Changeset - 1e0c33498fac
[Not reviewed]
0 2 0
MH - 3 years ago 2022-04-22 13:02:36
contact@maxhenger.nl
Test and fix pre-sync ClosePort case
2 files changed with 20 insertions and 9 deletions:
0 comments (0 inline, 0 general)
src/runtime2/component/component.rs
Show inline comments
 
@@ -192,526 +192,531 @@ pub(crate) type InboxBackup = Vec<DataMessage>;
 
/// construct a custom component. This does NOT take care of port and message
 
/// management.
 
pub(crate) fn create_component(
 
    protocol: &ProtocolDescription,
 
    definition_id: ProcedureDefinitionId, type_id: TypeId,
 
    arguments: ValueGroup, num_ports: usize
 
) -> Box<dyn Component> {
 
    let definition = &protocol.heap[definition_id];
 
    debug_assert!(definition.kind == ProcedureKind::Primitive || definition.kind == ProcedureKind::Composite);
 

	
 
    if definition.source.is_builtin() {
 
        // Builtin component
 
        let component: Box<dyn Component> = match definition.source {
 
            ProcedureSource::CompRandomU32 => Box::new(ComponentRandomU32::new(arguments)),
 
            ProcedureSource::CompTcpClient => Box::new(ComponentTcpClient::new(arguments)),
 
            _ => unreachable!(),
 
        };
 

	
 
        return component;
 
    } else {
 
        // User-defined component
 
        let prompt = Prompt::new(
 
            &protocol.types, &protocol.heap,
 
            definition_id, type_id, arguments
 
        );
 
        let component = CompPDL::new(prompt, num_ports);
 
        return Box::new(component);
 
    }
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// Generic component messaging utilities (for sending and receiving)
 
// -----------------------------------------------------------------------------
 

	
 
/// Default handling of sending a data message. In case the port is blocked then
 
/// the `ExecState` will become blocked as well. Note that
 
/// `default_handle_control_message` will ensure that the port becomes
 
/// unblocked if so instructed by the receiving component. The returned
 
/// scheduling value must be used.
 
#[must_use]
 
pub(crate) fn default_send_data_message(
 
    exec_state: &mut CompExecState, transmitting_port_id: PortId,
 
    port_instruction: PortInstruction, value: ValueGroup,
 
    sched_ctx: &SchedulerCtx, consensus: &mut Consensus, comp_ctx: &mut CompCtx
 
) -> Result<CompScheduling, (PortInstruction, String)> {
 
    debug_assert_eq!(exec_state.mode, CompMode::Sync);
 

	
 
    let port_handle = comp_ctx.get_port_handle(transmitting_port_id);
 
    let port_info = comp_ctx.get_port_mut(port_handle);
 
    port_info.last_instruction = port_instruction;
 

	
 
    let port_info = comp_ctx.get_port(port_handle);
 
    debug_assert_eq!(port_info.kind, PortKind::Putter);
 

	
 
    if port_info.state == PortState::Closed {
 
        // Note: normally peer is eventually consistent, but if it has shut down
 
        // then we can be sure it is consistent (I think?)
 
        return Err((
 
            port_info.last_instruction,
 
            format!("Cannot send on this port, as the peer (id:{}) has shut down", port_info.peer_comp_id.0)
 
        ))
 
    } else if port_info.state.is_blocked() {
 
        // Port is blocked, so we cannot send
 
        exec_state.set_as_blocked_put(transmitting_port_id, value);
 

	
 
        return Ok(CompScheduling::Sleep);
 
    } else {
 
        // Port is not blocked, so send to the peer
 
        let peer_handle = comp_ctx.get_peer_handle(port_info.peer_comp_id);
 
        let peer_info = comp_ctx.get_peer(peer_handle);
 
        let annotated_message = consensus.annotate_data_message(comp_ctx, port_info, value);
 
        peer_info.handle.send_message(&sched_ctx.runtime, Message::Data(annotated_message), true);
 

	
 
        return Ok(CompScheduling::Immediate);
 
    }
 
}
 

	
 
pub(crate) enum IncomingData {
 
    PlacedInSlot,
 
    SlotFull(DataMessage),
 
}
 

	
 
/// Default handling of receiving a data message. In case there is no room for
 
/// the message it is returned from this function. Note that this function is
 
/// different from PDL code performing a `get` on a port; this is the case where
 
/// the message first arrives at the component.
 
// NOTE: This is supposed to be a somewhat temporary implementation. It would be
 
//  nicest if the sending component can figure out it cannot send any more data.
 
#[must_use]
 
pub(crate) fn default_handle_incoming_data_message(
 
    exec_state: &mut CompExecState, inbox_main: &mut InboxMain,
 
    comp_ctx: &mut CompCtx, incoming_message: DataMessage,
 
    sched_ctx: &SchedulerCtx, control: &mut ControlLayer
 
) -> IncomingData {
 
    let port_handle = comp_ctx.get_port_handle(incoming_message.data_header.target_port);
 
    let port_index = comp_ctx.get_port_index(port_handle);
 
    sched_ctx.log("DEBUG: Setting received_message_for_sync");
 
    comp_ctx.get_port_mut(port_handle).received_message_for_sync = true;
 
    let port_value_slot = &mut inbox_main[port_index];
 
    let target_port_id = incoming_message.data_header.target_port;
 

	
 
    if port_value_slot.is_none() {
 
        // We can put the value in the slot
 
        *port_value_slot = Some(incoming_message);
 

	
 
        // Check if we're blocked on receiving this message.
 
        dbg_code!({
 
            // Our port cannot have been blocked itself, because we're able to
 
            // directly insert the message into its slot.
 
            assert!(!comp_ctx.get_port(port_handle).state.is_blocked());
 
        });
 

	
 
        if exec_state.is_blocked_on_get(target_port_id) {
 
            // Return to normal operation
 
            exec_state.mode = CompMode::Sync;
 
            exec_state.mode_port = PortId::new_invalid();
 
            debug_assert!(exec_state.mode_value.values.is_empty());
 
        }
 

	
 
        return IncomingData::PlacedInSlot
 
    } else {
 
        // Slot is already full, so if the port was previously opened, it will
 
        // now become closed
 
        let port_info = comp_ctx.get_port_mut(port_handle);
 
        debug_assert!(port_info.state == PortState::Open || port_info.state.is_blocked()); // i.e. not closed, but will go off if more states are added in the future
 

	
 
        if port_info.state == PortState::Open {
 
            comp_ctx.set_port_state(port_handle, PortState::BlockedDueToFullBuffers);
 
            let (peer_handle, message) =
 
                control.initiate_port_blocking(comp_ctx, port_handle);
 
            let peer = comp_ctx.get_peer(peer_handle);
 
            peer.handle.send_message(&sched_ctx.runtime, Message::Control(message), true);
 
        }
 

	
 
        return IncomingData::SlotFull(incoming_message)
 
    }
 
}
 

	
 
pub(crate) enum GetResult {
 
    Received(DataMessage),
 
    NoMessage,
 
    Error((PortInstruction, String)),
 
}
 

	
 
/// Default attempt at trying to receive from a port (i.e. through a `get`, or
 
/// the equivalent operation for a builtin component). `target_port` is the port
 
/// we're trying to receive from, and the `target_port_instruction` is the
 
/// instruction we're attempting on this port.
 
pub(crate) fn default_attempt_get(
 
    exec_state: &mut CompExecState, target_port: PortId, target_port_instruction: PortInstruction,
 
    inbox_main: &mut InboxMainRef, inbox_backup: &mut InboxBackup, sched_ctx: &SchedulerCtx,
 
    comp_ctx: &mut CompCtx, control: &mut ControlLayer, consensus: &mut Consensus
 
) -> GetResult {
 
    let port_handle = comp_ctx.get_port_handle(target_port);
 
    let port_index = comp_ctx.get_port_index(port_handle);
 

	
 
    if let Some(message) = &inbox_main[port_index] {
 
        if consensus.try_receive_data_message(sched_ctx, comp_ctx, message) {
 
            // We're allowed to receive this message
 
            let message = inbox_main[port_index].take().unwrap();
 
            debug_assert_eq!(target_port, message.data_header.target_port);
 

	
 
            // Note: we can still run into an unrecoverable error when actually
 
            // receiving this message
 
            match default_handle_received_data_message(
 
                target_port, target_port_instruction, inbox_main, inbox_backup,
 
                comp_ctx, sched_ctx, control,
 
            ) {
 
                Ok(()) => return GetResult::Received(message),
 
                Err(location_and_message) => return GetResult::Error(location_and_message)
 
            }
 
        } else {
 
            // We're not allowed to receive this message. This means that the
 
            // receiver is attempting to receive something out of order with
 
            // respect to the sender.
 
            return GetResult::Error((target_port_instruction, String::from(
 
                "Cannot get from this port, as this causes a deadlock. This happens if you `get` in a different order as another component `put`s"
 
            )));
 
        }
 
    } else {
 
        // We don't have a message waiting for us.
 
        let port_info = comp_ctx.get_port(port_handle);
 
        let port_info = comp_ctx.get_port_mut(port_handle);
 
        port_info.last_instruction = target_port_instruction;
 
        let port_is_closed = port_info.state == PortState::Closed;
 
        if port_is_closed {
 
            let peer_id = port_info.peer_comp_id;
 
            return GetResult::Error((
 
                target_port_instruction,
 
                format!("Cannot get from this port, as the peer component (id:{}) shut down", peer_id.0)
 
            ));
 
        }
 

	
 
        // No error ocurred, so enter the BlockedGet state
 
        exec_state.set_as_blocked_get(target_port);
 
        return GetResult::NoMessage;
 
    }
 
}
 

	
 
/// Default handling that has been received through a `get`. Will check if any
 
/// more messages are waiting, and if the corresponding port was blocked because
 
/// of full buffers (hence, will use the control layer to make sure the peer
 
/// will become unblocked).
 
pub(crate) fn default_handle_received_data_message(
 
    targeted_port: PortId, port_instruction: PortInstruction,
 
    inbox_main: &mut InboxMainRef, inbox_backup: &mut InboxBackup,
 
    comp_ctx: &mut CompCtx, sched_ctx: &SchedulerCtx, control: &mut ControlLayer
 
) -> Result<(), (PortInstruction, String)> {
 
    let port_handle = comp_ctx.get_port_handle(targeted_port);
 
    let port_index = comp_ctx.get_port_index(port_handle);
 
    let slot = &mut inbox_main[port_index];
 
    debug_assert!(slot.is_none()); // because we've just received from it
 

	
 
    // Modify last-known location where port instruction was retrieved
 
    let port_info = comp_ctx.get_port_mut(port_handle);
 
    port_info.last_instruction = port_instruction;
 

	
 
    if port_info.state == PortState::Closed {
 
        return Err((
 
            port_info.last_instruction,
 
            format!("Cannot 'get' because the channel is closed"))
 
        );
 
    }
 

	
 
    // Check if there are any more messages in the backup buffer
 
    let port_info = comp_ctx.get_port(port_handle);
 
    for message_index in 0..inbox_backup.len() {
 
        let message = &inbox_backup[message_index];
 
        if message.data_header.target_port == targeted_port {
 
            // One more message, place it in the slot
 
            let message = inbox_backup.remove(message_index);
 
            debug_assert!(port_info.state.is_blocked()); // since we're removing another message from the backup
 
            *slot = Some(message);
 

	
 
            return Ok(());
 
        }
 
    }
 

	
 
    // Did not have any more messages, so if we were blocked, then we need to
 
    // unblock the port now (and inform the peer of this unblocking)
 
    if port_info.state == PortState::BlockedDueToFullBuffers {
 
        comp_ctx.set_port_state(port_handle, PortState::Open);
 
        let (peer_handle, message) = control.cancel_port_blocking(comp_ctx, port_handle);
 
        let peer_info = comp_ctx.get_peer(peer_handle);
 
        peer_info.handle.send_message(&sched_ctx.runtime, Message::Control(message), true);
 
    }
 

	
 
    return Ok(());
 
}
 

	
 
/// Handles control messages in the default way. Note that this function may
 
/// take a lot of actions in the name of the caller: pending messages may be
 
/// sent, ports may become blocked/unblocked, etc. So the execution
 
/// (`CompExecState`), control (`ControlLayer`) and consensus (`Consensus`)
 
/// state may all change.
 
pub(crate) fn default_handle_control_message(
 
    exec_state: &mut CompExecState, control: &mut ControlLayer, consensus: &mut Consensus,
 
    message: ControlMessage, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx
 
) -> Result<(), (PortInstruction, String)> {
 
    match message.content {
 
        ControlMessageContent::Ack => {
 
            default_handle_ack(control, message.id, sched_ctx, comp_ctx);
 
        },
 
        ControlMessageContent::BlockPort(port_id) => {
 
            // One of our messages was accepted, but the port should be
 
            // blocked.
 
            let port_handle = comp_ctx.get_port_handle(port_id);
 
            let port_info = comp_ctx.get_port(port_handle);
 
            debug_assert_eq!(port_info.kind, PortKind::Putter);
 
            if port_info.state == PortState::Open {
 
                // only when open: we don't do this when closed, and we we don't do this if we're blocked due to peer changes
 
                comp_ctx.set_port_state(port_handle, PortState::BlockedDueToFullBuffers);
 
            }
 
        },
 
        ControlMessageContent::ClosePort(content) => {
 
            // Request to close the port. We immediately comply and remove
 
            // the component handle as well
 
            let port_handle = comp_ctx.get_port_handle(content.port_to_close);
 

	
 
            // We're closing the port, so we will always update the peer of the
 
            // port (in case of error messages)
 
            let port_info = comp_ctx.get_port_mut(port_handle);
 
            port_info.peer_comp_id = message.sender_comp_id;
 
            port_info.close_at_sync_end = true; // might be redundant (we might set it closed now)
 

	
 
            let port_info = comp_ctx.get_port(port_handle);
 
            let peer_comp_id = port_info.peer_comp_id;
 
            let peer_handle = comp_ctx.get_peer_handle(peer_comp_id);
 

	
 
            // One exception to sending an `Ack` is if we just closed the
 
            // port ourselves, meaning that the `ClosePort` messages got
 
            // sent to one another.
 
            if let Some(control_id) = control.has_close_port_entry(port_handle, comp_ctx) {
 
                // The two components (sender and this component) are closing
 
                // the channel at the same time. So we don't care about the
 
                // content of the `ClosePort` message.
 
                default_handle_ack(control, control_id, sched_ctx, comp_ctx);
 
            } else {
 
                // Respond to the message
 
                let last_instruction = port_info.last_instruction;
 
                let port_has_had_message = port_info.received_message_for_sync;
 
                default_send_ack(message.id, peer_handle, sched_ctx, comp_ctx);
 
                comp_ctx.remove_peer(sched_ctx, port_handle, peer_comp_id, false); // do not remove if closed
 

	
 
                // Handle any possible error conditions (which boil down to: the
 
                // port has been used, but the peer has died). If not in sync
 
                // mode then we close the port immediately.
 

	
 
                // Note that `port_was_used` does not mean that any messages
 
                // were actually received. It might also mean that e.g. the
 
                // component attempted a `get`, but there were no messages, so
 
                // now it is in the `BlockedGet` state.
 
                let port_was_used = last_instruction != PortInstruction::None;
 

	
 
                sched_ctx.log(&format!("DEBUG: last_instruction = {:?}, mode = {:?}, was_used = {}, has_had_message = {}", last_instruction, exec_state.mode, port_was_used, port_has_had_message));
 

	
 
                if exec_state.mode.is_in_sync_block() {
 
                    let closed_during_sync_round = content.closed_in_sync_round && port_was_used;
 
                    // TODO: Finish this
 
                    let closed_before_sync_round = !content.closed_in_sync_round && !port_has_had_message;
 

	
 
                    if closed_during_sync_round {
 
                    if closed_during_sync_round || closed_before_sync_round {
 
                        return Err((
 
                            last_instruction,
 
                            format!("Peer component (id:{}) shut down, so previous communication cannot have succeeded", peer_comp_id.0)
 
                        ));
 
                    }
 
                } else {
 
                    comp_ctx.set_port_state(port_handle, PortState::Closed);
 
                }
 
            }
 
        },
 
        ControlMessageContent::UnblockPort(port_id) => {
 
            // We were previously blocked (or already closed)
 
            let port_handle = comp_ctx.get_port_handle(port_id);
 
            let port_info = comp_ctx.get_port(port_handle);
 
            debug_assert_eq!(port_info.kind, PortKind::Putter);
 
            if port_info.state == PortState::BlockedDueToFullBuffers {
 
                default_handle_unblock_put(exec_state, consensus, port_handle, sched_ctx, comp_ctx);
 
            }
 
        },
 
        ControlMessageContent::PortPeerChangedBlock(port_id) => {
 
            // The peer of our port has just changed. So we are asked to
 
            // temporarily block the port (while our original recipient is
 
            // potentially rerouting some of the in-flight messages) and
 
            // Ack. Then we wait for the `unblock` call.
 
            debug_assert_eq!(message.target_port_id, Some(port_id));
 
            let port_handle = comp_ctx.get_port_handle(port_id);
 
            comp_ctx.set_port_state(port_handle, PortState::BlockedDueToPeerChange);
 

	
 
            let port_info = comp_ctx.get_port(port_handle);
 
            let peer_handle = comp_ctx.get_peer_handle(port_info.peer_comp_id);
 

	
 
            default_send_ack(message.id, peer_handle, sched_ctx, comp_ctx);
 
        },
 
        ControlMessageContent::PortPeerChangedUnblock(new_port_id, new_comp_id) => {
 
            let port_handle = comp_ctx.get_port_handle(message.target_port_id.unwrap());
 
            let port_info = comp_ctx.get_port(port_handle);
 
            debug_assert!(port_info.state == PortState::BlockedDueToPeerChange);
 
            let old_peer_id = port_info.peer_comp_id;
 

	
 
            comp_ctx.remove_peer(sched_ctx, port_handle, old_peer_id, false);
 

	
 
            let port_info = comp_ctx.get_port_mut(port_handle);
 
            port_info.peer_comp_id = new_comp_id;
 
            port_info.peer_port_id = new_port_id;
 
            comp_ctx.add_peer(port_handle, sched_ctx, new_comp_id, None);
 
            default_handle_unblock_put(exec_state, consensus, port_handle, sched_ctx, comp_ctx);
 
        }
 
    }
 

	
 
    return Ok(());
 
}
 

	
 
/// Handles a component entering the synchronous block. Will ensure that the
 
/// `Consensus` and the `ComponentCtx` are initialized properly.
 
pub(crate) fn default_handle_sync_start(
 
    exec_state: &mut CompExecState, inbox_main: &mut InboxMainRef,
 
    sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, consensus: &mut Consensus
 
) {
 
    sched_ctx.log("Component starting sync mode");
 

	
 
    // If any messages are present for this sync round, set the appropriate flag
 
    // and notify the consensus handler of the present messages
 
    consensus.notify_sync_start(comp_ctx);
 
    for (port_index, message) in inbox_main.iter().enumerate() {
 
        if let Some(message) = message {
 
            consensus.handle_incoming_data_message(comp_ctx, message);
 
            let port_info = comp_ctx.get_port_by_index_mut(port_index);
 
            port_info.received_message_for_sync = true;
 
        }
 
    }
 

	
 
    // Modify execution state
 
    debug_assert_eq!(exec_state.mode, CompMode::NonSync);
 
    exec_state.mode = CompMode::Sync;
 
}
 

	
 
/// Handles a component that has reached the end of the sync block. This does
 
/// not necessarily mean that the component will go into the `NonSync` mode, as
 
/// it might have to wait for the leader to finish the round for everyone (see
 
/// `default_handle_sync_decision`)
 
pub(crate) fn default_handle_sync_end(
 
    exec_state: &mut CompExecState, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx,
 
    consensus: &mut Consensus
 
) {
 
    sched_ctx.log("Component ending sync mode (but possibly waiting for a solution)");
 
    debug_assert_eq!(exec_state.mode, CompMode::Sync);
 
    let decision = consensus.notify_sync_end_success(sched_ctx, comp_ctx);
 
    exec_state.mode = CompMode::SyncEnd;
 
    default_handle_sync_decision(sched_ctx, exec_state, comp_ctx, decision, consensus);
 
}
 

	
 
/// Handles a component initiating the exiting procedure, and closing all of its
 
/// ports. Should only be called once per component (which is ensured by
 
/// checking and modifying the mode in the execution state).
 
#[must_use]
 
pub(crate) fn default_handle_start_exit(
 
    exec_state: &mut CompExecState, control: &mut ControlLayer,
 
    sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, consensus: &mut Consensus
 
) -> CompScheduling {
 
    debug_assert_eq!(exec_state.mode, CompMode::StartExit);
 
    sched_ctx.log("Component starting exit");
 
    exec_state.mode = CompMode::BusyExit;
 
    let exit_inside_sync = exec_state.exit_reason.is_in_sync();
 

	
 
    // If exiting while inside sync mode, report to the leader of the current
 
    // round that we've failed.
 
    if exit_inside_sync {
 
        let decision = consensus.notify_sync_end_failure(sched_ctx, comp_ctx);
 
        default_handle_sync_decision(sched_ctx, exec_state, comp_ctx, decision, consensus);
 
    }
 

	
 
    // Iterating over ports by index to work around borrowing rules
 
    for port_index in 0..comp_ctx.num_ports() {
 
        let port = comp_ctx.get_port_by_index_mut(port_index);
 
        if port.state == PortState::Closed {
 
        if port.state == PortState::Closed || port.close_at_sync_end {
 
            // Already closed, or in the process of being closed
 
            continue;
 
        }
 

	
 
        // Mark as closed
 
        let port_id = port.self_id;
 
        port.state = PortState::Closed;
 

	
 
        // Notify peer of closing
 
        let port_handle = comp_ctx.get_port_handle(port_id);
 
        let (peer, message) = control.initiate_port_closing(port_handle, exit_inside_sync, comp_ctx);
 
        let peer_info = comp_ctx.get_peer(peer);
 
        peer_info.handle.send_message(&sched_ctx.runtime, Message::Control(message), true);
 
    }
 

	
 
    return CompScheduling::Immediate; // to check if we can shut down immediately
 
}
 

	
 
/// Handles a component waiting until all peers are notified that it is quitting
 
/// (i.e. after calling `default_handle_start_exit`).
 
#[must_use]
 
pub(crate) fn default_handle_busy_exit(
 
    exec_state: &mut CompExecState, control: &ControlLayer,
 
    sched_ctx: &SchedulerCtx
 
) -> CompScheduling {
 
    debug_assert_eq!(exec_state.mode, CompMode::BusyExit);
 
    if control.has_acks_remaining() {
 
        sched_ctx.log("Component busy exiting, still has `Ack`s remaining");
 
        return CompScheduling::Sleep;
 
    } else {
 
        sched_ctx.log("Component busy exiting, now shutting down");
 
        exec_state.mode = CompMode::Exit;
 
        return CompScheduling::Exit;
 
    }
 
}
 

	
 
/// Handles a potential synchronous round decision. If there was a decision then
 
/// the `Some(success)` value indicates whether the round succeeded or not.
 
/// Might also end up changing the `ExecState`.
 
///
 
/// Might be called in two cases:
 
/// 1. The component is in regular execution mode, at the end of a sync round,
 
///     and is waiting for a solution to the round.
 
/// 2. The component has encountered an error during a sync round and is
 
///     exiting, hence is waiting for a "Failure" message from the leader.
 
pub(crate) fn default_handle_sync_decision(
 
    sched_ctx: &SchedulerCtx, exec_state: &mut CompExecState, comp_ctx: &mut CompCtx,
 
    decision: SyncRoundDecision, consensus: &mut Consensus
 
) -> Option<bool> {
 
    let success = match decision {
 
        SyncRoundDecision::None => return None,
 
        SyncRoundDecision::Solution => true,
 
        SyncRoundDecision::Failure => false,
 
    };
 

	
 
    debug_assert!(
 
        exec_state.mode == CompMode::SyncEnd || (
 
            exec_state.mode.is_busy_exiting() && exec_state.exit_reason.is_error()
 
        ) || (
 
            exec_state.mode.is_in_sync_block() && decision == SyncRoundDecision::Failure
 
        )
 
    );
 

	
 
    sched_ctx.log(&format!("Handling decision {:?} (in mode: {:?})", decision, exec_state.mode));
 
    consensus.notify_sync_decision(decision);
 
    if success {
 
        // We cannot get a success message if the component has encountered an
 
        // error.
 
        for port_index in 0..comp_ctx.num_ports() {
 
            let port_info = comp_ctx.get_port_by_index_mut(port_index);
 
            if port_info.close_at_sync_end {
 
                port_info.state = PortState::Closed;
 
            }
 
        }
 
        debug_assert_eq!(exec_state.mode, CompMode::SyncEnd);
 
        exec_state.mode = CompMode::NonSync;
 
        return Some(true);
 
    } else {
 
        // We may get failure both in all possible cases. But we should only
 
        // modify the execution state if we're not already in exit mode
 
        if !exec_state.mode.is_busy_exiting() {
 
            sched_ctx.error("failed synchronous round, initiating exit");
 
            exec_state.set_as_start_exit(ExitReason::ErrorNonSync);
 
        }
 
        return Some(false);
 
    }
 
}
 

	
 
/// Performs the default action of printing the provided error, and then putting
 
/// the component in the state where it will shut down. Only to be used for
 
/// builtin components: their error message construction is simpler (and more
 
/// common) as they don't have any source code.
 
pub(crate) fn default_handle_error_for_builtin(
 
    exec_state: &mut CompExecState, sched_ctx: &SchedulerCtx,
 
    location_and_message: (PortInstruction, String)
 
) {
src/runtime2/component/consensus.rs
Show inline comments
 
@@ -229,427 +229,433 @@ impl SolutionCombiner {
 
        return Some(
 
            !putter.failed &&
 
            !getter.failed &&
 
            putter.mapping == getter.mapping
 
        );
 
    }
 

	
 
    /// Determines the global solution if all components have contributed their
 
    /// local solutions.
 
    fn update_solution(&mut self) {
 
        if self.matched_channels == self.solution.channel_mapping.len() {
 
            if self.solution.decision != SyncRoundDecision::Failure {
 
                self.solution.decision = SyncRoundDecision::Solution;
 
            }
 
        }
 
    }
 
}
 

	
 
/// Tracking consensus state
 
pub struct Consensus {
 
    // General state of consensus manager
 
    mapping_counter: u32,
 
    mode: Mode,
 
    // State associated with sync round
 
    round_index: u32,
 
    highest_id: CompId,
 
    ports: Vec<PortAnnotation>,
 
    // State associated with arriving at a solution and being a (temporary)
 
    // leader in the consensus round
 
    solution: SolutionCombiner,
 
}
 

	
 
impl Consensus {
 
    pub(crate) fn new() -> Self {
 
        return Self{
 
            round_index: 0,
 
            highest_id: CompId::new_invalid(),
 
            ports: Vec::new(),
 
            mapping_counter: 0,
 
            mode: Mode::NonSync,
 
            solution: SolutionCombiner::new(),
 
        }
 
    }
 

	
 
    // -------------------------------------------------------------------------
 
    // Managing sync state
 
    // -------------------------------------------------------------------------
 

	
 
    /// Notifies the consensus management that the PDL code has reached the
 
    /// start of a sync block.
 
    pub(crate) fn notify_sync_start(&mut self, comp_ctx: &CompCtx) {
 
        debug_assert_eq!(self.mode, Mode::NonSync);
 
        self.highest_id = comp_ctx.id;
 
        self.mapping_counter = 0;
 
        self.mode = Mode::SyncBusy;
 

	
 
        // Make the internally stored port annotation array consistent with the
 
        // ports that the component currently owns. They should match by index
 
        // (i.e. annotation at index `i` corresponds to port `i` in `comp_ctx`).
 
        let mut needs_setting_ports = false;
 
        if comp_ctx.num_ports() != self.ports.len() {
 
            needs_setting_ports = true;
 
        } else {
 
            for (idx, port) in comp_ctx.iter_ports().enumerate() {
 
                let comp_port_id = port.self_id;
 
                let cons_port_id = self.ports[idx].self_port_id;
 
                if comp_port_id != cons_port_id {
 
                    needs_setting_ports = true;
 
                    break;
 
                }
 
            }
 
        }
 

	
 
        if needs_setting_ports {
 
            // Reset all ports
 
            self.ports.clear();
 
            self.ports.reserve(comp_ctx.num_ports());
 
            for port in comp_ctx.iter_ports() {
 
                self.ports.push(PortAnnotation::new(comp_ctx.id, port.self_id, port.kind));
 
            }
 
        } else {
 
            // Make sure that we consider all peers as undiscovered again
 
            for annotation in self.ports.iter_mut() {
 
                annotation.peer_discovered = false;
 
            }
 
        }
 
    }
 

	
 
    /// Notifies the consensus management that the PDL code has reached the end
 
    /// of a sync block. A local solution will be submitted, after which we wait
 
    /// until the participants in the round (hopefully) reach a conclusion.
 
    pub(crate) fn notify_sync_end_success(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx) -> SyncRoundDecision {
 
        debug_assert_eq!(self.mode, Mode::SyncBusy);
 
        self.mode = Mode::SyncAwaitingSolution;
 

	
 
        let local_solution = self.generate_local_solution(comp_ctx, false);
 
        let decision = self.handle_local_solution(sched_ctx, comp_ctx, comp_ctx.id, local_solution);
 
        let decision = self.handle_local_solution(sched_ctx, comp_ctx, comp_ctx.id, local_solution, false);
 
        return decision;
 
    }
 

	
 
    /// Notifies the consensus management that the component has encountered a
 
    /// critical error during the synchronous round. Hence we should report that
 
    /// we've failed and wait until all the participants have been notified of
 
    /// the error.
 
    pub(crate) fn notify_sync_end_failure(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx) -> SyncRoundDecision {
 
        debug_assert_eq!(self.mode, Mode::SyncBusy);
 
        self.mode = Mode::SyncAwaitingSolution;
 

	
 
        let local_solution = self.generate_local_solution(comp_ctx, true);
 
        let decision = self.handle_local_solution(sched_ctx, comp_ctx, comp_ctx.id, local_solution);
 
        let decision = self.handle_local_solution(sched_ctx, comp_ctx, comp_ctx.id, local_solution, true);
 
        return decision;
 
    }
 

	
 
    /// Notifies that a decision has been reached. Note that the caller should
 
    /// still take the appropriate actions based on the decision it is supplying
 
    /// to the consensus layer.
 
    pub(crate) fn notify_sync_decision(&mut self, _decision: SyncRoundDecision) {
 
        // Reset everything for the next round
 
        debug_assert_eq!(self.mode, Mode::SyncAwaitingSolution);
 
        self.mode = Mode::NonSync;
 
        self.round_index = self.round_index.wrapping_add(1);
 

	
 
        for port in self.ports.iter_mut() {
 
            port.mapping = None;
 
        }
 

	
 
        self.solution.clear();
 
    }
 

	
 
    // -------------------------------------------------------------------------
 
    // Handling inbound and outbound messages
 
    // -------------------------------------------------------------------------
 

	
 
    /// Prepares a set of values to be sent of a channel.
 
    pub(crate) fn annotate_data_message(&mut self, comp_ctx: &CompCtx, port_info: &Port, content: ValueGroup) -> DataMessage {
 
        debug_assert_eq!(self.mode, Mode::SyncBusy); // can only send between sync start and sync end
 
        debug_assert!(self.ports.iter().any(|v| v.self_port_id == port_info.self_id));
 
        let data_header = self.create_data_header_and_update_mapping(port_info);
 
        let sync_header = self.create_sync_header(comp_ctx);
 

	
 
        return DataMessage{ data_header, sync_header, content };
 
    }
 

	
 
    /// Handles the arrival of a new data message (needs to be called for every
 
    /// new data message, even though it might not end up being received). This
 
    /// is used to determine peers of `get`ter ports.
 
    // TODO: The use of this function is rather ugly. Find a more robust
 
    //  scheme about owners of `get`ter ports not knowing about their peers.
 
    pub(crate) fn handle_incoming_data_message(&mut self, comp_ctx: &CompCtx, message: &DataMessage) {
 
        let target_handle = comp_ctx.get_port_handle(message.data_header.target_port);
 
        let target_index = comp_ctx.get_port_index(target_handle);
 
        let annotation = &mut self.ports[target_index];
 
        debug_assert!(
 
            !annotation.peer_discovered || (
 
                annotation.peer_comp_id == message.sync_header.sending_id &&
 
                annotation.peer_port_id == message.data_header.source_port
 
            )
 
        );
 
        annotation.peer_comp_id = message.sync_header.sending_id;
 
        annotation.peer_port_id = message.data_header.source_port;
 
        annotation.peer_discovered = true;
 
    }
 

	
 
    /// Checks if the data message can be received (due to port annotations), if
 
    /// it can then `true` is returned and the caller is responsible for handing
 
    /// the message of to the PDL code. Otherwise the message cannot be
 
    /// received.
 
    pub(crate) fn try_receive_data_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: &DataMessage) -> bool {
 
        debug_assert_eq!(self.mode, Mode::SyncBusy);
 
        debug_assert!(self.ports.iter().any(|v| v.self_port_id == message.data_header.target_port));
 

	
 
        // Make sure the expected mapping matches the currently stored mapping
 
        for (peer_port_kind, expected_annotation) in &message.data_header.expected_mapping {
 
            // Determine our annotation, in order to do so we need to find the
 
            // port matching the peer ports
 
            let mut self_annotation = None;
 
            let mut self_annotation_found = false;
 
            match peer_port_kind {
 
                PortAnnotationKind::Putter(peer_port) => {
 
                    for self_port in &self.ports {
 
                        if self_port.kind == PortKind::Getter &&
 
                            self_port.peer_discovered &&
 
                            self_port.peer_comp_id == peer_port.self_comp_id &&
 
                            self_port.peer_port_id == peer_port.self_port_id
 
                        {
 
                            self_annotation = self_port.mapping;
 
                            self_annotation_found = true;
 
                            break;
 
                        }
 
                    }
 
                },
 
                PortAnnotationKind::Getter(peer_port) => {
 
                    if peer_port.peer_comp_id == comp_ctx.id {
 
                        // Peer indicates that we talked to it
 
                        let self_port_handle = comp_ctx.get_port_handle(peer_port.peer_port_id);
 
                        let self_port_index = comp_ctx.get_port_index(self_port_handle);
 
                        self_annotation = self.ports[self_port_index].mapping;
 
                        self_annotation_found = true;
 
                    }
 
                }
 
            }
 

	
 
            if !self_annotation_found {
 
                continue
 
            }
 

	
 
            if self_annotation != *expected_annotation {
 
                return false;
 
            }
 
        }
 

	
 
        // Expected mapping matches current mapping, so we will receive the message
 
        self.set_annotation(message.sync_header.sending_id, &message.data_header);
 

	
 
        // Handle the sync header embedded within the data message
 
        self.handle_sync_header(sched_ctx, comp_ctx, &message.sync_header);
 

	
 
        return true;
 
    }
 

	
 
    /// Receives the sync message and updates the consensus state appropriately.
 
    pub(crate) fn receive_sync_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: SyncMessage) -> SyncRoundDecision {
 
        // Whatever happens: handle the sync header (possibly changing the
 
        // currently registered leader)
 
        self.handle_sync_header(sched_ctx, comp_ctx, &message.sync_header);
 

	
 
        match message.content {
 
            SyncMessageContent::NotificationOfLeader => {
 
                return SyncRoundDecision::None;
 
            },
 
            SyncMessageContent::LocalSolution(solution_generator_id, local_solution) => {
 
                return self.handle_local_solution(sched_ctx, comp_ctx, solution_generator_id, local_solution);
 
                return self.handle_local_solution(sched_ctx, comp_ctx, solution_generator_id, local_solution, false);
 
            },
 
            SyncMessageContent::PartialSolution(partial_solution) => {
 
                return self.handle_partial_solution(sched_ctx, comp_ctx, partial_solution);
 
            },
 
            SyncMessageContent::GlobalSolution => {
 
                debug_assert_eq!(self.mode, Mode::SyncAwaitingSolution); // leader can only find global- if we submitted local solution
 
                return SyncRoundDecision::Solution;
 
            },
 
            SyncMessageContent::GlobalFailure => {
 
                debug_assert_eq!(self.mode, Mode::SyncAwaitingSolution);
 
                return SyncRoundDecision::Failure;
 
            }
 
        }
 
    }
 

	
 
    fn handle_sync_header(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, header: &MessageSyncHeader) {
 
        if header.highest_id.0 > self.highest_id.0 {
 
            // Sender knows of someone with a higher ID. So store highest ID,
 
            // notify all peers, and forward local solutions
 
            self.highest_id = header.highest_id;
 
            for peer in comp_ctx.iter_peers() {
 
                if peer.id == header.sending_id {
 
                    continue; // do not send to sender: it has the higher ID
 
                }
 

	
 
                // also: only send if we received a message in this round
 
                let mut performed_communication = false; // TODO: Revise, temporary fix
 
                for port in self.ports.iter() {
 
                    if port.peer_comp_id == peer.id && port.mapping.is_some() {
 
                        performed_communication = true;
 
                        break;
 
                    }
 
                }
 

	
 
                if !performed_communication {
 
                    continue;
 
                }
 

	
 
                let message = SyncMessage{
 
                    sync_header: self.create_sync_header(comp_ctx),
 
                    content: SyncMessageContent::NotificationOfLeader,
 
                };
 
                peer.handle.send_message(&sched_ctx.runtime, Message::Sync(message), true);
 
            }
 

	
 
            self.forward_partial_solution(sched_ctx, comp_ctx);
 
        } else if header.highest_id.0 < self.highest_id.0 {
 
            // Sender has a lower ID, so notify it of our higher one
 
            let message = SyncMessage{
 
                sync_header: self.create_sync_header(comp_ctx),
 
                content: SyncMessageContent::NotificationOfLeader,
 
            };
 
            let peer_handle = comp_ctx.get_peer_handle(header.sending_id);
 
            let peer_info = comp_ctx.get_peer(peer_handle);
 
            peer_info.handle.send_message(&sched_ctx.runtime, Message::Sync(message), true);
 
        } // else: exactly equal
 
    }
 

	
 
    fn set_annotation(&mut self, source_comp_id: CompId, data_header: &MessageDataHeader) {
 
        for annotation in self.ports.iter_mut() {
 
            if annotation.self_port_id == data_header.target_port {
 
                // Message should have already passed the `handle_new_data_message` function, so we
 
                // should have already annotated the peer of the port.
 
                debug_assert!(
 
                    annotation.peer_discovered &&
 
                    annotation.peer_comp_id == source_comp_id &&
 
                    annotation.peer_port_id == data_header.source_port
 
                );
 
                annotation.mapping = Some(data_header.new_mapping);
 
            }
 
        }
 
    }
 

	
 
    // -------------------------------------------------------------------------
 
    // Leader-related methods
 
    // -------------------------------------------------------------------------
 

	
 
    fn forward_partial_solution(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx) {
 
        debug_assert_ne!(self.highest_id, comp_ctx.id); // not leader
 

	
 
        // Make sure that we have something to send
 
        if !self.solution.has_contributions() {
 
            return;
 
        }
 

	
 
        // Swap the container with the partial solution and then send it along
 
        let partial_solution = self.solution.take_partial_solution();
 
        self.send_to_leader(sched_ctx, comp_ctx, Message::Sync(SyncMessage{
 
            sync_header: self.create_sync_header(comp_ctx),
 
            content: SyncMessageContent::PartialSolution(partial_solution),
 
        }));
 
    }
 

	
 
    fn handle_local_solution(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx, solution_sender_id: CompId, solution: SyncLocalSolution) -> SyncRoundDecision {
 
    fn handle_local_solution(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx, solution_sender_id: CompId, solution: SyncLocalSolution, fail_if_empty: bool) -> SyncRoundDecision {
 
        if self.highest_id == comp_ctx.id {
 
            // We are the leader
 
            self.solution.combine_with_local_solution(solution_sender_id, solution);
 
            let round_decision = self.solution.get_decision();
 
            let mut round_decision = self.solution.get_decision();
 
            if round_decision != SyncRoundDecision::None {
 
                if fail_if_empty && self.solution.matched_channels == 0 {
 
                    // TODO: Not sure about this, bit of a hack. Situation is that a component
 
                    //  cannot interact with other components, but it is in a sync round, and has
 
                    //  failed that sync round.
 
                    round_decision = SyncRoundDecision::Failure;
 
                }
 
                self.broadcast_decision(sched_ctx, comp_ctx, round_decision);
 
            }
 
            return round_decision;
 
        } else {
 
            // Forward the solution
 
            let message = SyncMessage{
 
                sync_header: self.create_sync_header(comp_ctx),
 
                content: SyncMessageContent::LocalSolution(solution_sender_id, solution),
 
            };
 
            self.send_to_leader(sched_ctx, comp_ctx, Message::Sync(message));
 
            return SyncRoundDecision::None;
 
        }
 
    }
 

	
 
    fn handle_partial_solution(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, solution: SyncPartialSolution) -> SyncRoundDecision {
 
        if self.highest_id == comp_ctx.id {
 
            // We are the leader, combine existing and new solution
 
            self.solution.combine_with_partial_solution(solution);
 
            let round_decision = self.solution.get_decision();
 
            if round_decision != SyncRoundDecision::None {
 
                self.broadcast_decision(sched_ctx, comp_ctx, round_decision);
 
            }
 
            return round_decision;
 
        } else {
 
            // Forward the partial solution
 
            let message = SyncMessage{
 
                sync_header: self.create_sync_header(comp_ctx),
 
                content: SyncMessageContent::PartialSolution(solution),
 
            };
 
            self.send_to_leader(sched_ctx, comp_ctx, Message::Sync(message));
 
            return SyncRoundDecision::None;
 
        }
 
    }
 

	
 
    fn broadcast_decision(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx, decision: SyncRoundDecision) {
 
        debug_assert_eq!(self.highest_id, comp_ctx.id);
 

	
 
        let is_success = match decision {
 
            SyncRoundDecision::None => unreachable!(),
 
            SyncRoundDecision::Solution => true,
 
            SyncRoundDecision::Failure => false,
 
        };
 

	
 
        let mut peers = Vec::with_capacity(self.solution.solution.channel_mapping.len()); // TODO: @Performance
 

	
 
        for channel in self.solution.solution.channel_mapping.iter() {
 
            let getter = channel.getter.as_ref().unwrap();
 
            if getter.self_comp_id != comp_ctx.id && !peers.contains(&getter.self_comp_id) {
 
                peers.push(getter.self_comp_id);
 
            }
 
            if getter.peer_comp_id != comp_ctx.id && !peers.contains(&getter.peer_comp_id) {
 
                peers.push(getter.peer_comp_id);
 
            }
 
        }
 

	
 
        for peer in peers {
 
            let mut handle = sched_ctx.runtime.get_component_public(peer);
 
            let message = Message::Sync(SyncMessage{
 
                sync_header: self.create_sync_header(comp_ctx),
 
                content: if is_success { SyncMessageContent::GlobalSolution } else { SyncMessageContent::GlobalFailure },
 
            });
 
            handle.send_message(&sched_ctx.runtime, message, true);
 
            let _should_remove = handle.decrement_users();
 
            debug_assert!(_should_remove.is_none());
 
        }
 
    }
 

	
 
    fn send_to_leader(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &CompCtx, message: Message) {
 
        debug_assert_ne!(self.highest_id, comp_ctx.id); // we're not the leader, // TODO: @NoDirectHandle
 
        let mut leader_info = sched_ctx.runtime.get_component_public(self.highest_id);
 
        leader_info.send_message(&sched_ctx.runtime, message, true);
 
        let should_remove = leader_info.decrement_users();
 
        if let Some(key) = should_remove {
 
            sched_ctx.runtime.destroy_component(key);
 
        }
 
    }
 

	
 
    // -------------------------------------------------------------------------
 
    // Small utilities
 
    // -------------------------------------------------------------------------
 

	
 
    fn generate_local_solution(&self, comp_ctx: &CompCtx, failed: bool) -> SyncLocalSolution {
 
        let mut local_solution = Vec::with_capacity(self.ports.len());
 
        for port in &self.ports {
 
            if let Some(mapping) = port.mapping {
 
                let port_handle = comp_ctx.get_port_handle(port.self_port_id);
 
                let port_info = comp_ctx.get_port(port_handle);
 
                let new_entry = match port_info.kind {
 
                    PortKind::Putter => SyncLocalSolutionEntry::Putter(SyncSolutionPutterPort{
 
                        self_comp_id: comp_ctx.id,
 
                        self_port_id: port_info.self_id,
 
                        mapping,
 
                        failed
 
                    }),
 
                    PortKind::Getter => SyncLocalSolutionEntry::Getter(SyncSolutionGetterPort{
 
                        self_comp_id: comp_ctx.id,
0 comments (0 inline, 0 general)