self.statement_buffer.start_section();
 
        let mut case_scope_ids = self.scope_buffer.start_section();
 
        let num_cases = select_stmt.cases.len();
 
        for case in &select_stmt.cases {
 
            // We add them in pairs, so the subsequent for-loop retrieves in pairs
 
            case_stmt_ids.push(case.guard);
 
            case_stmt_ids.push(case.body);
 
            case_scope_ids.push(case.scope);
 
        }
 

	
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 

	
 
        for index in 0..num_cases {
 
            let base_index = 2 * index;
 
            let guard_id     = case_stmt_ids[base_index];
 
            let case_body_id = case_stmt_ids[base_index + 1];
 
            let case_scope_id = case_scope_ids[index];
 

	
 
            // The guard statement ends up belonging to the block statement
 
            // following the arm. The reason we parse it separately is to
 
            // extract all of the "get" calls.
 
            let old_scope = self.push_scope(ctx, false, case_scope_id);
 

	
 
            // Visit the guard of this arm
 
            debug_assert!(self.in_select_guard.is_invalid());
 
            self.in_select_guard = id;
 
            self.in_select_arm = index as u32;
 
            self.visit_stmt(ctx, guard_id)?;
 
            self.in_select_guard = SelectStatementId::new_invalid();
 

	
 
            // Visit the code associated with the guard
 
            self.relative_pos_in_parent += 1;
 
            self.visit_stmt(ctx, case_body_id)?;
 
            self.pop_scope(old_scope);
 

	
 
            // Link up last statement in block to EndSelect
 
            assign_then_erase_next_stmt!(self, ctx, end_select_id.upcast());
 
        }
 

	
 
        self.in_select_guard = SelectStatementId::new_invalid();
 
        self.prev_stmt = end_select_id.upcast();
 
        Ok(())
 
    }
 

	
 
    fn visit_return_stmt(&mut self, ctx: &mut Ctx, id: ReturnStatementId) -> VisitorResult {
 
        // Check if "return" occurs within a function
 
        let stmt = &ctx.heap[id];
 
        if self.proc_kind != ProcedureKind::Function {
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, stmt.span,
 
                "return statements may only appear in function bodies"
 
            ));
 
        }
 

	
 
        // If here then we are within a function
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 
        debug_assert_eq!(self.expr_parent, ExpressionParent::None);
 
        debug_assert_eq!(ctx.heap[id].expressions.len(), 1);
 
        self.expr_parent = ExpressionParent::Return(id);
 
        self.visit_expr(ctx, ctx.heap[id].expressions[0])?;
 
        self.expr_parent = ExpressionParent::None;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_goto_stmt(&mut self, ctx: &mut Ctx, id: GotoStatementId) -> VisitorResult {
 
        self.control_flow_stmts.push(ControlFlowStatement{
 
            in_sync: self.in_sync,
 
            in_while: self.in_while,
 
            in_scope: self.cur_scope,
 
            statement: id.upcast(),
 
        });
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_new_stmt(&mut self, ctx: &mut Ctx, id: NewStatementId) -> VisitorResult {
 
        // Make sure the new statement occurs inside a composite component
 
        if self.proc_kind != ProcedureKind::Composite {
 
            let new_stmt = &ctx.heap[id];
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, new_stmt.span,
 
                "instantiating components may only be done in composite components"
 
            ));
 
        }
 

	
 
        // Recurse into call expression (which will check the expression parent
 
        // to ensure that the "new" statment instantiates a component)
 
        let call_expr_id = ctx.heap[id].expression;
 

	
 
        assign_and_replace_next_stmt!(self, ctx, id.upcast());
 
        debug_assert_eq!(self.expr_parent, ExpressionParent::None);
 
        self.expr_parent = ExpressionParent::New(id);
 
        self.visit_call_expr(ctx, call_expr_id)?;
 
        self.expr_parent = ExpressionParent::None;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_expr_stmt(&mut self, ctx: &mut Ctx, id: ExpressionStatementId) -> VisitorResult {
 
        let expr_id = ctx.heap[id].expression;
 

	
 
        assign_and_replace_next_stmt!(self, ctx, id.upcast());
 
        debug_assert_eq!(self.expr_parent, ExpressionParent::None);
 
        self.expr_parent = ExpressionParent::ExpressionStmt(id);
 
        self.visit_expr(ctx, expr_id)?;
 
        self.expr_parent = ExpressionParent::None;
 

	
 
        Ok(())
 
    }
 

	
 

	
 
    //--------------------------------------------------------------------------
 
    // Expression visitors
 
    //--------------------------------------------------------------------------
 

	
 
    fn visit_assignment_expr(&mut self, ctx: &mut Ctx, id: AssignmentExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 

	
 
        let assignment_expr = &mut ctx.heap[id];
 

	
 
        // Although we call assignment an expression to simplify the compiler's
 
        // code (mainly typechecking), we disallow nested use in expressions
 
        match self.expr_parent {
 
            // Look at us: lying through our teeth while providing error messages.
 
            ExpressionParent::Memory(_) => {},
 
            ExpressionParent::ExpressionStmt(_) => {},
 
            _ => {
 
                let assignment_span = assignment_expr.full_span;
 
                return Err(ParseError::new_error_str_at_span(
 
                    &ctx.module().source, assignment_span,
 
                    "assignments are statements, and cannot be used in expressions"
 
                ))
 
            },
 
        }
 

	
 
        let left_expr_id = assignment_expr.left;
 
        let right_expr_id = assignment_expr.right;
 
        let old_expr_parent = self.expr_parent;
 
        assignment_expr.parent = old_expr_parent;
 

	
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
 
        self.must_be_assignable = Some(assignment_expr.operator_span);
 
        self.visit_expr(ctx, left_expr_id)?;
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 1);
 
        self.must_be_assignable = None;
 
        self.visit_expr(ctx, right_expr_id)?;
 
        self.expr_parent = old_expr_parent;
 
        Ok(())
 
    }
 

	
 
    fn visit_binding_expr(&mut self, ctx: &mut Ctx, id: BindingExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 

	
 
        // Check for valid context of binding expression
 
        if let Some(span) = self.must_be_assignable {
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, span, "cannot assign to the result from a binding expression"
 
            ));
 
        }
 

	
 
        if self.in_test_expr.is_invalid() {
 
            let binding_expr = &ctx.heap[id];
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, binding_expr.full_span,
 
                "binding expressions can only be used inside the testing expression of 'if' and 'while' statements"
 
            ));
 
        }
 

	
 
        if !self.in_binding_expr.is_invalid() {
 
            let binding_expr = &ctx.heap[id];
 
            let previous_expr = &ctx.heap[self.in_binding_expr];
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, binding_expr.full_span,
 
                "nested binding expressions are not allowed"
 
            ).with_info_str_at_span(
 
                &ctx.module().source, previous_expr.operator_span,
 
                "the outer binding expression is found here"
 
            ));
 
        }
 

	
 
        let mut seeking_parent = self.expr_parent;
 
        loop {
 
            // Perform upward search to make sure only LogicalAnd is applied to
 
            // the binding expression
 
            let valid = match seeking_parent {
 
                ExpressionParent::If(_) | ExpressionParent::While(_) => {
 
                    // Every parent expression (if any) were LogicalAnd.
 
                    break;
 
                }
 
                ExpressionParent::Expression(parent_id, _) => {
 
                    let parent_expr = &ctx.heap[parent_id];
 
                    match parent_expr {
 
                        Expression::Binary(parent_expr) => {
 
                            // Set new parent to continue the search. Otherwise
 
                            // halt and provide an error using the current
 
                            // parent.
 
                            if parent_expr.operation == BinaryOperator::LogicalAnd {
 
                                seeking_parent = parent_expr.parent;
 
                                true
 
                            } else {
 
                                false
 
                            }
 
                        },
 
                        _ => false,
 
                    }
 
                },
 
                _ => unreachable!(), // nested under if/while, so always expressions as parents
 
            };
 

	
 
            if !valid {
 
                let binding_expr = &ctx.heap[id];
 
                let parent_expr = &ctx.heap[seeking_parent.as_expression()];
 
                return Err(ParseError::new_error_str_at_span(
 
                    &ctx.module().source, binding_expr.full_span,
 
                    "only the logical-and operator (&&) may be applied to binding expressions"
 
                ).with_info_str_at_span(
 
                    &ctx.module().source, parent_expr.operation_span(),
 
                    "this was the disallowed operation applied to the result from a binding expression"
 
                ));
 
            }
 
        }
 

	
 
        // Perform all of the index/parent assignment magic
 
        let binding_expr = &mut ctx.heap[id];
 

	
 
        let old_expr_parent = self.expr_parent;
 
        binding_expr.parent = old_expr_parent;
 
        self.in_binding_expr = id;
 

	
 
        // Perform preliminary check on children: binding expressions only make
 
        // sense if the left hand side is just a variable expression, or if it
 
        // is a literal of some sort. The typechecker will take care of the rest
 
        let bound_to_id = binding_expr.bound_to;
 
        let bound_from_id = binding_expr.bound_from;
 

	
 
        match &ctx.heap[bound_to_id] {
 
            // Variables may not be binding variables, and literals may
 
            // actually not contain binding variables. But in that case we just
 
            // perform an equality check.
 
            Expression::Variable(_) => {}
 
            Expression::Literal(_) => {},
 
            _ => {
 
                let binding_expr = &ctx.heap[id];
 
                return Err(ParseError::new_error_str_at_span(
 
                    &ctx.module().source, binding_expr.operator_span,
 
                    "the left hand side of a binding expression may only be a variable or a literal expression"
 
                ));
 
            },
 
        }
 

	
 
        // Visit the children themselves
 
        self.in_binding_expr_lhs = true;
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
 
        self.visit_expr(ctx, bound_to_id)?;
 
        self.in_binding_expr_lhs = false;
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 1);
 
        self.visit_expr(ctx, bound_from_id)?;
 

	
 
        self.expr_parent = old_expr_parent;
 
        self.in_binding_expr = BindingExpressionId::new_invalid();
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_conditional_expr(&mut self, ctx: &mut Ctx, id: ConditionalExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        let conditional_expr = &mut ctx.heap[id];
 

	
 
        if let Some(span) = self.must_be_assignable {
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, span, "cannot assign to the result from a conditional expression"
 
            ))
 
        }
 

	
 
        let test_expr_id = conditional_expr.test;
 
        let true_expr_id = conditional_expr.true_expression;
 
        let false_expr_id = conditional_expr.false_expression;
 

	
 
        let old_expr_parent = self.expr_parent;
 
        conditional_expr.parent = old_expr_parent;
 

	
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 1);
 
        self.visit_expr(ctx, true_expr_id)?;
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 2);
 
        self.visit_expr(ctx, false_expr_id)?;
 
        self.expr_parent = old_expr_parent;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_binary_expr(&mut self, ctx: &mut Ctx, id: BinaryExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        let binary_expr = &mut ctx.heap[id];
 

	
 
        if let Some(span) = self.must_be_assignable {
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, span, "cannot assign to the result from a binary expression"
 
            ))
 
        }
 

	
 
        let left_expr_id = binary_expr.left;
 
        let right_expr_id = binary_expr.right;
 

	
 
        let old_expr_parent = self.expr_parent;
 
        binary_expr.parent = old_expr_parent;
 

	
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
 
        self.visit_expr(ctx, left_expr_id)?;
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 1);
 
        self.visit_expr(ctx, right_expr_id)?;
 
        self.expr_parent = old_expr_parent;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_unary_expr(&mut self, ctx: &mut Ctx, id: UnaryExpressionId) -> VisitorResult {
 
        let unary_expr = &mut ctx.heap[id];
 
        let expr_id = unary_expr.expression;
 

	
 
        if let Some(span) = self.must_be_assignable {
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, span, "cannot assign to the result from a unary expression"
 
            ))
 
        }
 

	
 
        let old_expr_parent = self.expr_parent;
 
        unary_expr.parent = old_expr_parent;
 

	
 
        self.expr_parent = ExpressionParent::Expression(id.upcast(), 0);
 
        self.visit_expr(ctx, expr_id)?;
 
        self.expr_parent = old_expr_parent;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_indexing_expr(&mut self, ctx: &mut Ctx, id: IndexingExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        let indexing_expr = &mut ctx.heap[id];
 

	
 
        let subject_expr_id = indexing_expr.subject;
 
        let index_expr_id = indexing_expr.index;
 

	
 
        let old_expr_parent = self.expr_parent;
 
        indexing_expr.parent = old_expr_parent;
 

	
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
 
        self.visit_expr(ctx, subject_expr_id)?;
 

	
 
        let old_assignable = self.must_be_assignable.take();
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 1);
 
        self.visit_expr(ctx, index_expr_id)?;
 

	
 
        self.must_be_assignable = old_assignable;
 
        self.expr_parent = old_expr_parent;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_slicing_expr(&mut self, ctx: &mut Ctx, id: SlicingExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        let slicing_expr = &mut ctx.heap[id];
 

	
 
        if let Some(span) = self.must_be_assignable {
 
            // TODO: @Slicing
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, span, "assignment to slices should be valid in the final language, but is currently not implemented"
 
            ));
 
        }
 

	
 
        let subject_expr_id = slicing_expr.subject;
 
        let from_expr_id = slicing_expr.from_index;
 
        let to_expr_id = slicing_expr.to_index;
 

	
 
        let old_expr_parent = self.expr_parent;
 
        slicing_expr.parent = old_expr_parent;
 

	
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
 
        self.visit_expr(ctx, subject_expr_id)?;
 

	
 
        let old_assignable = self.must_be_assignable.take();
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 1);
 
        self.visit_expr(ctx, from_expr_id)?;
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 2);
 
        self.visit_expr(ctx, to_expr_id)?;
 

	
 
        self.must_be_assignable = old_assignable;
 
        self.expr_parent = old_expr_parent;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_select_expr(&mut self, ctx: &mut Ctx, id: SelectExpressionId) -> VisitorResult {
 
        let select_expr = &mut ctx.heap[id];
 
        let expr_id = select_expr.subject;
 

	
 
        let old_expr_parent = self.expr_parent;
 
        select_expr.parent = old_expr_parent;
 

	
 
        self.expr_parent = ExpressionParent::Expression(id.upcast(), 0);
 
        self.visit_expr(ctx, expr_id)?;
 
        self.expr_parent = old_expr_parent;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_literal_expr(&mut self, ctx: &mut Ctx, id: LiteralExpressionId) -> VisitorResult {
 
        let literal_expr = &mut ctx.heap[id];
 
        let old_expr_parent = self.expr_parent;
 
        literal_expr.parent = old_expr_parent;
 

	
 
        if let Some(span) = self.must_be_assignable {
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, span, "cannot assign to a literal expression"
 
            ))
 
        }
 

	
 
        match &mut literal_expr.value {
 
            Literal::Null | Literal::True | Literal::False |
 
            Literal::Character(_) | Literal::String(_) | Literal::Integer(_) => {
 
                // Just the parent has to be set, done above
 
            },
 
            Literal::Struct(literal) => {
 
                let upcast_id = id.upcast();
 
                // Retrieve type definition
 
                let type_definition = ctx.types.get_base_definition(&literal.definition).unwrap();
 
                let struct_definition = type_definition.definition.as_struct();
 

	
 
                // Make sure all fields are specified, none are specified twice
 
                // and all fields exist on the struct definition
 
                let mut specified = Vec::new(); // TODO: @performance
 
                specified.resize(struct_definition.fields.len(), false);
 

	
 
                for field in &mut literal.fields {
 
                    // Find field in the struct definition
 
                    let field_idx = struct_definition.fields.iter().position(|v| v.identifier == field.identifier);
 
                    if field_idx.is_none() {
 
                        let field_span = field.identifier.span;
 
                        let literal = ctx.heap[id].value.as_struct();
 
                        let ast_definition = &ctx.heap[literal.definition];
 
                        return Err(ParseError::new_error_at_span(
 
                            &ctx.module().source, field_span, format!(
 
                                "This field does not exist on the struct '{}'",
 
                                ast_definition.identifier().value.as_str()
 
                            )
 
                        ));
 
                    }
 
                    field.field_idx = field_idx.unwrap();
 

	
 
                    // Check if specified more than once
 
                    if specified[field.field_idx] {
 
                        let field_span = field.identifier.span;
 
                        return Err(ParseError::new_error_str_at_span(
 
                            &ctx.module().source, field_span,
 
                            "This field is specified more than once"
 
                        ));
 
                    }
 

	
 
                    specified[field.field_idx] = true;
 
                }
 

	
 
                if !specified.iter().all(|v| *v) {
 
                    // Some fields were not specified
 
                    let mut not_specified = String::new();
 
                    let mut num_not_specified = 0;
 
                    for (def_field_idx, is_specified) in specified.iter().enumerate() {
 
                        if !is_specified {
 
                            if !not_specified.is_empty() { not_specified.push_str(", ") }
 
                            let field_ident = &struct_definition.fields[def_field_idx].identifier;
 
                            not_specified.push_str(field_ident.value.as_str());
 
                            num_not_specified += 1;
 
                        }
 
                    }
 

	
 
                    debug_assert!(num_not_specified > 0);
 
                    let msg = if num_not_specified == 1 {
 
                        format!("not all fields are specified, '{}' is missing", not_specified)
 
                    } else {
 
                        format!("not all fields are specified, [{}] are missing", not_specified)
 
                    };
 

	
 
                    let literal_span = literal.parser_type.full_span;
 
                    return Err(ParseError::new_error_at_span(
 
                        &ctx.module().source, literal_span, msg
 
                    ));
 
                }
 

	
 
                // Need to traverse fields expressions in struct and evaluate
 
                // the poly args
 
                let mut expr_section = self.expression_buffer.start_section();
 
                for field in &literal.fields {
 
                    expr_section.push(field.value);
 
                }
 

	
 
                for expr_idx in 0..expr_section.len() {
 
                    let expr_id = expr_section[expr_idx];
 
                    self.expr_parent = ExpressionParent::Expression(upcast_id, expr_idx as u32);
 
                    self.visit_expr(ctx, expr_id)?;
 
                }
 

	
 
                expr_section.forget();
 
            },
 
            Literal::Enum(literal) => {
 
                // Make sure the variant exists
 
                let type_definition = ctx.types.get_base_definition(&literal.definition).unwrap();
 
                let enum_definition = type_definition.definition.as_enum();
 

	
 
                let variant_idx = enum_definition.variants.iter().position(|v| {
 
                    v.identifier == literal.variant
 
                });
 

	
 
                if variant_idx.is_none() {
 
                    let literal = ctx.heap[id].value.as_enum();
 
                    let ast_definition = ctx.heap[literal.definition].as_enum();
 
                    return Err(ParseError::new_error_at_span(
 
                        &ctx.module().source, literal.parser_type.full_span, format!(
 
                            "the variant '{}' does not exist on the enum '{}'",
 
                            literal.variant.value.as_str(), ast_definition.identifier.value.as_str()
 
                        )
 
                    ));
 
                }
 

	
 
                literal.variant_idx = variant_idx.unwrap();
 
            },
 
            Literal::Union(literal) => {
 
                // Make sure the variant exists
 
                let type_definition = ctx.types.get_base_definition(&literal.definition).unwrap();
 
                let union_definition = type_definition.definition.as_union();
 

	
 
                let variant_idx = union_definition.variants.iter().position(|v| {
 
                    v.identifier == literal.variant
 
                });
 
                if variant_idx.is_none() {
 
                    let literal = ctx.heap[id].value.as_union();
 
                    let ast_definition = ctx.heap[literal.definition].as_union();
 
                    return Err(ParseError::new_error_at_span(
 
                        &ctx.module().source, literal.parser_type.full_span, format!(
 
                            "the variant '{}' does not exist on the union '{}'",
 
                            literal.variant.value.as_str(), ast_definition.identifier.value.as_str()
 
                        )
 
                    ));
 
                }
 

	
 
                literal.variant_idx = variant_idx.unwrap();
 

	
 
                // Make sure the number of specified values matches the expected
 
                // number of embedded values in the union variant.
 
                let union_variant = &union_definition.variants[literal.variant_idx];
 
                if union_variant.embedded.len() != literal.values.len() {
 
                    let literal = ctx.heap[id].value.as_union();
 
                    let ast_definition = ctx.heap[literal.definition].as_union();
 
                    return Err(ParseError::new_error_at_span(
 
                        &ctx.module().source, literal.parser_type.full_span, format!(
 
                            "The variant '{}' of union '{}' expects {} embedded values, but {} were specified",
 
                            literal.variant.value.as_str(), ast_definition.identifier.value.as_str(),
 
                            union_variant.embedded.len(), literal.values.len()
 
                        ),
 
                    ))
 
                }
 

	
 
                // Traverse embedded values of union (if any) and evaluate the
 
                // polymorphic arguments
 
                let upcast_id = id.upcast();
 
                let mut expr_section = self.expression_buffer.start_section();
 
                for value in &literal.values {
 
                    expr_section.push(*value);
 
                }
 

	
 
                for expr_idx in 0..expr_section.len() {
 
                    let expr_id = expr_section[expr_idx];
 
                    self.expr_parent = ExpressionParent::Expression(upcast_id, expr_idx as u32);
 
                    self.visit_expr(ctx, expr_id)?;
 
                }
 

	
 
                expr_section.forget();
 
            },
 
            Literal::Array(literal) | Literal::Tuple(literal) => {
 
                // Visit all expressions in the array
 
                let upcast_id = id.upcast();
 
                let expr_section = self.expression_buffer.start_section_initialized(literal);
 
                for expr_idx in 0..expr_section.len() {
 
                    let expr_id = expr_section[expr_idx];
 
                    self.expr_parent = ExpressionParent::Expression(upcast_id, expr_idx as u32);
 
                    self.visit_expr(ctx, expr_id)?;
 
                }
 

	
 
                expr_section.forget();
 
            }
 
        }
 

	
 
        self.expr_parent = old_expr_parent;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_cast_expr(&mut self, ctx: &mut Ctx, id: CastExpressionId) -> VisitorResult {
 
        let cast_expr = &mut ctx.heap[id];
 

	
 
        if let Some(span) = self.must_be_assignable {
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, span, "cannot assign to the result from a cast expression"
 
            ))
 
        }
 

	
 
        let upcast_id = id.upcast();
 
        let old_expr_parent = self.expr_parent;
 
        cast_expr.parent = old_expr_parent;
 

	
 
        // Recurse into the thing that we're casting
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
 
        let subject_id = cast_expr.subject;
 
        self.visit_expr(ctx, subject_id)?;
 
        self.expr_parent = old_expr_parent;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_call_expr(&mut self, ctx: &mut Ctx, id: CallExpressionId) -> VisitorResult {
 
        let call_expr = &ctx.heap[id];
 

	
 
        if let Some(span) = self.must_be_assignable {
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, span, "cannot assign to the result from a call expression"
 
            ))
 
        }
 

	
 
        // Check whether the method is allowed to be called within the code's
 
        // context (in sync, definition type, etc.)
 
        let mut expecting_wrapping_new_stmt = false;
 
        let mut expecting_primitive_def = false;
 
        let mut expecting_wrapping_sync_stmt = false;
 
        let mut expecting_no_select_stmt = false;
 

	
 
        match call_expr.method {
 
            Method::Get => {
 
                expecting_primitive_def = true;
 
                expecting_wrapping_sync_stmt = true;
 
                if !self.in_select_guard.is_invalid() {
 
                    // In a select guard. Take the argument (i.e. the port we're
 
                    // retrieving from) and add it to the list of involved ports
 
                    // of the guard
 
                    if call_expr.arguments.len() == 1 {
 
                        // We're checking the number of arguments later, for now
 
                        // assume it is correct.
 
                        let argument = call_expr.arguments[0];
 
                        let select_stmt = &mut ctx.heap[self.in_select_guard];
 
                        let select_case = &mut select_stmt.cases[self.in_select_arm as usize];
 
                        select_case.involved_ports.push((id, argument));
 
                    }
 
                }
 
            },
 
            Method::Put => {
 
                expecting_primitive_def = true;
 
                expecting_wrapping_sync_stmt = true;
 
                expecting_no_select_stmt = true;
 
            },
 
            Method::Fires => {
 
                expecting_primitive_def = true;
 
                expecting_wrapping_sync_stmt = true;
 
            },
 
            Method::Create => {},
 
            Method::Length => {},
 
            Method::Assert => {
 
                expecting_wrapping_sync_stmt = true;
 
                expecting_no_select_stmt = true;
 
                if self.proc_kind == ProcedureKind::Function {
 
                    let call_span = call_expr.func_span;
 
                    return Err(ParseError::new_error_str_at_span(
 
                        &ctx.module().source, call_span,
 
                        "assert statement may only occur in components"
 
                    ));
 
                }
 
            },
 
            Method::Print => {},
 
            Method::SelectStart
 
            | Method::SelectRegisterCasePort
 
            | Method::SelectWait => unreachable!(), // not usable by programmer directly
 
            Method::UserFunction => {}
 
            Method::UserComponent => {
 
                expecting_wrapping_new_stmt = true;
 
            },
 
        }
 

	
 
        let call_expr = &mut ctx.heap[id];
 

	
 
        fn get_span_and_name<'a>(ctx: &'a Ctx, id: CallExpressionId) -> (InputSpan, String) {
 
            let call = &ctx.heap[id];
 
            let span = call.func_span;
 
            let name = String::from_utf8_lossy(ctx.module().source.section_at_span(span)).to_string();
 
            return (span, name);
 
        }
 
        if expecting_primitive_def {
 
            if self.proc_kind != ProcedureKind::Primitive {
 
                let (call_span, func_name) = get_span_and_name(ctx, id);
 
                return Err(ParseError::new_error_at_span(
 
                    &ctx.module().source, call_span,
 
                    format!("a call to '{}' may only occur in primitive component definitions", func_name)
 
                ));
 
            }
 
        }
 

	
 
        if expecting_wrapping_sync_stmt {
 
            if self.in_sync.is_invalid() {
 
                let (call_span, func_name) = get_span_and_name(ctx, id);
 
                return Err(ParseError::new_error_at_span(
 
                    &ctx.module().source, call_span,
 
                    format!("a call to '{}' may only occur inside synchronous blocks", func_name)
 
                ))
 
            }
 
        }
 

	
 
        if expecting_no_select_stmt {
 
            if !self.in_select_guard.is_invalid() {
 
                let (call_span, func_name) = get_span_and_name(ctx, id);
 
                return Err(ParseError::new_error_at_span(
 
                    &ctx.module().source, call_span,
 
                    format!("a call to '{}' may not occur in a select statement's guard", func_name)
 
                ));
 
            }
 
        }
 

	
 
        if expecting_wrapping_new_stmt {
 
            if !self.expr_parent.is_new() {
 
                let call_span = call_expr.func_span;
 
                return Err(ParseError::new_error_str_at_span(
 
                    &ctx.module().source, call_span,
 
                    "cannot call a component, it can only be instantiated by using 'new'"
 
                ));
 
            }
 
        } else {
 
            if self.expr_parent.is_new() {
 
                let call_span = call_expr.func_span;
 
                return Err(ParseError::new_error_str_at_span(
 
                    &ctx.module().source, call_span,
 
                    "only components can be instantiated, this is a function"
 
                ));
 
            }
 
        }
 

	
 
        // Check the number of arguments
 
        let call_definition = ctx.types.get_base_definition(&call_expr.procedure.upcast()).unwrap();
 
        let num_expected_args = match &call_definition.definition {
 
            DefinedTypeVariant::Procedure(definition) => definition.arguments.len(),
 
            _ => unreachable!(),
 
        };
 

	
 
        let num_provided_args = call_expr.arguments.len();
 
        if num_provided_args != num_expected_args {
 
            let argument_text = if num_expected_args == 1 { "argument" } else { "arguments" };
 
            let call_span = call_expr.full_span;
 
            return Err(ParseError::new_error_at_span(
 
                &ctx.module().source, call_span, format!(
 
                    "expected {} {}, but {} were provided",
 
                    num_expected_args, argument_text, num_provided_args
 
                )
 
            ));
 
        }
 

	
 
        // Recurse into all of the arguments and set the expression's parent
 
        let upcast_id = id.upcast();
 

	
 
        let section = self.expression_buffer.start_section_initialized(&call_expr.arguments);
 
        let old_expr_parent = self.expr_parent;
 
        call_expr.parent = old_expr_parent;
 

	
 
        for arg_expr_idx in 0..section.len() {
 
            let arg_expr_id = section[arg_expr_idx];
 
            self.expr_parent = ExpressionParent::Expression(upcast_id, arg_expr_idx as u32);
 
            self.visit_expr(ctx, arg_expr_id)?;
 
        }
 

	
 
        section.forget();
 
        self.expr_parent = old_expr_parent;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_variable_expr(&mut self, ctx: &mut Ctx, id: VariableExpressionId) -> VisitorResult {
 
        let var_expr = &ctx.heap[id];
 

	
 
        // Check if declaration was already resolved (this occurs for the
 
        // variable expr that is on the LHS of the assignment expr that is
 
        // associated with a variable declaration)
 
        let mut variable_id = var_expr.declaration;
 
        let mut is_binding_target = false;
 

	
 
        // Otherwise try to find it
 
        if variable_id.is_none() {
 
            variable_id = self.find_variable(ctx, self.relative_pos_in_parent, &var_expr.identifier);
 
        }
 

	
 
        // Otherwise try to see if is a variable introduced by a binding expr
 
        let variable_id = if let Some(variable_id) = variable_id {
 
            variable_id
 
        } else {
 
            if self.in_binding_expr.is_invalid() || !self.in_binding_expr_lhs {
 
                return Err(ParseError::new_error_str_at_span(
 
                    &ctx.module().source, var_expr.identifier.span, "unresolved variable"
 
                ));
 
            }
 

	
 
            // This is a binding variable, but it may only appear in very
 
            // specific locations.
 
            let is_valid_binding = match self.expr_parent {
 
                ExpressionParent::Expression(expr_id, idx) => {
 
                    match &ctx.heap[expr_id] {
 
                        Expression::Binding(_binding_expr) => {
 
                            // Nested binding is disallowed, and because of
 
                            // the check above we know we're directly at the
 
                            // LHS of the binding expression
 
                            debug_assert_eq!(_binding_expr.this, self.in_binding_expr);
 
                            debug_assert_eq!(idx, 0);
 
                            true
 
                        }
 
                        Expression::Literal(lit_expr) => {
 
                        Expression::Literal(_lit_expr) => {
 
                            // Only struct, unions, tuples and arrays can
 
                            // have subexpressions, so we're always fine
 
                            dbg_code!({
 
                                match lit_expr.value {
 
                                match _lit_expr.value {
 
                                    Literal::Struct(_) | Literal::Union(_) | Literal::Array(_) | Literal::Tuple(_) => {},
 
                                    _ => unreachable!(),
 
                                }
 
                            });
 

	
 
                            true
 
                        },
 
                        _ => false,
 
                    }
 
                },
 
                _ => {
 
                    false
 
                }
 
            };
 

	
 
            if !is_valid_binding {
 
                let binding_expr = &ctx.heap[self.in_binding_expr];
 
                return Err(ParseError::new_error_str_at_span(
 
                    &ctx.module().source, var_expr.identifier.span,
 
                    "illegal location for binding variable: binding variables may only be nested under a binding expression, or a struct, union or array literal"
 
                ).with_info_at_span(
 
                    &ctx.module().source, binding_expr.operator_span, format!(
 
                        "'{}' was interpreted as a binding variable because the variable is not declared and it is nested under this binding expression",
 
                        var_expr.identifier.value.as_str()
 
                    )
 
                ));
 
            }
 

	
 
            // By now we know that this is a valid binding expression. Given
 
            // that a binding expression must be nested under an if/while
 
            // statement, we now add the variable to the scope associated with
 
            // that statement.
 
            let bound_identifier = var_expr.identifier.clone();
 
            let bound_variable_id = ctx.heap.alloc_variable(|this| Variable {
 
                this,
 
                kind: VariableKind::Binding,
 
                parser_type: ParserType {
 
                    elements: vec![ParserTypeElement {
 
                        element_span: bound_identifier.span,
 
                        variant: ParserTypeVariant::Inferred
 
                    }],
 
                    full_span: bound_identifier.span
 
                },
 
                identifier: bound_identifier,
 
                relative_pos_in_parent: 0,
 
                unique_id_in_scope: -1,
 
            });
 

	
 
            let scope_id = match &ctx.heap[self.in_test_expr] {
 
                Statement::If(stmt) => stmt.true_case.scope,
 
                Statement::While(stmt) => stmt.scope,
 
                _ => unreachable!(),
 
            };
 

	
 
            self.checked_at_single_scope_add_local(ctx, scope_id, -1, bound_variable_id)?; // add at -1 such that first statement can find the variable if needed
 

	
 
            is_binding_target = true;
 
            bound_variable_id
 
        };
 

	
 
        let var_expr = &mut ctx.heap[id];
 
        var_expr.declaration = Some(variable_id);
 
        var_expr.used_as_binding_target = is_binding_target;
 
        var_expr.parent = self.expr_parent;
 

	
 
        Ok(())
 
    }
 
}
 

	
 
impl PassValidationLinking {
 
    //--------------------------------------------------------------------------
 
    // Special traversal
 
    //--------------------------------------------------------------------------
 

	
 
    /// Pushes a new scope associated with a particular statement. If that
 
    /// statement already has an associated scope (i.e. scope associated with
 
    /// sync statement or select statement's arm) then we won't do anything.
 
    /// In all cases the caller must call `pop_statement_scope` with the scope
 
    /// and relative scope position returned by this function.
 
    fn push_scope(&mut self, ctx: &mut Ctx, is_top_level_scope: bool, pushed_scope_id: ScopeId) -> (ScopeId, i32) {
 
        // Set the properties of the pushed scope (it is already created during
 
        // AST construction, but most values are not yet set to their correct
 
        // values)
 
        let old_scope_id = self.cur_scope;
 

	
 
        let scope = &mut ctx.heap[pushed_scope_id];
 
        if !is_top_level_scope {
 
            scope.parent = Some(old_scope_id);
 
        }
 

	
 
        scope.relative_pos_in_parent = self.relative_pos_in_parent;
 
        let old_relative_pos = self.relative_pos_in_parent;
 
        self.relative_pos_in_parent = 0;
 

	
 
        // Link up scopes
 
        if !is_top_level_scope {
 
            let old_scope = &mut ctx.heap[old_scope_id];
 
            old_scope.nested.push(pushed_scope_id);
 
        }
 

	
 
        // Set as current traversal scope, then return old scope
 
        self.cur_scope = pushed_scope_id;
 
        return (old_scope_id, old_relative_pos)
 
    }
 

	
 
    fn pop_scope(&mut self, scope_to_restore: (ScopeId, i32)) {
 
        self.cur_scope = scope_to_restore.0;
 
        self.relative_pos_in_parent = scope_to_restore.1;
 
    }
 

	
 
    fn resolve_pending_control_flow_targets(&mut self, ctx: &mut Ctx) -> Result<(), ParseError> {
 
        for entry in &self.control_flow_stmts {
 
            let stmt = &ctx.heap[entry.statement];
 

	
 
            match stmt {
 
                Statement::Break(stmt) => {
 
                    let stmt_id = stmt.this;
 
                    let target_while_id = Self::resolve_break_or_continue_target(ctx, entry, stmt.span, &stmt.label)?;
 
                    let target_while_stmt = &ctx.heap[target_while_id];
 
                    let target_end_while_id = target_while_stmt.end_while;
 
                    debug_assert!(!target_end_while_id.is_invalid());
 

	
 
                    let break_stmt = &mut ctx.heap[stmt_id];
 
                    break_stmt.target = target_end_while_id;
 
                },
 
                Statement::Continue(stmt) => {
 
                    let stmt_id = stmt.this;
 
                    let target_while_id = Self::resolve_break_or_continue_target(ctx, entry, stmt.span, &stmt.label)?;
 

	
 
                    let continue_stmt = &mut ctx.heap[stmt_id];
 
                    continue_stmt.target = target_while_id;
 
                },
 
                Statement::Goto(stmt) => {
 
                    let stmt_id = stmt.this;
 
                    let target_id = Self::find_label(entry.in_scope, ctx, &stmt.label)?;
 
                    let target_stmt = &ctx.heap[target_id];
 
                    if entry.in_sync != target_stmt.in_sync {
 
                        // Nested sync not allowed. And goto can only go to
 
                        // outer scopes, so we must be escaping from a sync.
 
                        debug_assert!(target_stmt.in_sync.is_invalid());    // target not in sync
 
                        debug_assert!(!entry.in_sync.is_invalid()); // but the goto is in sync
 
                        let goto_stmt = &ctx.heap[stmt_id];
 
                        let sync_stmt = &ctx.heap[entry.in_sync];
 
                        return Err(
 
                            ParseError::new_error_str_at_span(&ctx.module().source, goto_stmt.span, "goto may not escape the surrounding synchronous block")
 
                            .with_info_str_at_span(&ctx.module().source, target_stmt.label.span, "this is the target of the goto statement")
 
                            .with_info_str_at_span(&ctx.module().source, sync_stmt.span, "which will jump past this statement")
 
                        );
 
                    }
 

	
 
                    let goto_stmt = &mut ctx.heap[stmt_id];
 
                    goto_stmt.target = target_id;
 
                },
 
                _ => unreachable!("cannot resolve control flow target for {:?}", stmt),
 
            }
 
        }
 

	
 
        return Ok(())
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Utilities
 
    //--------------------------------------------------------------------------
 

	
 
    /// Adds a local variable to the current scope. It will also annotate the
 
    /// `Local` in the AST with its relative position in the block.
 
    fn checked_add_local(&mut self, ctx: &mut Ctx, target_scope_id: ScopeId, target_relative_pos: i32, new_variable_id: VariableId) -> Result<(), ParseError> {
 
        let new_variable = &ctx.heap[new_variable_id];
 

	
 
        // We immediately go to the parent scope. We check the target scope
 
        // in the call at the end. That is also where we check for collisions
 
        // with symbols.
 
        let mut scope = &ctx.heap[target_scope_id];
 
        let mut cur_relative_pos = scope.relative_pos_in_parent;
 
        while let Some(scope_parent_id) = scope.parent {
 
            scope = &ctx.heap[scope_parent_id];
 

	
 
            // Check for collisions
 
            for variable_id in scope.variables.iter().copied() {
 
                let existing_variable = &ctx.heap[variable_id];
 
                if existing_variable.identifier == new_variable.identifier &&
 
                    existing_variable.this != new_variable_id &&
 
                    cur_relative_pos >= existing_variable.relative_pos_in_parent {
 
                    return Err(
 
                        ParseError::new_error_str_at_span(
 
                            &ctx.module().source, new_variable.identifier.span, "Local variable name conflicts with another variable"
 
                        ).with_info_str_at_span(
 
                            &ctx.module().source, existing_variable.identifier.span, "Previous variable is found here"
 
                        )
 
                    );
 
                }
 
            }
 

	
 
            cur_relative_pos = scope.relative_pos_in_parent;
 
        }
 

	
 
        // No collisions in any of the parent scope, attempt to add to scope
 
        self.checked_at_single_scope_add_local(ctx, target_scope_id, target_relative_pos, new_variable_id)
 
    }
 

	
 
    /// Adds a local variable to the specified scope. Will check the specified
 
    /// scope for variable conflicts and the symbol table for global conflicts.
 
    /// Will NOT check parent scopes of the specified scope.
 
    fn checked_at_single_scope_add_local(
 
        &mut self, ctx: &mut Ctx, scope_id: ScopeId, relative_pos: i32, new_variable_id: VariableId
 
    ) -> Result<(), ParseError> {
 
        // Check the symbol table for conflicts
 
        {
 
            let cur_scope = SymbolScope::Definition(self.proc_id.upcast());
 
            let ident = &ctx.heap[new_variable_id].identifier;
 
            if let Some(symbol) = ctx.symbols.get_symbol_by_name(cur_scope, &ident.value.as_bytes()) {
 
                return Err(ParseError::new_error_str_at_span(
 
                    &ctx.module().source, ident.span,
 
                    "local variable declaration conflicts with symbol"
 
                ).with_info_str_at_span(
 
                    &ctx.module().source, symbol.variant.span_of_introduction(&ctx.heap), "the conflicting symbol is introduced here"
 
                ));
 
            }
 
        }
 

	
 
        // Check the specified scope for conflicts
 
        let new_variable = &ctx.heap[new_variable_id];
 
        let scope = &ctx.heap[scope_id];
 

	
 
        for variable_id in scope.variables.iter().copied() {
 
            let old_variable = &ctx.heap[variable_id];
 
            if new_variable.this != old_variable.this &&
 
                // relative_pos >= other_local.relative_pos_in_block &&
 
                new_variable.identifier == old_variable.identifier {
 
                // Collision
 
                return Err(
 
                    ParseError::new_error_str_at_span(
 
                        &ctx.module().source, new_variable.identifier.span, "Local variable name conflicts with another variable"
 
                    ).with_info_str_at_span(
 
                        &ctx.module().source, old_variable.identifier.span, "Previous variable is found here"
 
                    )
 
                );
 
            }
 
        }
 

	
 
        // No collisions
 
        let scope = &mut ctx.heap[scope_id];
 
        scope.variables.push(new_variable_id);
 

	
 
        let variable = &mut ctx.heap[new_variable_id];
 
        variable.relative_pos_in_parent = relative_pos;
 

	
 
        Ok(())
 
    }
 

	
 
    /// Finds a variable in the visitor's scope that must appear before the
 
    /// specified relative position within that block.
 
    fn find_variable(&self, ctx: &Ctx, mut relative_pos: i32, identifier: &Identifier) -> Option<VariableId> {
 
        let mut scope_id = self.cur_scope;
 

	
 
        loop {
 
            // Check if we can find the variable in the current scope
 
            let scope = &ctx.heap[scope_id];
 
            
 
            for variable_id in scope.variables.iter().copied() {
 
                let variable = &ctx.heap[variable_id];
 
                
 
                if variable.relative_pos_in_parent < relative_pos && identifier == &variable.identifier {
 
                    return Some(variable_id);
 
                }
 
            }
 

	
 
            // Could not find variable, move to parent scope and try again
 
            if scope.parent.is_none() {
 
                return None;
 
            }
 

	
 
            scope_id = scope.parent.unwrap();
 
            relative_pos = scope.relative_pos_in_parent;
 
        }
 
    }
 

	
 
    /// Adds a particular label to the current scope. Will return an error if
 
    /// there is another label with the same name visible in the current scope.
 
    fn checked_add_label(&mut self, ctx: &mut Ctx, relative_pos: i32, in_sync: SynchronousStatementId, new_label_id: LabeledStatementId) -> Result<(), ParseError> {
 
        // Make sure label is not defined within the current scope or any of the
 
        // parent scope.
 
        let new_label = &mut ctx.heap[new_label_id];
 
        new_label.relative_pos_in_parent = relative_pos;
 
        new_label.in_sync = in_sync;
 

	
 
        let new_label = &ctx.heap[new_label_id];
 
        let mut scope_id = self.cur_scope;
 

	
 
        loop {
 
            let scope = &ctx.heap[scope_id];
 
            for existing_label_id in scope.labels.iter().copied() {
 
                let existing_label = &ctx.heap[existing_label_id];
 
                if existing_label.label == new_label.label {
 
                    // Collision
 
                    return Err(ParseError::new_error_str_at_span(
 
                        &ctx.module().source, new_label.label.span, "label name is used more than once"
 
                    ).with_info_str_at_span(
 
                        &ctx.module().source, existing_label.label.span, "the other label is found here"
 
                    ));
 
                }
 
            }
 

	
 
            if scope.parent.is_none() {
 
                break;
 
            }
 

	
 
            scope_id = scope.parent.unwrap();
 
        }
 

	
 
        // No collisions
 
        let scope = &mut ctx.heap[self.cur_scope];
 
        scope.labels.push(new_label_id);
 

	
 
        Ok(())
 
    }
 

	
 
    /// Finds a particular labeled statement by its identifier. Once found it
 
    /// will make sure that the target label does not skip over any variable
 
    /// declarations within the scope in which the label was found.
 
    fn find_label(mut scope_id: ScopeId, ctx: &Ctx, identifier: &Identifier) -> Result<LabeledStatementId, ParseError> {
 
        loop {
 
            let scope = &ctx.heap[scope_id];
 
            let relative_scope_pos = scope.relative_pos_in_parent;
 

	
 
            for label_id in scope.labels.iter().copied() {
 
                let label = &ctx.heap[label_id];
 
                if label.label == *identifier {
 
                    // Found the target label, now make sure that the jump to
 
                    // the label doesn't imply a skipped variable declaration
 
                    for variable_id in scope.variables.iter().copied() {
 
                        // TODO: Better to do this in control flow analysis, it
 
                        //  is legal to skip over a variable declaration if it
 
                        //  is not actually being used.
 
                        let variable = &ctx.heap[variable_id];
 
                        if variable.relative_pos_in_parent > relative_scope_pos && variable.relative_pos_in_parent < label.relative_pos_in_parent {
 
                            return Err(
 
                                ParseError::new_error_str_at_span(&ctx.module().source, identifier.span, "this target label skips over a variable declaration")
 
                                .with_info_str_at_span(&ctx.module().source, label.label.span, "because it jumps to this label")
 
                                .with_info_str_at_span(&ctx.module().source, variable.identifier.span, "which skips over this variable")
 
                            );
 
                        }
 
                    }
 
                    return Ok(label_id);
 
                }
 
            }
 

	
 
            if scope.parent.is_none() {
 
                return Err(ParseError::new_error_str_at_span(
 
                    &ctx.module().source, identifier.span, "could not find this label"
 
                ));
 
            }
 

	
 
            scope_id = scope.parent.unwrap();
 
        }
 
    }
 

	
 
    /// This function will check if the provided scope has a parent that belongs
 
    /// to a while statement.
 
    fn scope_is_nested_in_while_statement(mut scope_id: ScopeId, ctx: &Ctx, expected_while_id: WhileStatementId) -> bool {
 
        let while_stmt = &ctx.heap[expected_while_id];
 

	
 
        loop {
 
            let scope = &ctx.heap[scope_id];
 
            if scope.this == while_stmt.scope {
 
                return true;
 
            }
 

	
 
            match scope.parent {
 
                Some(new_scope_id) => scope_id = new_scope_id,
 
                None => return false, // walked all the way up, not encountering the while statement
 
            }
 
        }
 
    }
 

	
 
    /// This function should be called while dealing with break/continue
 
    /// statements. It will try to find the targeted while statement, using the
 
    /// target label if provided. If a valid target is found then the loop's
 
    /// ID will be returned, otherwise a parsing error is constructed.
 
    /// The provided input position should be the position of the break/continue
 
    /// statement.
 
    fn resolve_break_or_continue_target(ctx: &Ctx, control_flow: &ControlFlowStatement, span: InputSpan, label: &Option<Identifier>) -> Result<WhileStatementId, ParseError> {
 
        let target = match label {
 
            Some(label) => {
 
                let target_id = Self::find_label(control_flow.in_scope, ctx, label)?;
 

	
 
                // Make sure break target is a while statement
 
                let target = &ctx.heap[target_id];
 
                if let Statement::While(target_stmt) = &ctx.heap[target.body] {
 
                    // Even though we have a target while statement, the control
 
                    // flow statement might not be present underneath this
 
                    // particular labeled while statement.
 
                    if !Self::scope_is_nested_in_while_statement(control_flow.in_scope, ctx, target_stmt.this) {
 
                        return Err(ParseError::new_error_str_at_span(
 
                            &ctx.module().source, label.span, "break statement is not nested under the target label's while statement"
 
                        ).with_info_str_at_span(
 
                            &ctx.module().source, target.label.span, "the targeted label is found here"
 
                        ));
 
                    }
 

	
 
                    target_stmt.this
 
                } else {
 
                    return Err(ParseError::new_error_str_at_span(
 
                        &ctx.module().source, label.span, "incorrect break target label, it must target a while loop"
 
                    ).with_info_str_at_span(
 
                        &ctx.module().source, target.label.span, "The targeted label is found here"
 
                    ));
 
                }
 
            },
 
            None => {
 
                // Use the enclosing while statement, the break must be
 
                // nested within that while statement
 
                if control_flow.in_while.is_invalid() {
 
                    return Err(ParseError::new_error_str_at_span(
 
                        &ctx.module().source, span, "Break statement is not nested under a while loop"
 
                    ));
 
                }
 

	
 
                control_flow.in_while
 
            }
 
        };
 

	
 
        // We have a valid target for the break statement. But we need to
 
        // make sure we will not break out of a synchronous block
 
        {
 
            let target_while = &ctx.heap[target];
 
            if target_while.in_sync != control_flow.in_sync {
 
                // Break is nested under while statement, so can only escape a
 
                // sync block if the sync is nested inside the while statement.
 
                debug_assert!(!control_flow.in_sync.is_invalid());
 
                let sync_stmt = &ctx.heap[control_flow.in_sync];
 
                return Err(
 
                    ParseError::new_error_str_at_span(&ctx.module().source, span, "break may not escape the surrounding synchronous block")
 
                        .with_info_str_at_span(&ctx.module().source, target_while.span, "the break escapes out of this loop")
 
                        .with_info_str_at_span(&ctx.module().source, sync_stmt.span, "And would therefore escape this synchronous block")
 
                );
 
            }
 
        }
 

	
 
        Ok(target)
 
    }
 
}
 
\ No newline at end of file

Changeset was too big and was cut off... Show full diff anyway

0 comments (0 inline, 0 general)