Changeset - 1cc3bd69b119
[Not reviewed]
0 5 1
MH - 3 years ago 2022-05-13 21:58:02
contact@maxhenger.nl
Add stdlib mocking test
6 files changed with 139 insertions and 13 deletions:
0 comments (0 inline, 0 general)
src/protocol/mod.rs
Show inline comments
 
mod arena;
 
pub(crate) mod eval;
 
pub(crate) mod input_source;
 
mod parser;
 
#[cfg(test)] mod tests;
 

	
 
pub(crate) mod ast;
 
pub(crate) mod ast_writer;
 
mod token_writer;
 

	
 
use std::sync::Mutex;
 

	
 
use crate::collections::{StringPool, StringRef};
 
pub use crate::protocol::ast::*;
 
use crate::protocol::eval::*;
 
use crate::protocol::input_source::*;
 
use crate::protocol::parser::*;
 
use crate::protocol::type_table::*;
 

	
 
pub use parser::type_table::TypeId;
 

	
 
/// A protocol description module
 
pub struct Module {
 
    pub(crate) source: InputSource,
 
    pub(crate) root_id: RootId,
 
    pub(crate) name: Option<StringRef<'static>>,
 
}
 
/// Description of a protocol object, used to configure new connectors.
 
#[repr(C)]
 
pub struct ProtocolDescription {
 
    pub(crate) modules: Vec<Module>,
 
    pub(crate) heap: Heap,
 
    pub(crate) types: TypeTable,
 
    pub(crate) pool: Mutex<StringPool>,
 
}
 
#[derive(Debug, Clone)]
 
pub(crate) struct ComponentState {
 
    pub(crate) prompt: Prompt,
 
}
 

	
 
#[derive(Debug)]
 
pub enum ComponentCreationError {
 
    ModuleDoesntExist,
 
    DefinitionDoesntExist,
 
    DefinitionNotComponent,
 
    InvalidNumArguments,
 
    InvalidArgumentType(usize),
 
    UnownedPort,
 
    InSync,
 
}
 

	
 
impl ProtocolDescription {
 
    pub fn parse(buffer: &[u8]) -> Result<Self, String> {
 
        let source = InputSource::new(String::new(), Vec::from(buffer));
 
        let mut parser = Parser::new(None)?;
 
        parser.feed(source).expect("failed to feed source");
 
        
 
        if let Err(err) = parser.parse() {
 
            println!("ERROR:\n{}", err);
 
            return Err(format!("{}", err))
 
        }
 

	
 
        let modules: Vec<Module> = parser.modules.into_iter()
 
            .map(|module| Module{
 
                source: module.source,
 
                root_id: module.root_id,
 
                name: module.name.map(|(_, name)| name)
 
            })
 
            .collect();
 

	
 
        return Ok(ProtocolDescription {
 
            modules,
 
            heap: parser.heap,
 
            types: parser.type_table,
 
            pool: Mutex::new(parser.string_pool),
 
        });
 
    }
 

	
 
    pub(crate) fn new_component(
 
        &self, module_name: &[u8], identifier: &[u8], arguments: ValueGroup
 
    ) -> Result<Prompt, ComponentCreationError> {
 
        // Find the module in which the definition can be found
 
        let module_root = self.lookup_module_root(module_name);
 
        if module_root.is_none() {
 
            return Err(ComponentCreationError::ModuleDoesntExist);
 
        }
 
        let module_root = module_root.unwrap();
 

	
 
        let root = &self.heap[module_root];
 
        let definition_id = root.get_definition_by_ident(&self.heap, identifier);
 
        if definition_id.is_none() {
 
            return Err(ComponentCreationError::DefinitionDoesntExist);
 
        }
 
        let definition_id = definition_id.unwrap();
 

	
 
        let ast_definition = &self.heap[definition_id];
 
        if !ast_definition.is_procedure() {
 
            return Err(ComponentCreationError::DefinitionNotComponent);
 
        }
 

	
 
        // Make sure that the types of the provided value group matches that of
 
        // the expected types.
 
        let ast_definition = ast_definition.as_procedure();
 
        if !ast_definition.poly_vars.is_empty() || ast_definition.kind == ProcedureKind::Function {
 
            return Err(ComponentCreationError::DefinitionNotComponent);
 
        }
 

	
 
        // - check number of arguments by retrieving the one instantiated
 
        //   monomorph
 
        let concrete_type = ConcreteType{ parts: vec![ConcreteTypePart::Component(ast_definition.this, 0)] };
 
        let procedure_type_id = self.types.get_monomorph_type_id(&definition_id, &concrete_type.parts).unwrap();
 
        let procedure_monomorph_index = self.types.get_monomorph(procedure_type_id).variant.as_procedure().monomorph_index;
 
        let monomorph_info = &ast_definition.monomorphs[procedure_monomorph_index as usize];
 
        if monomorph_info.argument_types.len() != arguments.values.len() {
 
            return Err(ComponentCreationError::InvalidNumArguments);
 
        }
 

	
 
        // - for each argument try to make sure the types match
 
        for arg_idx in 0..arguments.values.len() {
 
            let expected_type_id = monomorph_info.argument_types[arg_idx];
 
            let expected_type = &self.types.get_monomorph(expected_type_id).concrete_type;
 
            let provided_value = &arguments.values[arg_idx];
 
            if !self.verify_same_type(expected_type, 0, &arguments, provided_value) {
 
                return Err(ComponentCreationError::InvalidArgumentType(arg_idx));
 
            }
 
        }
 

	
 
        // By now we're sure that all of the arguments are correct. So create
 
        // the connector.
 
        return Ok(Prompt::new(&self.types, &self.heap, ast_definition.this, procedure_type_id, arguments));
 
    }
 

	
 
    /// A somewhat temporary method. Can be used by components to lookup type
 
    /// definitions by their name (to have their implementation somewhat
 
    /// resistant to changes in the standard library)
 
    pub(crate) fn find_type<'a>(&'a self, module_name: &[u8], type_name: &[u8]) -> Option<TypeInspector<'a>> {
 
        // Lookup type definition in module
 
        let root_id = self.lookup_module_root(module_name)?;
 
        let module = &self.heap[root_id];
 
        let definition_id = module.get_definition_by_ident(&self.heap, type_name)?;
 
        let definition = &self.heap[definition_id];
 

	
 
        // Make sure type is not polymorphic and is not a procedure
 
        if !definition.poly_vars().is_empty() {
 
            return None;
 
        }
 
        if definition.is_procedure() {
 
            return None;
 
        }
 

	
 
        // Lookup type in type table
 
        let type_parts = [ConcreteTypePart::Instance(definition_id, 0)];
 
        let type_id = self.types.get_monomorph_type_id(&definition_id, &type_parts)
 
            .expect("type ID for non-polymorphic type");
 
        let type_monomorph = self.types.get_monomorph(type_id);
 

	
 
        return Some(TypeInspector{
 
            heap: definition,
 
            type_table: type_monomorph
 
        });
 
    }
 

	
 
    fn lookup_module_root(&self, module_name: &[u8]) -> Option<RootId> {
 
        for module in self.modules.iter() {
 
            match &module.name {
 
                Some(name) => if name.as_bytes() == module_name {
 
                    return Some(module.root_id);
 
                },
 
                None => if module_name.is_empty() {
 
                    return Some(module.root_id);
 
                }
 
            }
 
        }
 

	
 
        return None;
 
    }
 

	
 
    fn verify_same_type(&self, expected: &ConcreteType, expected_idx: usize, arguments: &ValueGroup, argument: &Value) -> bool {
 
        use ConcreteTypePart as CTP;
 

	
 
        match &expected.parts[expected_idx] {
 
            CTP::Void | CTP::Message | CTP::Slice | CTP::Pointer | CTP::Function(_, _) | CTP::Component(_, _) => unreachable!(),
 
            CTP::Bool => if let Value::Bool(_) = argument { true } else { false },
 
            CTP::UInt8 => if let Value::UInt8(_) = argument { true } else { false },
 
            CTP::UInt16 => if let Value::UInt16(_) = argument { true } else { false },
 
            CTP::UInt32 => if let Value::UInt32(_) = argument { true } else { false },
 
            CTP::UInt64 => if let Value::UInt64(_) = argument { true } else { false },
 
            CTP::SInt8 => if let Value::SInt8(_) = argument { true } else { false },
 
            CTP::SInt16 => if let Value::SInt16(_) = argument { true } else { false },
 
            CTP::SInt32 => if let Value::SInt32(_) = argument { true } else { false },
 
            CTP::SInt64 => if let Value::SInt64(_) = argument { true } else { false },
 
            CTP::Character => if let Value::Char(_) = argument { true } else { false },
 
            CTP::String => {
 
                // Match outer string type and embedded character types
 
                if let Value::String(heap_pos) = argument {
 
                    for element in &arguments.regions[*heap_pos as usize] {
 
                        if let Value::Char(_) = element {} else {
 
                            return false;
 
                        }
 
                    }
 
                } else {
 
                    return false;
 
                }
 

	
 
                return true;
 
            },
 
            CTP::Array => {
 
                if let Value::Array(heap_pos) = argument {
 
                    let heap_pos = *heap_pos;
 
                    for element in &arguments.regions[heap_pos as usize] {
 
                        if !self.verify_same_type(expected, expected_idx + 1, arguments, element) {
 
                            return false;
 
                        }
 
                    }
 
                    return true;
 
                } else {
 
                    return false;
 
                }
 
            },
 
            CTP::Input => if let Value::Input(_) = argument { true } else { false },
 
            CTP::Output => if let Value::Output(_) = argument { true } else { false },
 
            CTP::Tuple(_) => todo!("implement full type checking on user-supplied arguments"),
 
            CTP::Instance(definition_id, _num_embedded) => {
 
                let definition = self.types.get_base_definition(definition_id).unwrap();
 
                match &definition.definition {
 
                    DefinedTypeVariant::Enum(definition) => {
 
                        if let Value::Enum(variant_value) = argument {
 
                            let is_valid = definition.variants.iter()
 
                                .any(|v| v.value == *variant_value);
 
                            return is_valid;
 
                        }
 
                    },
 
                    _ => todo!("implement full type checking on user-supplied arguments"),
 
                }
 

	
 
                return false;
 
            },
 
        }
 
    }
 
}
 

	
 
pub trait RunContext {
 
    fn performed_put(&mut self, port: PortId) -> bool;
 
    fn performed_get(&mut self, port: PortId) -> Option<ValueGroup>; // None if still waiting on message
 
    fn fires(&mut self, port: PortId) -> Option<Value>; // None if not yet branched
 
    fn performed_fork(&mut self) -> Option<bool>; // None if not yet forked
 
    fn created_channel(&mut self) -> Option<(Value, Value)>; // None if not yet prepared
 
    fn performed_select_wait(&mut self) -> Option<u32>; // None if not yet notified runtime of select blocker
 
}
 

	
 
pub struct ProtocolDescriptionBuilder {
 
    parser: Parser,
 
}
 

	
 
impl ProtocolDescriptionBuilder {
 
    pub fn new(std_lib_dir: Option<String>) -> Result<Self, String> {
 
        let mut parser = Parser::new(std_lib_dir)?;
 
        return Ok(Self{ parser })
 
    }
 

	
 
    pub fn add(&mut self, filename: String, buffer: Vec<u8>) -> Result<(), ParseError> {
 
        let input = InputSource::new(filename, buffer);
 
        self.parser.feed(input)?;
 

	
 
        return Ok(())
 
    }
 

	
 
    pub fn compile(mut self) -> Result<ProtocolDescription, ParseError> {
 
        self.parser.parse()?;
 

	
 
        let modules: Vec<Module> = self.parser.modules.into_iter()
 
            .map(|module| Module{
 
                source: module.source,
 
                root_id: module.root_id,
 
                name: module.name.map(|(_, name)| name)
 
            })
 
            .collect();
 

	
 
        return Ok(ProtocolDescription {
 
            modules,
 
            heap: self.parser.heap,
 
            types: self.parser.type_table,
 
            pool: Mutex::new(self.parser.string_pool),
 
        });
 
    }
 
}
 

	
 
pub struct TypeInspector<'a> {
 
    heap: &'a Definition,
 
    type_table: &'a MonoType,
 
}
 

	
 
impl<'a> TypeInspector<'a> {
 
    pub fn as_union(&'a self) -> UnionTypeInspector<'a> {
 
        let heap = self.heap.as_union();
 
        let type_table = self.type_table.variant.as_union();
 
        return UnionTypeInspector{ heap, type_table };
 
    }
 

	
 
    pub fn as_struct(&'a self) -> StructTypeInspector<'a> {
 
        let heap = self.heap.as_struct();
 
        let type_table = self.type_table.variant.as_struct();
 
        return StructTypeInspector{ heap, type_table };
 
    }
 
}
 

	
 
pub struct UnionTypeInspector<'a> {
 
    heap: &'a UnionDefinition,
 
    type_table: &'a UnionMonomorph,
 
}
 

	
 
impl UnionTypeInspector<'_> {
 
    /// Retrieves union variant tag value.
 
    pub fn get_variant_tag_value(&self, variant_name: &[u8]) -> Option<i64> {
 
        let variant_index = self.heap.variants.iter()
 
            .position(|v| v.identifier.value.as_bytes() == variant_name)?;
 
        return Some(variant_index as i64);
 
    }
 
}
 

	
 
pub struct StructTypeInspector<'a> {
 
    heap: &'a StructDefinition,
 
    type_table: &'a StructMonomorph,
 
}
 

	
 
impl StructTypeInspector<'_> {
 
    /// Retrieves struct field index
 
    pub fn get_struct_field_index(&self, field_name: &[u8]) -> Option<usize> {
 
        let field_index = self.heap.fields.iter()
 
            .position(|v| v.field.value.as_bytes() == field_name)?;
 
        return Some(field_index);
 
    }
 
}
 
\ No newline at end of file
src/protocol/parser/type_table.rs
Show inline comments
 
/**
 
 * type_table.rs
 
 *
 
 * The type table is a lookup from AST definition (which contains just what the
 
 * programmer typed) to a type with additional information computed (e.g. the
 
 * byte size and offsets of struct members). The type table should be considered
 
 * the authoritative source of information on types by the compiler (not the
 
 * AST itself!).
 
 *
 
 * The type table operates in two modes: one is where we just look up the type,
 
 * check its fields for correctness and mark whether it is polymorphic or not.
 
 * The second one is where we compute byte sizes, alignment and offsets.
 
 *
 
 * The basic algorithm for type resolving and computing byte sizes is to
 
 * recursively try to lay out each member type of a particular type. This is
 
 * done in a stack-like fashion, where each embedded type pushes a breadcrumb
 
 * unto the stack. We may discover a cycle in embedded types (we call this a
 
 * "type loop"). After which the type table attempts to break the type loop by
 
 * making specific types heap-allocated. Upon doing so we know their size
 
 * because their stack-size is now based on pointers. Hence breaking the type
 
 * loop required for computing the byte size of types.
 
 *
 
 * The reason for these type shenanigans is because PDL is a value-based
 
 * language, but we would still like to be able to express recursively defined
 
 * types like trees or linked lists. Hence we need to insert pointers somewhere
 
 * to break these cycles.
 
 *
 
 * We will insert these pointers into the variants of unions. However note that
 
 * we can only compute the stack size of a union until we've looked at *all*
 
 * variants. Hence we perform an initial pass where we detect type loops, a
 
 * second pass where we compute the stack sizes of everything, and a third pass
 
 * where we actually compute the size of the heap allocations for unions.
 
 *
 
 * As a final bit of global documentation: non-polymorphic types will always
 
 * have one "monomorph" entry. This contains the non-polymorphic type's memory
 
 * layout.
 
 */
 

	
 
// Programmer note: deduplication of types is currently disabled, see the
 
// @Deduplication key. Tests might fail when it is re-enabled.
 
use std::collections::HashMap;
 
use std::hash::{Hash, Hasher};
 

	
 
use crate::protocol::ast::*;
 
use crate::protocol::parser::symbol_table::SymbolScope;
 
use crate::protocol::input_source::ParseError;
 
use crate::protocol::parser::*;
 

	
 
//------------------------------------------------------------------------------
 
// Defined Types
 
//------------------------------------------------------------------------------
 

	
 
/// Struct wrapping around a potentially polymorphic type. If the type does not
 
/// have any polymorphic arguments then it will not have any monomorphs and
 
/// `is_polymorph` will be set to `false`. A type with polymorphic arguments
 
/// only has `is_polymorph` set to `true` if the polymorphic arguments actually
 
/// appear in the types associated types (function return argument, struct
 
/// field, enum variant, etc.). Otherwise the polymorphic argument is just a
 
/// marker and does not influence the bytesize of the type.
 
#[allow(unused)]
 
pub struct DefinedType {
 
    pub(crate) ast_root: RootId,
 
    pub(crate) ast_definition: DefinitionId,
 
    pub(crate) definition: DefinedTypeVariant,
 
    pub(crate) poly_vars: Vec<PolymorphicVariable>,
 
    pub(crate) is_polymorph: bool,
 
}
 

	
 
pub enum DefinedTypeVariant {
 
    Enum(EnumType),
 
    Union(UnionType),
 
    Struct(StructType),
 
    Procedure(ProcedureType),
 
}
 

	
 
impl DefinedTypeVariant {
 
    pub(crate) fn is_data_type(&self) -> bool {
 
        use DefinedTypeVariant as DTV;
 

	
 
        match self {
 
            DTV::Struct(_) | DTV::Enum(_) | DTV::Union(_) => return true,
 
            DTV::Procedure(_) => return false,
 
        }
 
    }
 

	
 
    pub(crate) fn as_struct(&self) -> &StructType {
 
        match self {
 
            DefinedTypeVariant::Struct(v) => v,
 
            _ => unreachable!()
 
        }
 
    }
 

	
 
    pub(crate) fn as_enum(&self) -> &EnumType {
 
        match self {
 
            DefinedTypeVariant::Enum(v) => v,
 
            _ => unreachable!()
 
        }
 
    }
 

	
 
    pub(crate) fn as_union(&self) -> &UnionType {
 
        match self {
 
            DefinedTypeVariant::Union(v) => v,
 
            _ => unreachable!()
 
        }
 
    }
 
}
 

	
 
pub struct PolymorphicVariable {
 
    pub(crate) identifier: Identifier,
 
    pub(crate) is_in_use: bool, // a polymorphic argument may be defined, but not used by the type definition
 
}
 

	
 
/// `EnumType` is the classical C/C++ enum type. It has various variants with
 
/// an assigned integer value. The integer values may be user-defined,
 
/// compiler-defined, or a mix of the two. If a user assigns the same enum
 
/// value multiple times, we assume the user is an expert and we consider both
 
/// variants to be equal to one another.
 
pub struct EnumType {
 
    pub variants: Vec<EnumVariant>,
 
    pub minimum_tag_value: i64,
 
    pub maximum_tag_value: i64,
 
    pub tag_type: ConcreteType,
 
    pub size: usize,
 
    pub alignment: usize,
 
}
 

	
 
// TODO: Also support maximum u64 value
 
pub struct EnumVariant {
 
    pub identifier: Identifier,
 
    pub value: i64,
 
}
 

	
 
/// `UnionType` is the algebraic datatype (or sum type, or discriminated union).
 
/// A value is an element of the union, identified by its tag, and may contain
 
/// a single subtype.
 
/// For potentially infinite types (i.e. a tree, or a linked list) only unions
 
/// can break the infinite cycle. So when we lay out these unions in memory we
 
/// will reserve enough space on the stack for all union variants that do not
 
/// cause "type loops" (i.e. a union `A` with a variant containing a struct
 
/// `B`). And we will reserve enough space on the heap (and store a pointer in
 
/// the union) for all variants which do cause type loops (i.e. a union `A`
 
/// with a variant to a struct `B` that contains the union `A` again).
 
pub struct UnionType {
 
    pub variants: Vec<UnionVariant>,
 
    pub tag_type: ConcreteType,
 
    pub tag_size: usize,
 
}
 

	
 
pub struct UnionVariant {
 
    pub identifier: Identifier,
 
    pub embedded: Vec<ParserType>, // zero-length does not have embedded values
 
    pub tag_value: i64,
 
}
 

	
 
/// `StructType` is a generic C-like struct type (or record type, or product
 
/// type) type.
 
pub struct StructType {
 
    pub fields: Vec<StructField>,
 
}
 

	
 
pub struct StructField {
 
    pub identifier: Identifier,
 
    pub parser_type: ParserType,
 
}
 

	
 
/// `ProcedureType` is the signature of a procedure/component
 
pub struct ProcedureType {
 
    pub kind: ProcedureKind,
 
    pub return_type: Option<ParserType>,
 
    pub arguments: Vec<ProcedureArgument>,
 
}
 

	
 
pub struct ProcedureArgument {
 
    identifier: Identifier,
 
    parser_type: ParserType,
 
}
 

	
 
/// Represents the data associated with a single expression after type inference
 
/// for a monomorph (or just the normal expression types, if dealing with a
 
/// non-polymorphic function/component).
 
pub struct MonomorphExpression {
 
    // The output type of the expression. Note that for a function it is not the
 
    // function's signature but its return type
 
    pub(crate) expr_type: ConcreteType,
 
    // Has multiple meanings: the field index for select expressions, the
 
    // monomorph index for polymorphic function calls or literals. Negative
 
    // values are never used, but used to catch programming errors.
 
    pub(crate) field_or_monomorph_idx: i32,
 
    pub(crate) type_id: TypeId,
 
}
 

	
 
//------------------------------------------------------------------------------
 
// Type monomorph storage
 
//------------------------------------------------------------------------------
 

	
 
pub(crate) enum MonoTypeVariant {
 
    Builtin, // no extra data, added manually in compiler initialization code
 
    Enum, // no extra data
 
    Struct(StructMonomorph),
 
    Union(UnionMonomorph),
 
    Procedure(ProcedureMonomorph), // functions, components
 
    Tuple(TupleMonomorph),
 
}
 

	
 
impl MonoTypeVariant {
 
    fn as_struct_mut(&mut self) -> &mut StructMonomorph {
 
        match self {
 
            MonoTypeVariant::Struct(v) => v,
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
    pub(crate) fn as_union(&self) -> &UnionMonomorph {
 
        match self {
 
            MonoTypeVariant::Union(v) => v,
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
    fn as_union_mut(&mut self) -> &mut UnionMonomorph {
 
        match self {
 
            MonoTypeVariant::Union(v) => v,
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
    pub(crate) fn as_struct(&self) -> &StructMonomorph {
 
        match self {
 
            MonoTypeVariant::Struct(v) => v,
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
    fn as_tuple_mut(&mut self) -> &mut TupleMonomorph {
 
        match self {
 
            MonoTypeVariant::Tuple(v) => v,
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
    pub(crate) fn as_procedure(&self) -> &ProcedureMonomorph {
 
        match self {
 
            MonoTypeVariant::Procedure(v) => v,
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
    fn as_procedure_mut(&mut self) -> &mut ProcedureMonomorph {
 
        match self {
 
            MonoTypeVariant::Procedure(v) => v,
 
            _ => unreachable!(),
 
        }
 
    }
 
}
 

	
 
/// Struct monomorph
 
pub struct StructMonomorph {
 
    pub fields: Vec<StructMonomorphField>,
 
}
 

	
 
pub struct StructMonomorphField {
 
    pub type_id: TypeId,
 
    concrete_type: ConcreteType,
 
    pub size: usize,
 
    pub alignment: usize,
 
    pub offset: usize,
 
}
 

	
 
/// Union monomorph
 
pub struct UnionMonomorph {
 
    pub variants: Vec<UnionMonomorphVariant>,
 
    pub tag_size: usize, // copied from `UnionType` upon monomorph construction.
 
    // note that the stack size is in the `TypeMonomorph` struct. This size and
 
    // alignment will include the size of the union tag.
 
    //
 
    // heap_size contains the allocated size of the union in the case it
 
    // is used to break a type loop. If it is 0, then it doesn't require
 
    // allocation and lives entirely on the stack.
 
    pub heap_size: usize,
 
    pub heap_alignment: usize,
 
}
 

	
 
pub struct UnionMonomorphVariant {
 
    pub lives_on_heap: bool,
 
    pub embedded: Vec<UnionMonomorphEmbedded>,
 
}
 

	
 
pub struct UnionMonomorphEmbedded {
 
    pub type_id: TypeId,
 
    concrete_type: ConcreteType,
 
    // Note that the meaning of the offset (and alignment) depend on whether or
 
    // not the variant lives on the stack/heap. If it lives on the stack then
 
    // they refer to the offset from the start of the union value (so the first
 
    // embedded type lives at a non-zero offset, because the union tag sits in
 
    // the front). If it lives on the heap then it refers to the offset from the
 
    // allocated memory region (so the first embedded type lives at a 0 offset).
 
    pub size: usize,
 
    pub alignment: usize,
 
    pub offset: usize,
 
}
 

	
 
/// Procedure (functions and components of all possible types) monomorph. Also
 
/// stores the expression type data from the typechecking/inferencing pass.
 
pub struct ProcedureMonomorph {
 
    pub monomorph_index: u32,
 
    pub builtin: bool,
 
}
 

	
 
/// Tuple monomorph. Again a kind of exception because one cannot define a named
 
/// tuple type containing explicit polymorphic variables. But again: we need to
 
/// store size/offset/alignment information, so we do it here.
 
pub struct TupleMonomorph {
 
    pub members: Vec<TupleMonomorphMember>
 
}
 

	
 
pub struct TupleMonomorphMember {
 
    pub type_id: TypeId,
 
    concrete_type: ConcreteType,
 
    pub size: usize,
 
    pub alignment: usize,
 
    pub offset: usize,
 
}
 

	
 
/// Generic unique type ID. Every monomorphed type and every non-polymorphic
 
/// type will have one of these associated with it.
 
#[derive(Debug, Clone, Copy, PartialEq)]
 
pub struct TypeId(i64);
 

	
 
impl TypeId {
 
    pub(crate) fn new_invalid() -> Self {
 
        return Self(-1);
 
    }
 
}
 

	
 
/// A monomorphed type (or non-polymorphic type's) memory layout and information
 
/// regarding associated types (like a struct's field type).
 
pub struct MonoType {
 
    pub type_id: TypeId,
 
    pub concrete_type: ConcreteType,
 
    pub size: usize,
 
    pub alignment: usize,
 
    pub(crate) variant: MonoTypeVariant
 
}
 

	
 
impl MonoType {
 
    #[inline]
 
    fn new_empty(type_id: TypeId, concrete_type: ConcreteType, variant: MonoTypeVariant) -> Self {
 
        return Self {
 
            type_id, concrete_type,
 
            size: 0,
 
            alignment: 0,
 
            variant,
 
        }
 
    }
 

	
 
    /// Little internal helper function as a reminder: if alignment is 0, then
 
    /// the size/alignment are not actually computed yet!
 
    #[inline]
 
    fn get_size_alignment(&self) -> Option<(usize, usize)> {
 
        if self.alignment == 0 {
 
            return None
 
        } else {
 
            return Some((self.size, self.alignment));
 
        }
 
    }
 
}
 

	
 
/// Special structure that acts like the lookup key for `ConcreteType` instances
 
/// that have already been added to the type table before.
 
#[derive(Clone)]
 
struct MonoSearchKey {
 
    // Uses bitflags to denote when parts between search keys should match and
 
    // whether they should be checked. Needs to have a system like this to
 
    // accommodate tuples.
 
    parts: Vec<(u8, ConcreteTypePart)>,
 
    change_bit: u8,
 
}
 

	
 
impl MonoSearchKey {
 
    const KEY_IN_USE: u8 = 0x01;
 
    const KEY_CHANGE_BIT: u8 = 0x02;
 

	
 
    fn with_capacity(capacity: usize) -> Self {
 
        return MonoSearchKey{
 
            parts: Vec::with_capacity(capacity),
 
            change_bit: 0,
 
        };
 
    }
 

	
 
    /// Sets the search key based on a single concrete type and its polymorphic
 
    /// variables.
 
    fn set(&mut self, concrete_type_parts: &[ConcreteTypePart], poly_var_in_use: &[PolymorphicVariable]) {
 
        self.set_top_type(concrete_type_parts[0]);
 

	
 
        let mut poly_var_index = 0;
 
        for subtype in ConcreteTypeIter::new(concrete_type_parts, 0) {
 
            let in_use = poly_var_in_use[poly_var_index].is_in_use;
 
            poly_var_index += 1;
 
            self.push_subtype(subtype, in_use);
 
        }
 

	
 
        debug_assert_eq!(poly_var_index, poly_var_in_use.len());
 
    }
 

	
 
    /// Starts setting the search key based on an initial top-level type,
 
    /// programmer must call `push_subtype` the appropriate number of times
 
    /// after calling this function
 
    fn set_top_type(&mut self, type_part: ConcreteTypePart) {
 
        self.parts.clear();
 
        self.parts.push((Self::KEY_IN_USE, type_part));
 
        self.change_bit = Self::KEY_CHANGE_BIT;
 
    }
 

	
 
    fn push_subtype(&mut self, concrete_type: &[ConcreteTypePart], in_use: bool) {
 
        let flag = self.change_bit | (if in_use { Self::KEY_IN_USE } else { 0 });
 

	
 
        for part in concrete_type {
 
            self.parts.push((flag, *part));
 
        }
 
        self.change_bit ^= Self::KEY_CHANGE_BIT;
 
    }
 

	
 
    fn push_subtree(&mut self, concrete_type: &[ConcreteTypePart], poly_var_in_use: &[PolymorphicVariable]) {
 
        self.parts.push((self.change_bit | Self::KEY_IN_USE, concrete_type[0]));
 
        self.change_bit ^= Self::KEY_CHANGE_BIT;
 

	
 
        let mut poly_var_index = 0;
 
        for subtype in ConcreteTypeIter::new(concrete_type, 0) {
 
            let in_use = poly_var_in_use[poly_var_index].is_in_use;
 
            poly_var_index += 1;
 
            self.push_subtype(subtype, in_use);
 
        }
 

	
 
        debug_assert_eq!(poly_var_index, poly_var_in_use.len());
 
    }
 

	
 
    // Utilities for hashing and comparison
 
    fn find_end_index(&self, start_index: usize) -> usize {
 
        // Check if we're already at the end
 
        let mut index = start_index;
 
        if index >= self.parts.len() {
 
            return index;
 
        }
 

	
 
        // Iterate until bit flips, or until at end
 
        let expected_bit = self.parts[index].0 & Self::KEY_CHANGE_BIT;
 

	
 
        index += 1;
 
        while index < self.parts.len() {
 
            let current_bit = self.parts[index].0 & Self::KEY_CHANGE_BIT;
 
            if current_bit != expected_bit {
 
                return index;
 
            }
 

	
 
            index += 1;
 
        }
 

	
 
        return index;
 
    }
 
}
 

	
 
impl Hash for MonoSearchKey {
 
    fn hash<H: Hasher>(&self, state: &mut H) {
 
        for index in 0..self.parts.len() {
 
            let (_flags, part) = self.parts[index];
 
            // if flags & Self::KEY_IN_USE != 0 { @Deduplication
 
            part.hash(state);
 
            // }
 
        }
 
    }
 
}
 

	
 
impl PartialEq for MonoSearchKey {
 
    fn eq(&self, other: &Self) -> bool {
 
        let mut self_index = 0;
 
        let mut other_index = 0;
 

	
 
        while self_index < self.parts.len() && other_index < other.parts.len() {
 
            // Retrieve part and flags
 
            let (_self_bits, _) = self.parts[self_index];
 
            let (_other_bits, _) = other.parts[other_index];
 
            let self_in_use = true; // (self_bits & Self::KEY_IN_USE) != 0; @Deduplication
 
            let other_in_use = true; // (other_bits & Self::KEY_IN_USE) != 0; @Deduplication
 

	
 
            // Determine ending indices
 
            let self_end_index = self.find_end_index(self_index);
 
            let other_end_index = other.find_end_index(other_index);
 

	
 
            if self_in_use == other_in_use {
 
                if self_in_use {
 
                    // Both are in use, so both parts should be equal
 
                    let delta_self = self_end_index - self_index;
 
                    let delta_other = other_end_index - other_index;
 
                    if delta_self != delta_other {
 
                        // Both in use, but not of equal length, so the types
 
                        // cannot match
 
                        return false;
 
                    }
 

	
 
                    for _ in 0..delta_self {
 
                        let (_, self_part) = self.parts[self_index];
 
                        let (_, other_part) = other.parts[other_index];
 

	
 
                        if self_part != other_part {
 
                            return false;
 
                        }
 

	
 
                        self_index += 1;
 
                        other_index += 1;
 
                    }
 
                } else {
 
                    // Both not in use, so skip associated parts
 
                    self_index = self_end_index;
 
                    other_index = other_end_index;
 
                }
 
            } else {
 
                // No agreement on importance of parts. This is practically
 
                // impossible
 
                unreachable!();
 
            }
 
        }
 

	
 
        // Everything matched, so if we're at the end of both arrays then we're
 
        // certain that the two keys are equal.
 
        return self_index == self.parts.len() && other_index == other.parts.len();
 
    }
 
}
 

	
 
impl Eq for MonoSearchKey{}
 

	
 
//------------------------------------------------------------------------------
 
// Type table
 
//------------------------------------------------------------------------------
 

	
 
const POLY_VARS_IN_USE: [PolymorphicVariable; 1] = [PolymorphicVariable{ identifier: Identifier::new_empty(InputSpan::new()), is_in_use: true }];
 

	
 
// Programmer note: keep this struct free of dynamically allocated memory
 
#[derive(Clone)]
 
struct TypeLoopBreadcrumb {
 
    type_id: TypeId,
 
    next_member: u32,
 
    next_embedded: u32, // for unions, the index into the variant's embedded types
 
}
 

	
 
// Programmer note: keep this struct free of dynamically allocated memory
 
#[derive(Clone)]
 
struct MemoryBreadcrumb {
 
    type_id: TypeId,
 
    next_member: u32,
 
    next_embedded: u32,
 
    first_size_alignment_idx: u32,
 
}
 

	
 
#[derive(Debug, PartialEq, Eq)]
 
enum TypeLoopResult {
 
    TypeExists,
 
    PushBreadcrumb(DefinitionId, ConcreteType),
 
    TypeLoop(usize), // index into vec of breadcrumbs at which the type matched
 
}
 

	
 
enum MemoryLayoutResult {
 
    TypeExists(usize, usize), // (size, alignment)
 
    PushBreadcrumb(MemoryBreadcrumb),
 
}
 

	
 
// TODO: @Optimize, initial memory-unoptimized implementation
 
struct TypeLoopEntry {
 
    type_id: TypeId,
 
    is_union: bool,
 
}
 

	
 
struct TypeLoop {
 
    members: Vec<TypeLoopEntry>,
 
}
 

	
 
type DefinitionMap = HashMap<DefinitionId, DefinedType>;
 
type MonoTypeMap = HashMap<MonoSearchKey, TypeId>;
 
type MonoTypeArray = Vec<MonoType>;
 

	
 
pub struct TypeTable {
 
    // Lookup from AST DefinitionId to a defined type. Also lookups for
 
    // concrete type to monomorphs
 
    pub(crate) definition_lookup: DefinitionMap,
 
    mono_type_lookup: MonoTypeMap,
 
    pub(crate) mono_types: MonoTypeArray,
 
    mono_search_key: MonoSearchKey,
 
    // Breadcrumbs left behind while trying to find type loops. Also used to
 
    // determine sizes of types when all type loops are detected.
 
    type_loop_breadcrumbs: Vec<TypeLoopBreadcrumb>,
 
    type_loops: Vec<TypeLoop>,
 
    // Stores all encountered types during type loop detection. Used afterwards
 
    // to iterate over all types in order to compute size/alignment.
 
    encountered_types: Vec<TypeLoopEntry>,
 
    // Breadcrumbs and temporary storage during memory layout computation.
 
    memory_layout_breadcrumbs: Vec<MemoryBreadcrumb>,
 
    size_alignment_stack: Vec<(usize, usize)>,
 
}
 

	
 
impl TypeTable {
 
    /// Construct a new type table without any resolved types.
 
    pub(crate) fn new() -> Self {
 
        Self{ 
 
            definition_lookup: HashMap::with_capacity(128),
 
            mono_type_lookup: HashMap::with_capacity(128),
 
            mono_types: Vec::with_capacity(128),
 
            mono_search_key: MonoSearchKey::with_capacity(32),
 
            type_loop_breadcrumbs: Vec::with_capacity(32),
 
            type_loops: Vec::with_capacity(8),
 
            encountered_types: Vec::with_capacity(32),
 
            memory_layout_breadcrumbs: Vec::with_capacity(32),
 
            size_alignment_stack: Vec::with_capacity(64),
 
        }
 
    }
 

	
 
    /// Iterates over all defined types (polymorphic and non-polymorphic) and
 
    /// add their types in two passes. In the first pass we will just add the
 
    /// base types (we will not consider monomorphs, and we will not compute
src/runtime2/component/component_internet.rs
Show inline comments
 
use crate::protocol::eval::{ValueGroup, Value};
 
use crate::runtime2::*;
 
use crate::runtime2::component::{CompCtx, CompId, PortInstruction};
 
use crate::runtime2::stdlib::internet::*;
 
use crate::runtime2::poll::*;
 

	
 
use super::component::{self, *};
 
use super::control_layer::*;
 
use super::consensus::*;
 

	
 
use std::io::ErrorKind as IoErrorKind;
 

	
 
enum SocketState {
 
// -----------------------------------------------------------------------------
 
// ComponentTcpClient
 
// -----------------------------------------------------------------------------
 

	
 
enum ClientSocketState {
 
    Connected(SocketTcpClient),
 
    Error,
 
}
 

	
 
impl SocketState {
 
impl ClientSocketState {
 
    fn get_socket(&self) -> &SocketTcpClient {
 
        match self {
 
            SocketState::Connected(v) => v,
 
            SocketState::Error => unreachable!(),
 
            ClientSocketState::Connected(v) => v,
 
            ClientSocketState::Error => unreachable!(),
 
        }
 
    }
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// ComponentTcpClient
 
// -----------------------------------------------------------------------------
 

	
 
/// States from the point of view of the component that is connecting to this
 
/// TCP component (i.e. from the point of view of attempting to interface with
 
/// a socket).
 
#[derive(PartialEq, Debug)]
 
enum ClientSyncState {
 
    AwaitingCmd,
 
    Getting,
 
    Putting,
 
    FinishSync,
 
    FinishSyncThenQuit,
 
}
 

	
 
pub struct ComponentTcpClient {
 
    // Properties for the tcp socket
 
    socket_state: SocketState,
 
    socket_state: ClientSocketState,
 
    sync_state: ClientSyncState,
 
    poll_ticket: Option<PollTicket>,
 
    inbox_main: InboxMain,
 
    inbox_backup: InboxBackup,
 
    pdl_input_port_id: PortId, // input from PDL, so transmitted over socket
 
    pdl_output_port_id: PortId, // output towards PDL, so received over socket
 
    // Information about union tags, extracted from PDL
 
    input_union_send_tag_value: i64,
 
    input_union_receive_tag_value: i64,
 
    input_union_finish_tag_value: i64,
 
    input_union_shutdown_tag_value: i64,
 
    // Generic component state
 
    exec_state: CompExecState,
 
    control: ControlLayer,
 
    consensus: Consensus,
 
    // Temporary variables
 
    byte_buffer: Vec<u8>,
 
}
 

	
 
impl Component for ComponentTcpClient {
 
    fn on_creation(&mut self, id: CompId, sched_ctx: &SchedulerCtx) {
 
        // Retrieve type information for messages we're going to receive
 
        let pd = &sched_ctx.runtime.protocol;
 
        let cmd_type = pd.find_type(b"std.internet", b"Cmd")
 
            .expect("'Cmd' type in the 'std.internet' module");
 
        let cmd_type = cmd_type
 
            .as_union();
 

	
 
        self.input_union_send_tag_value = cmd_type.get_variant_tag_value(b"Send").unwrap();
 
        self.input_union_receive_tag_value = cmd_type.get_variant_tag_value(b"Receive").unwrap();
 
        self.input_union_finish_tag_value = cmd_type.get_variant_tag_value(b"Finish").unwrap();
 
        self.input_union_shutdown_tag_value = cmd_type.get_variant_tag_value(b"Shutdown").unwrap();
 

	
 
        // Register socket for async events
 
        if let SocketState::Connected(socket) = &self.socket_state {
 
        if let ClientSocketState::Connected(socket) = &self.socket_state {
 
            let self_handle = sched_ctx.runtime.get_component_public(id);
 
            let poll_ticket = sched_ctx.polling.register(socket, self_handle, true, true)
 
                .expect("registering tcp component");
 

	
 
            debug_assert!(self.poll_ticket.is_none());
 
            self.poll_ticket = Some(poll_ticket);
 
        }
 
    }
 

	
 
    fn on_shutdown(&mut self, sched_ctx: &SchedulerCtx) {
 
        if let Some(poll_ticket) = self.poll_ticket.take() {
 
            sched_ctx.polling.unregister(poll_ticket)
 
                .expect("unregistering tcp component");
 
        }
 
    }
 

	
 
    fn adopt_message(&mut self, _comp_ctx: &mut CompCtx, message: DataMessage) {
 
        let slot = &mut self.inbox_main[0];
 
        if slot.is_none() {
 
            *slot = Some(message);
 
        } else {
 
            self.inbox_backup.push(message);
 
        }
 
    }
 

	
 
    fn handle_message(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx, message: Message) {
 
        match message {
 
            Message::Data(message) => {
 
                self.handle_incoming_data_message(sched_ctx, comp_ctx, message);
 
            },
 
            Message::Sync(message) => {
 
                let decision = self.consensus.receive_sync_message(sched_ctx, comp_ctx, message);
 
                component::default_handle_sync_decision(sched_ctx, &mut self.exec_state, comp_ctx, decision, &mut self.consensus);
 
            },
 
            Message::Control(message) => {
 
                if let Err(location_and_message) = component::default_handle_control_message(
 
                    &mut self.exec_state, &mut self.control, &mut self.consensus,
 
                    message, sched_ctx, comp_ctx, &mut self.inbox_main, &mut self.inbox_backup
 
                ) {
 
                    component::default_handle_error_for_builtin(&mut self.exec_state, sched_ctx, location_and_message);
 
                }
 
            },
 
            Message::Poll => {
 
                sched_ctx.info("Received polling event");
 
            },
 
        }
 
    }
 

	
 
    fn run(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx) -> CompScheduling {
 
        sched_ctx.info(&format!("Running component ComponentTcpClient (mode: {:?}, sync state: {:?})", self.exec_state.mode, self.sync_state));
 

	
 
        match self.exec_state.mode {
 
            CompMode::BlockedSelect |
 
            CompMode::PutPortsBlockedTransferredPorts |
 
            CompMode::PutPortsBlockedAwaitingAcks |
 
            CompMode::PutPortsBlockedSendingPort |
 
            CompMode::NewComponentBlocked => {
 
                // Not possible: we never enter this state
 
                unreachable!();
 
            },
 
            CompMode::NonSync => {
 
                // When in non-sync mode
 
                match &mut self.socket_state {
 
                    SocketState::Connected(_socket) => {
 
                    ClientSocketState::Connected(_socket) => {
 
                        if self.sync_state == ClientSyncState::FinishSyncThenQuit {
 
                            // Previous request was to let the component shut down
 
                            self.exec_state.set_as_start_exit(ExitReason::Termination);
 
                        } else {
 
                            // Reset for a new request
 
                            self.sync_state = ClientSyncState::AwaitingCmd;
 
                            component::default_handle_sync_start(
 
                                &mut self.exec_state, &mut self.inbox_main, sched_ctx, comp_ctx, &mut self.consensus
 
                            );
 
                        }
 
                        return CompScheduling::Immediate;
 
                    },
 
                    SocketState::Error => {
 
                    ClientSocketState::Error => {
 
                        // Could potentially send an error message to the
 
                        // connected component.
 
                        self.exec_state.set_as_start_exit(ExitReason::ErrorNonSync);
 
                        return CompScheduling::Immediate;
 
                    }
 
                }
 
            },
 
            CompMode::Sync => {
 
                // When in sync mode: wait for a command to come in
 
                match self.sync_state {
 
                    ClientSyncState::AwaitingCmd => {
 
                        match component::default_attempt_get(
 
                            &mut self.exec_state, self.pdl_input_port_id, PortInstruction::NoSource,
 
                            &mut self.inbox_main, &mut self.inbox_backup, sched_ctx, comp_ctx,
 
                            &mut self.control, &mut self.consensus
 
                        ) {
 
                            GetResult::Received(message) => {
 
                                let (tag_value, embedded_heap_pos) = message.content.values[0].as_union();
 
                                if tag_value == self.input_union_send_tag_value {
 
                                    // Retrieve bytes from the message
 
                                    self.byte_buffer.clear();
 
                                    let union_content = &message.content.regions[embedded_heap_pos as usize];
 
                                    debug_assert_eq!(union_content.len(), 1);
 
                                    let array_heap_pos = union_content[0].as_array();
 
                                    let array_values = &message.content.regions[array_heap_pos as usize];
 
                                    self.byte_buffer.reserve(array_values.len());
 
                                    for value in array_values {
 
                                        self.byte_buffer.push(value.as_uint8());
 
                                    }
 

	
 
                                    self.sync_state = ClientSyncState::Putting;
 
                                } else if tag_value == self.input_union_receive_tag_value {
 
                                    // Component requires a `recv`
 
                                    self.sync_state = ClientSyncState::Getting;
 
                                } else if tag_value == self.input_union_finish_tag_value {
 
                                    // Component requires us to end the sync round
 
                                    self.sync_state = ClientSyncState::FinishSync;
 
                                } else if tag_value == self.input_union_shutdown_tag_value {
 
                                    // Component wants to close the connection
 
                                    self.sync_state = ClientSyncState::FinishSyncThenQuit;
 
                                } else {
 
                                    unreachable!("got tag_value {}", tag_value)
 
                                }
 

	
 
                                return CompScheduling::Immediate;
 
                            },
 
                            GetResult::NoMessage => {
 
                                return CompScheduling::Sleep;
 
                            },
 
                            GetResult::Error(location_and_message) => {
 
                                component::default_handle_error_for_builtin(&mut self.exec_state, sched_ctx, location_and_message);
 
                                return CompScheduling::Immediate;
 
                            }
 
                        }
 
                    },
 
                    ClientSyncState::Putting => {
 
                        // We're supposed to send a user-supplied message fully
 
                        // over the socket. But we might end up blocking. In
 
                        // that case the component goes to sleep until it is
 
                        // polled.
 
                        let socket = self.socket_state.get_socket();
 
                        while !self.byte_buffer.is_empty() {
 
                            match socket.send(&self.byte_buffer) {
 
                                Ok(bytes_sent) => {
 
                                    self.byte_buffer.drain(..bytes_sent);
 
                                },
 
                                Err(err) => {
 
                                    if err.kind() == IoErrorKind::WouldBlock {
 
                                        return CompScheduling::Sleep; // wait until notified
 
                                    } else {
 
                                        todo!("handle socket.send error {:?}", err)
 
                                    }
 
                                }
 
                            }
 
                        }
 

	
 
                        // If here then we're done putting the data, we can
 
                        // finish the sync round
 
                        component::default_handle_sync_end(&mut self.exec_state, sched_ctx, comp_ctx, &mut self.consensus);
 
                        return CompScheduling::Requeue;
 
                    },
 
                    ClientSyncState::Getting => {
 
                        // We're going to try and receive a single message. If
 
                        // this causes us to end up blocking the component
 
                        // goes to sleep until it is polled.
 
                        const BUFFER_SIZE: usize = 1024; // TODO: Move to config
 

	
 
                        let socket = self.socket_state.get_socket();
 
                        self.byte_buffer.resize(BUFFER_SIZE, 0);
 
                        match socket.receive(&mut self.byte_buffer) {
 
                            Ok(num_received) => {
 
                                self.byte_buffer.resize(num_received, 0);
 
                                let message_content = self.bytes_to_data_message_content(&self.byte_buffer);
 
                                let send_result = component::default_send_data_message(
 
                                    &mut self.exec_state, self.pdl_output_port_id, PortInstruction::NoSource,
 
                                    message_content, sched_ctx, &mut self.consensus, &mut self.control, comp_ctx
 
                                );
 

	
 
                                if let Err(location_and_message) = send_result {
 
                                    component::default_handle_error_for_builtin(&mut self.exec_state, sched_ctx, location_and_message);
 
                                    return CompScheduling::Immediate;
 
                                } else {
 
                                    let scheduling = send_result.unwrap();
 
                                    self.sync_state = ClientSyncState::AwaitingCmd;
 
                                    return scheduling;
 
                                }
 
                            },
 
                            Err(err) => {
 
                                if err.kind() == IoErrorKind::WouldBlock {
 
                                    return CompScheduling::Sleep; // wait until polled
 
                                } else {
 
                                    todo!("handle socket.receive error {:?}", err)
 
                                }
 
                            }
 
                        }
 
                    },
 
                    ClientSyncState::FinishSync | ClientSyncState::FinishSyncThenQuit => {
 
                        component::default_handle_sync_end(&mut self.exec_state, sched_ctx, comp_ctx, &mut self.consensus);
 
                        return CompScheduling::Requeue;
 
                    },
 
                }
 
            },
 
            CompMode::BlockedGet => {
 
                // Entered when awaiting a new command
 
                debug_assert_eq!(self.sync_state, ClientSyncState::AwaitingCmd);
 
                return CompScheduling::Sleep;
 
            },
 
            CompMode::SyncEnd | CompMode::BlockedPut =>
 
                return CompScheduling::Sleep,
 
            CompMode::StartExit =>
 
                return component::default_handle_start_exit(&mut self.exec_state, &mut self.control, sched_ctx, comp_ctx, &mut self.consensus),
 
            CompMode::BusyExit =>
 
                return component::default_handle_busy_exit(&mut self.exec_state, &mut self.control, sched_ctx),
 
            CompMode::Exit =>
 
                return component::default_handle_exit(&self.exec_state),
 
        }
 
    }
 
}
 

	
 
impl ComponentTcpClient {
 
    pub(crate) fn new(arguments: ValueGroup) -> Self {
 
        use std::net::{IpAddr, Ipv4Addr};
 

	
 
        debug_assert_eq!(arguments.values.len(), 4);
 

	
 
        // Parsing arguments
 
        let ip_heap_pos = arguments.values[0].as_array();
 
        let ip_elements = &arguments.regions[ip_heap_pos as usize];
 
        if ip_elements.len() != 4 {
 
            todo!("friendly error reporting: ip contains 4 octects");
 
        }
 
        let ip_address = IpAddr::V4(Ipv4Addr::new(
 
            ip_elements[0].as_uint8(), ip_elements[1].as_uint8(),
 
            ip_elements[2].as_uint8(), ip_elements[3].as_uint8()
 
        ));
 

	
 
        let port = arguments.values[1].as_uint16();
 
        let input_port = component::port_id_from_eval(arguments.values[2].as_input());
 
        let output_port = component::port_id_from_eval(arguments.values[3].as_output());
 

	
 
        let socket = SocketTcpClient::new(ip_address, port);
 
        if let Err(socket) = socket {
 
            todo!("friendly error reporting: failed to open socket (reason: {:?})", socket);
 
        }
 

	
 
        return Self{
 
            socket_state: SocketState::Connected(socket.unwrap()),
 
            socket_state: ClientSocketState::Connected(socket.unwrap()),
 
            sync_state: ClientSyncState::AwaitingCmd,
 
            poll_ticket: None,
 
            inbox_main: vec![None],
 
            inbox_backup: Vec::new(),
 
            input_union_send_tag_value: -1,
 
            input_union_receive_tag_value: -1,
 
            input_union_finish_tag_value: -1,
 
            input_union_shutdown_tag_value: -1,
 
            pdl_input_port_id: input_port,
 
            pdl_output_port_id: output_port,
 
            exec_state: CompExecState::new(),
 
            control: ControlLayer::default(),
 
            consensus: Consensus::new(),
 
            byte_buffer: Vec::new(),
 
        }
 
    }
 

	
 
    // Handles incoming data from the PDL side (hence, going into the socket)
 
    fn handle_incoming_data_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: DataMessage) {
 
        if self.exec_state.mode.is_in_sync_block() {
 
            self.consensus.handle_incoming_data_message(comp_ctx, &message);
 
        }
 

	
 
        match component::default_handle_incoming_data_message(
 
            &mut self.exec_state, &mut self.inbox_main, comp_ctx, message, sched_ctx, &mut self.control
 
        ) {
 
            IncomingData::PlacedInSlot => {},
 
            IncomingData::SlotFull(message) => {
 
                self.inbox_backup.push(message);
 
            }
 
        }
 
    }
 

	
 
    fn data_message_to_bytes(&self, message: DataMessage, bytes: &mut Vec<u8>) {
 
        debug_assert_eq!(message.data_header.target_port, self.pdl_input_port_id);
 
        debug_assert_eq!(message.content.values.len(), 1);
 

	
 
        if let Value::Array(array_pos) = message.content.values[0] {
 
            let region = &message.content.regions[array_pos as usize];
 
            bytes.reserve(region.len());
 
            for value in region {
 
                bytes.push(value.as_uint8());
 
            }
 
        } else {
 
            unreachable!();
 
        }
 
    }
 

	
 
    fn bytes_to_data_message_content(&self, buffer: &[u8]) -> ValueGroup {
 
        // Turn bytes into silly executor-style array
 
        let mut values = Vec::with_capacity(buffer.len());
 
        for byte in buffer.iter().copied() {
 
            values.push(Value::UInt8(byte));
 
        }
 

	
 
        // Put in a value group
 
        let mut value_group = ValueGroup::default();
 
        value_group.regions.push(values);
 
        value_group.values.push(Value::Array(0));
 

	
 
        return value_group;
 
    }
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// ComponentTcpListener
 
// -----------------------------------------------------------------------------
 

	
 
enum ListenerSocketState {
 
    Connected(SocketTcpListener),
 
    Error,
 
}
 

	
 
pub struct ComponentTcpListener {
 
    // Properties for the tcp socket
 
    socket_state: ListenerSocketState,
 
    poll_ticket: Option<PollTicket>,
 
    inbox_main: InboxMain,
 
    inbox_backup: InboxBackup,
 
    pdl_output_port_id: PortId, // output port, sends
 
    // Information about union tags
 
    output_struct_rx_index: i64,
 
    output_struct_tx_index: i64,
 
    // Generic component state
 
}
 
\ No newline at end of file
src/runtime2/tests/internet.rs
Show inline comments
 
new file 100644
 
use super::*;
 

	
 
// silly test to make sure that the PDL will never be an issue when doing TCP
 
// stuff with the actual components
 
#[test]
 
fn test_stdlib_file() {
 
    compile_and_create_component("
 
    import std.internet as inet;
 

	
 
    primitive fake_listener_once(out<inet::TcpConnection> tx) {
 
        channel cmd_tx -> cmd_rx;
 
        channel data_tx -> data_rx;
 
        new fake_client(cmd_rx, data_tx);
 
        sync put(tx, inet::TcpConnection{
 
            tx: cmd_tx,
 
            rx: data_rx,
 
        });
 
    }
 

	
 
    primitive fake_socket(in<inet::Cmd> cmds, out<u8[]> tx) {
 
        auto to_send = {};
 

	
 
        auto shutdown = false;
 
        while (!shutdown) {
 
            auto keep_going = true;
 
            sync {
 
                while (keep_going) {
 
                    let cmd = get(cmds);
 
                    if (let inet::Cmd::Send(data) = cmd) {
 
                        to_send = data;
 
                    } else if (let inet::Cmd::Receive(data) = cmd) {
 
                        put(tx, to_send);
 
                    } else if (let inet::Cmd::Finish = cmd) {
 
                        keep_going = false;
 
                    } else if (let inet::Cmd::Shutdown = cmd) {
 
                        keep_going = false;
 
                        shutdown = true;
 
                    }
 
                }
 
            }
 
        }
 
    }
 

	
 
    primitive fake_client(inet::TcpConnection conn) {
 
        sync put(conn.tx, inet::Cmd::Send({1, 3, 3, 7}));
 
        sync {
 
            put(conn.tx, inet::Cmd::Receive);
 
            auto val = get(conn.rx);
 
            while (val[0] != 1 || val[1] != 3 || val[2] != 3 || val[3] != 7) {}
 
            put(conn.tx, inet::Cmd::Finish);
 
        }
 
        sync put(conn.tx, inet::Cmd::Shutdown);
 
    }
 

	
 
    composite constructor() {
 
        channel conn_tx -> conn_rx;
 
        new fake_listener_once(conn_tx);
 

	
 
        // Same crap as before:
 
        channel cmd_tx -> unused_cmd_rx;
 
        channel unused_data_tx -> data_rx;
 
        auto connection = inet::TcpConnection{ tx: cmd_tx, rx: data_rx };
 

	
 
        sync {
 
            connection = get(conn_rx);
 
        }
 

	
 
        new fake_client(connection);
 
    }
 
    ", "constructor", no_args());
 
}
 
\ No newline at end of file
src/runtime2/tests/mod.rs
Show inline comments
 
use crate::protocol::*;
 
use crate::protocol::eval::*;
 
use crate::runtime2::runtime::*;
 
use crate::runtime2::component::{CompCtx, CompPDL};
 

	
 
mod messaging;
 
mod error_handling;
 
mod transfer_ports;
 
mod internet;
 

	
 
const LOG_LEVEL: LogLevel = LogLevel::Debug;
 
const NUM_THREADS: u32 = 1;
 

	
 
pub(crate) fn compile_and_create_component(source: &str, routine_name: &str, args: ValueGroup) {
 
    let protocol = ProtocolDescription::parse(source.as_bytes())
 
        .expect("successful compilation");
 
    let runtime = Runtime::new(NUM_THREADS, LOG_LEVEL, protocol)
 
        .expect("successful runtime startup");
 
    create_component(&runtime, "", routine_name, args);
 
}
 

	
 
pub(crate) fn create_component(rt: &Runtime, module_name: &str, routine_name: &str, args: ValueGroup) {
 
    let prompt = rt.inner.protocol.new_component(
 
        module_name.as_bytes(), routine_name.as_bytes(), args
 
    ).expect("create prompt");
 
    let reserved = rt.inner.start_create_component();
 
    let ctx = CompCtx::new(&reserved);
 
    let component = Box::new(CompPDL::new(prompt, 0));
 
    let (key, _) = rt.inner.finish_create_component(reserved, component, ctx, false);
 
    rt.inner.enqueue_work(key);
 
}
 

	
 
pub(crate) fn no_args() -> ValueGroup { ValueGroup::new_stack(Vec::new()) }
 

	
 
#[test]
 
fn test_component_creation() {
 
    let pd = ProtocolDescription::parse(b"
 
    primitive nothing_at_all() {
 
        s32 a = 5;
 
        auto b = 5 + a;
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(1, LOG_LEVEL, pd).unwrap();
 

	
 
    for _i in 0..20 {
 
        create_component(&rt, "", "nothing_at_all", no_args());
 
    }
 
}
 

	
 
#[test]
 
fn test_simple_select() {
 
    let pd = ProtocolDescription::parse(b"
 
    func infinite_assert<T>(T val, T expected) -> () {
 
        while (val != expected) { print(\"nope!\"); }
 
        return ();
 
    }
 

	
 
    primitive receiver(in<u32> in_a, in<u32> in_b, u32 num_sends) {
 
        auto num_from_a = 0;
 
        auto num_from_b = 0;
 
        while (num_from_a + num_from_b < 2 * num_sends) {
 
            sync select {
 
                auto v = get(in_a) -> {
 
                    print(\"got something from A\");
 
                    auto _ = infinite_assert(v, num_from_a);
 
                    num_from_a += 1;
 
                }
 
                auto v = get(in_b) -> {
 
                    print(\"got something from B\");
 
                    auto _ = infinite_assert(v, num_from_b);
 
                    num_from_b += 1;
 
                }
 
            }
 
        }
 
    }
 

	
 
    primitive sender(out<u32> tx, u32 num_sends) {
 
        auto index = 0;
 
        while (index < num_sends) {
 
            sync {
 
                put(tx, index);
 
                index += 1;
 
            }
 
        }
 
    }
 

	
 
    composite constructor() {
 
        auto num_sends = 1;
 
        channel tx_a -> rx_a;
 
        channel tx_b -> rx_b;
 
        new sender(tx_a, num_sends);
 
        new receiver(rx_a, rx_b, num_sends);
 
        new sender(tx_b, num_sends);
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(3, LOG_LEVEL, pd).unwrap();
 
    create_component(&rt, "", "constructor", no_args());
 
}
 

	
 
#[test]
 
fn test_unguarded_select() {
 
    let pd = ProtocolDescription::parse(b"
 
    primitive constructor_outside_select() {
 
        u32 index = 0;
 
        while (index < 5) {
 
            sync select { auto v = () -> print(\"hello\"); }
 
            index += 1;
 
        }
 
    }
 

	
 
    primitive constructor_inside_select() {
 
        u32 index = 0;
 
        while (index < 5) {
 
            sync select { auto v = () -> index += 1; }
 
        }
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(3, LOG_LEVEL, pd).unwrap();
 
    create_component(&rt, "", "constructor_outside_select", no_args());
 
    create_component(&rt, "", "constructor_inside_select", no_args());
 
}
 

	
 
#[test]
 
fn test_empty_select() {
 
    let pd = ProtocolDescription::parse(b"
 
    primitive constructor() {
 
        u32 index = 0;
 
        while (index < 5) {
 
            sync select {}
 
            index += 1;
 
        }
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(3, LOG_LEVEL, pd).unwrap();
 
    create_component(&rt, "", "constructor", no_args());
 
}
 

	
 
#[test]
 
fn test_random_u32_temporary_thingo() {
 
    let pd = ProtocolDescription::parse(b"
 
    import std.random::random_u32;
 

	
 
    primitive random_taker(in<u32> generator, u32 num_values) {
 
        auto i = 0;
 
        while (i < num_values) {
 
            sync {
 
                auto a = get(generator);
 
            }
 
            i += 1;
 
        }
 
    }
 

	
 
    composite constructor() {
 
        channel tx -> rx;
 
        auto num_values = 25;
 
        new random_u32(tx, 1, 100, num_values);
 
        new random_taker(rx, num_values);
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(1, LOG_LEVEL, pd).unwrap();
 
    create_component(&rt, "", "constructor", no_args());
 
}
 

	
 
#[test]
 
fn test_tcp_socket_http_request() {
 
    let _pd = ProtocolDescription::parse(b"
 
    import std.internet::*;
 

	
 
    primitive requester(out<Cmd> cmd_tx, in<u8[]> data_rx) {
 
        print(\"*** TCPSocket: Sending request\");
 
        sync {
 
            put(cmd_tx, Cmd::Send(b\"GET / HTTP/1.1\\r\\n\\r\\n\"));
 
        }
 

	
 
        print(\"*** TCPSocket: Receiving response\");
 
        auto buffer = {};
 
        auto done_receiving = false;
 
        sync while (!done_receiving) {
 
            put(cmd_tx, Cmd::Receive);
 
            auto data = get(data_rx);
 
            buffer @= data;
 

	
 
            // Completely crap detection of end-of-document. But here we go, we
 
            // try to detect the trailing </html>. Proper way would be to parse
 
            // for 'content-length' or 'content-encoding'
 
            s32 index = 0;
 
            s32 partial_length = cast(length(data) - 7);
 
            while (index < partial_length) {
 
                // No string conversion yet, so check byte buffer one byte at
 
                // a time.
 
                auto c1 = data[index];
 
                if (c1 == cast('<')) {
 
                    auto c2 = data[index + 1];
 
                    auto c3 = data[index + 2];
 
                    auto c4 = data[index + 3];
 
                    auto c5 = data[index + 4];
 
                    auto c6 = data[index + 5];
 
                    auto c7 = data[index + 6];
 
                    if ( // i.e. if (data[index..] == '</html>'
 
                        c2 == cast('/') && c3 == cast('h') && c4 == cast('t') &&
 
                        c5 == cast('m') && c6 == cast('l') && c7 == cast('>')
 
                    ) {
 
                        print(\"*** TCPSocket: Detected </html>\");
 
                        put(cmd_tx, Cmd::Finish);
 
                        done_receiving = true;
 
                    }
 
                }
 
                index += 1;
 
            }
 
        }
 

	
 
        print(\"*** TCPSocket: Requesting shutdown\");
 
        sync {
 
            put(cmd_tx, Cmd::Shutdown);
 
        }
 
    }
 

	
 
    composite main() {
 
        channel cmd_tx -> cmd_rx;
 
        channel data_tx -> data_rx;
 
        new tcp_client({142, 250, 179, 163}, 80, cmd_rx, data_tx); // port 80 of google
 
        new requester(cmd_tx, data_rx);
 
    }
 
    ").expect("compilation");
 

	
 
    // This test is disabled because it performs a HTTP request to google.
 
    // let rt = Runtime::new(1, true, pd).unwrap();
 
    // create_component(&rt, "", "main", no_args());
 
}
 

	
 
#[test]
 
fn test_sending_receiving_union() {
 
    let pd = ProtocolDescription::parse(b"
 
    union Cmd {
 
        Set(u8[]),
 
        Get,
 
        Shutdown,
 
    }
 

	
 
    primitive database(in<Cmd> rx, out<u8[]> tx) {
 
        auto stored = {};
 
        auto done = false;
 
        while (!done) {
 
            sync {
 
                auto command = get(rx);
 
                if (let Cmd::Set(bytes) = command) {
 
                    print(\"database: storing value\");
 
                    stored = bytes;
 
                } else if (let Cmd::Get = command) {
 
                    print(\"database: returning value\");
 
                    put(tx, stored);
 
                } else if (let Cmd::Shutdown = command) {
 
                    print(\"database: shutting down\");
 
                    done = true;
 
                } else while (true) print(\"impossible\"); // no other case possible
 
            }
 
        }
 
    }
 

	
 
    primitive client(out<Cmd> tx, in<u8[]> rx, u32 num_rounds) {
 
        auto round = 0;
 
        while (round < num_rounds) {
 
            auto set_value = b\"hello there\";
 
            print(\"client: putting a value\");
 
            sync put(tx, Cmd::Set(set_value));
 

	
 
            auto retrieved = {};
 
            print(\"client: retrieving what was sent\");
 
            sync {
 
                put(tx, Cmd::Get);
 
                retrieved = get(rx);
 
            }
 

	
 
            if (set_value != retrieved) while (true) print(\"wrong!\");
 

	
 
            round += 1;
 
        }
 

	
 
        sync put(tx, Cmd::Shutdown);
 
    }
 

	
 
    composite main() {
 
        auto num_rounds = 5;
 
        channel cmd_tx -> cmd_rx;
 
        channel data_tx -> data_rx;
 
        new database(cmd_rx, data_tx);
 
        new client(cmd_tx, data_rx, num_rounds);
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(1, LOG_LEVEL, pd).unwrap();
 
    create_component(&rt, "", "main", no_args());
 
}
 
\ No newline at end of file
std/std.internet.pdl
Show inline comments
 
#module std.internet
 

	
 
union Cmd {
 
    Send(u8[]),
 
    Receive,
 
    Finish,
 
    Shutdown,
 
}
 

	
 
primitive tcp_client(u8[] ip, u16 port, in<Cmd> cmds, out<u8[]> rx) {
 
    #builtin
 
}
 

	
 
struct TcpConnection {
 
    in<Cmd> tx,
 
    out<u8[]> rx,
 
}
 

	
 
/* primitive tcp_listener(u8[] ip, u16 port, out<TcpConnection> rx) {
 
    #builtin
 
} */
 
\ No newline at end of file
0 comments (0 inline, 0 general)