Changeset - 2172aad13244
[Not reviewed]
0 2 0
mh - 3 years ago 2022-02-12 13:58:18
contact@maxhenger.nl
Determine variable stack offsets after AST rewriting
2 files changed with 82 insertions and 66 deletions:
0 comments (0 inline, 0 general)
src/protocol/parser/pass_stack_size.rs
Show inline comments
 
use crate::collections::*;
 
use crate::protocol::*;
 

	
 
use super::visitor::*;
 

	
 
// Will get a rename. Will probably become bytecode emitter or something. For
 
// now it just scans the scopes and assigns a unique number for each variable
 
// such that, at any point in the program's execution, all accessible in-scope
 
// variables will have a unique position "on the stack".
 
pub(crate) struct PassStackSize {
 
    definition_buffer: ScopedBuffer<DefinitionId>,
 
    variable_buffer: ScopedBuffer<VariableId>,
 
    scope_buffer: ScopedBuffer<ScopeId>,
 
}
 

	
 
impl PassStackSize {
 
    pub(crate) fn new() -> Self {
 
        return Self{
 
            definition_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_LARGE),
 
            variable_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
 
            scope_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
 
        }
 
    }
 
}
 

	
 
impl Visitor for PassStackSize {
 
    // Top level visitors
 

	
 
    fn visit_module(&mut self, ctx: &mut Ctx) -> VisitorResult {
 
        let module = ctx.module();
 
        debug_assert_eq!(module.phase, ModuleCompilationPhase::Rewritten);
 

	
 
        let root_id = module.root_id;
 
        let root = &ctx.heap[root_id];
 
        let definition_section = self.definition_buffer.start_section_initialized(&root.definitions);
 
        for definition_index in 0..definition_section.len() {
 
            let definition_id = definition_section[definition_index];
 
            self.visit_definition(ctx, definition_id)?
 
        }
 

	
 
        definition_section.forget();
 
        // ctx.module_mut().phase = ModuleCompilationPhase::StackSizeStuffAndStuff;
 
        return Ok(())
 
    }
 

	
 
    fn visit_function_definition(&mut self, ctx: &mut Ctx, id: FunctionDefinitionId) -> VisitorResult {
 
        let definition = &ctx.heap[id];
 
        let scope_id = definition.scope;
 

	
 
        self.visit_scope_and_assign_local_ids(ctx, scope_id, 0);
 
        return Ok(())
 
    }
 

	
 
    fn visit_component_definition(&mut self, ctx: &mut Ctx, id: ComponentDefinitionId) -> VisitorResult {
 
        let definition = &ctx.heap[id];
 
        let scope_id = definition.scope;
 

	
 
        self.visit_scope_and_assign_local_ids(ctx, scope_id, 0);
 
        return Ok(())
 
    }
 
}
 

	
 
impl PassStackSize {
 
    fn visit_scope_and_assign_local_ids(&mut self, ctx: &mut Ctx, scope_id: ScopeId, mut variable_counter: i32) {
 
        let scope = &mut ctx.heap[scope_id];
 
        scope.first_unique_id_in_scope = variable_counter;
 

	
 
        let variable_section = self.variable_buffer.start_section_initialized(&scope.variables);
 
        let child_scope_section = self.scope_buffer.start_section_initialized(&scope.nested);
 

	
 
        let mut variable_index = 0;
 
        let mut child_scope_index = 0;
 

	
 
        loop {
 
            // Determine relative positions of variable and scope to determine
 
            // which one occurs first within the current scope.
 
            let variable_relative_pos;
 
            if variable_index < variable_section.len() {
 
                let variable_id = variable_section[variable_index];
 
                let variable = &ctx.heap[variable_id];
 
                variable_relative_pos = variable.relative_pos_in_parent;
 
            } else {
 
                variable_relative_pos = i32::MAX;
 
            }
 

	
 
            let child_scope_relative_pos;
 
            if child_scope_index < child_scope_section.len() {
 
                let child_scope_id = child_scope_section[child_scope_index];
 
                let child_scope = &ctx.heap[child_scope_id];
 
                child_scope_relative_pos = child_scope.relative_pos_in_parent;
 
            } else {
 
                child_scope_relative_pos = i32::MAX;
 
            }
 

	
 
            if variable_relative_pos == i32::MAX && child_scope_relative_pos == i32::MAX {
 
                // Done, no more elements in the scope to consider
 
                break;
 
            }
 

	
 
            // Label the variable/scope, whichever comes first.
 
            if variable_relative_pos <= child_scope_relative_pos {
 
                debug_assert_ne!(variable_relative_pos, child_scope_relative_pos, "checking if this ever happens");
 
                let variable = &mut ctx.heap[variable_section[variable_index]];
 
                variable.unique_id_in_scope = variable_counter;
 
                variable_counter += 1;
 
                variable_index += 1;
 
            } else {
 
                let child_scope_id = child_scope_section[child_scope_index];
 
                self.visit_scope_and_assign_local_ids(ctx, child_scope_id, variable_counter);
 
                child_scope_index += 1;
 
            }
 
        }
 

	
 
        variable_section.forget();
 
        child_scope_section.forget();
 

	
 
        let scope = &mut ctx.heap[scope_id];
 
        scope.next_unique_id_in_scope = variable_counter;
 
    }
 
}
 
\ No newline at end of file
src/protocol/parser/pass_validation_linking.rs
Show inline comments
 
/*
 
 * pass_validation_linking.rs
 
 *
 
 * The pass that will validate properties of the AST statements (one is not
 
 * allowed to nest synchronous statements, instantiating components occurs in
 
 * the right places, etc.) and expressions (assignments may not occur in
 
 * arbitrary expressions).
 
 *
 
 * Furthermore, this pass will also perform "linking", in the sense of: some AST
 
 * nodes have something to do with one another, so we link them up in this pass
 
 * (e.g. setting the parents of expressions, linking the control flow statements
 
 * like `continue` and `break` up to the respective loop statement, etc.).
 
 *
 
 * There are several "confusing" parts about this pass:
 
 *
 
 * Setting expression parents: this is the simplest one. The pass struct acts
 
 * like a little state machine. When visiting an expression it will set the
 
 * "parent expression" field of the pass to itself, then visit its child. The
 
 * child will look at this "parent expression" field to determine its parent.
 
 *
 
 * Setting the `next` statement: the AST is a tree, but during execution we walk
 
 * a linear path through all statements. So where appropriate a statement may
 
 * set the "previous statement" field of the pass to itself. When visiting the
 
 * subsequent statement it will check this "previous statement", and if set, it
 
 * will link this previous statement up to itself. Not every statement has a
 
 * previous statement. Hence there are two patterns that occur: assigning the
 
 * `next` value, then clearing the "previous statement" field. And assigning the
 
 * `next` value, and then putting the current statement's ID in the "previous
 
 * statement" field. Because it is so common, this file contain two macros that
 
 * perform that operation.
 
 *
 
 * To make storing types for polymorphic procedures simpler and more efficient,
 
 * we assign to each expression in the procedure a unique ID. This is what the
 
 * "next expression index" field achieves. Each expression simply takes the
 
 * current value, and then increments this counter.
 
 */
 

	
 
use crate::collections::{ScopedBuffer};
 
use crate::protocol::ast::*;
 
use crate::protocol::input_source::*;
 
use crate::protocol::parser::symbol_table::*;
 
use crate::protocol::parser::type_table::*;
 

	
 
use super::visitor::{
 
    BUFFER_INIT_CAP_SMALL,
 
    BUFFER_INIT_CAP_LARGE,
 
    Ctx,
 
    Visitor,
 
    VisitorResult
 
};
 
use crate::protocol::parser::ModuleCompilationPhase;
 

	
 
#[derive(PartialEq, Eq)]
 
enum DefinitionType {
 
    Primitive(ComponentDefinitionId),
 
    Composite(ComponentDefinitionId),
 
    Function(FunctionDefinitionId)
 
}
 

	
 
impl DefinitionType {
 
    fn is_primitive(&self) -> bool { if let Self::Primitive(_) = self { true } else { false } }
 
    fn is_composite(&self) -> bool { if let Self::Composite(_) = self { true } else { false } }
 
    fn is_function(&self) -> bool { if let Self::Function(_) = self { true } else { false } }
 
    fn definition_id(&self) -> DefinitionId {
 
        match self {
 
            DefinitionType::Primitive(v) => v.upcast(),
 
            DefinitionType::Composite(v) => v.upcast(),
 
            DefinitionType::Function(v) => v.upcast(),
 
        }
 
    }
 
}
 

	
 
struct ControlFlowStatement {
 
    in_sync: SynchronousStatementId,
 
    in_while: WhileStatementId,
 
    in_scope: ScopeId,
 
    statement: StatementId, // of 'break', 'continue' or 'goto'
 
}
 

	
 
/// This particular visitor will go through the entire AST in a recursive manner
 
/// and check if all statements and expressions are legal (e.g. no "return"
 
/// statements in component definitions), and will link certain AST nodes to
 
/// their appropriate targets (e.g. goto statements, or function calls).
 
///
 
/// This visitor will not perform control-flow analysis (e.g. making sure that
 
/// each function actually returns) and will also not perform type checking. So
 
/// the linking of function calls and component instantiations will be checked
 
/// and linked to the appropriate definitions, but the return types and/or
 
/// arguments will not be checked for validity.
 
///
 
/// The main idea is, because we're visiting nodes in a tree, to do as much as
 
/// we can while we have the memory in cache.
 
pub(crate) struct PassValidationLinking {
 
    // Traversal state, all valid IDs if inside a certain AST element. Otherwise
 
    // `id.is_invalid()` returns true.
 
    in_sync: SynchronousStatementId,
 
    in_while: WhileStatementId, // to resolve labeled continue/break
 
    in_select_guard: SelectStatementId, // for detection/rejection of builtin calls
 
    in_select_arm: u32,
 
    in_test_expr: StatementId, // wrapping if/while stmt id
 
    in_binding_expr: BindingExpressionId, // to resolve variable expressions
 
    in_binding_expr_lhs: bool,
 
    // Traversal state, current scope (which can be used to find the parent
 
    // scope) and the definition variant we are considering.
 
    cur_scope: ScopeId,
 
    def_type: DefinitionType,
 
    // "Trailing" traversal state, set be child/prev stmt/expr used by next one
 
    prev_stmt: StatementId,
 
    expr_parent: ExpressionParent,
 
    // Set by parent to indicate that child expression must be assignable. The
 
    // child will throw an error if it is not assignable. The stored span is
 
    // used for the error's position
 
    must_be_assignable: Option<InputSpan>,
 
    // Keeping track of relative positions and unique IDs.
 
    relative_pos_in_parent: i32, // of statements: to determine when variables are visible
 
    next_expr_index: i32, // to arrive at a unique ID for all expressions within a definition
 
    // Control flow statements that require label resolving
 
    control_flow_stmts: Vec<ControlFlowStatement>,
 
    // Various temporary buffers for traversal. Essentially working around
 
    // Rust's borrowing rules since it cannot understand we're modifying AST
 
    // members but not the AST container.
 
    variable_buffer: ScopedBuffer<VariableId>,
 
    definition_buffer: ScopedBuffer<DefinitionId>,
 
    statement_buffer: ScopedBuffer<StatementId>,
 
    expression_buffer: ScopedBuffer<ExpressionId>,
 
    scope_buffer: ScopedBuffer<ScopeId>,
 
}
 

	
 
impl PassValidationLinking {
 
    pub(crate) fn new() -> Self {
 
        Self{
 
            in_sync: SynchronousStatementId::new_invalid(),
 
            in_while: WhileStatementId::new_invalid(),
 
            in_select_guard: SelectStatementId::new_invalid(),
 
            in_select_arm: 0,
 
            in_test_expr: StatementId::new_invalid(),
 
            in_binding_expr: BindingExpressionId::new_invalid(),
 
            in_binding_expr_lhs: false,
 
            cur_scope: ScopeId::new_invalid(),
 
            prev_stmt: StatementId::new_invalid(),
 
            expr_parent: ExpressionParent::None,
 
            def_type: DefinitionType::Function(FunctionDefinitionId::new_invalid()),
 
            must_be_assignable: None,
 
            relative_pos_in_parent: 0,
 
            next_expr_index: 0,
 
            control_flow_stmts: Vec::with_capacity(BUFFER_INIT_CAP_SMALL),
 
            variable_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
 
            definition_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
 
            statement_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_LARGE),
 
            expression_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_LARGE),
 
            scope_buffer: ScopedBuffer::with_capacity(BUFFER_INIT_CAP_SMALL),
 
        }
 
    }
 

	
 
    fn reset_state(&mut self) {
 
        self.in_sync = SynchronousStatementId::new_invalid();
 
        self.in_while = WhileStatementId::new_invalid();
 
        self.in_select_guard = SelectStatementId::new_invalid();
 
        self.in_test_expr = StatementId::new_invalid();
 
        self.in_binding_expr = BindingExpressionId::new_invalid();
 
        self.in_binding_expr_lhs = false;
 
        self.cur_scope = ScopeId::new_invalid();
 
        self.def_type = DefinitionType::Function(FunctionDefinitionId::new_invalid());
 
        self.prev_stmt = StatementId::new_invalid();
 
        self.expr_parent = ExpressionParent::None;
 
        self.must_be_assignable = None;
 
        self.relative_pos_in_parent = 0;
 
        self.next_expr_index = 0;
 
        self.control_flow_stmts.clear();
 
    }
 
}
 

	
 
macro_rules! assign_then_erase_next_stmt {
 
    ($self:ident, $ctx:ident, $stmt_id:expr) => {
 
        if !$self.prev_stmt.is_invalid() {
 
            $ctx.heap[$self.prev_stmt].link_next($stmt_id);
 
            $self.prev_stmt = StatementId::new_invalid();
 
        }
 
    }
 
}
 

	
 
macro_rules! assign_and_replace_next_stmt {
 
    ($self:ident, $ctx:ident, $stmt_id:expr) => {
 
        if !$self.prev_stmt.is_invalid() {
 
            $ctx.heap[$self.prev_stmt].link_next($stmt_id);
 
        }
 
        $self.prev_stmt = $stmt_id;
 
    }
 
}
 

	
 
impl Visitor for PassValidationLinking {
 
    fn visit_module(&mut self, ctx: &mut Ctx) -> VisitorResult {
 
        debug_assert_eq!(ctx.module().phase, ModuleCompilationPhase::TypesAddedToTable);
 

	
 
        let root = &ctx.heap[ctx.module().root_id];
 
        let section = self.definition_buffer.start_section_initialized(&root.definitions);
 
        for definition_id in section.iter_copied() {
 
            self.visit_definition(ctx, definition_id)?;
 
        }
 
        section.forget();
 

	
 
        ctx.module_mut().phase = ModuleCompilationPhase::ValidatedAndLinked;
 
        Ok(())
 
    }
 
    //--------------------------------------------------------------------------
 
    // Definition visitors
 
    //--------------------------------------------------------------------------
 

	
 
    fn visit_component_definition(&mut self, ctx: &mut Ctx, id: ComponentDefinitionId) -> VisitorResult {
 
        self.reset_state();
 

	
 
        let definition = &ctx.heap[id];
 
        self.def_type = match &definition.variant {
 
            ComponentVariant::Primitive => DefinitionType::Primitive(id),
 
            ComponentVariant::Composite => DefinitionType::Composite(id),
 
        };
 
        self.expr_parent = ExpressionParent::None;
 

	
 
        // Visit parameters and assign a unique scope ID
 
        let definition_scope_id = definition.scope;
 
        let old_scope = self.push_scope(ctx, true, definition_scope_id);
 

	
 
        let definition = &ctx.heap[id];
 
        let body_id = definition.body;
 
        let section = self.variable_buffer.start_section_initialized(&definition.parameters);
 
        for variable_idx in 0..section.len() {
 
            let variable_id = section[variable_idx];
 
            self.checked_at_single_scope_add_local(ctx, self.cur_scope, -1, variable_id)?;
 
        }
 
        self.relative_pos_in_parent = section.len() as i32;
 

	
 
        section.forget();
 

	
 
        // Visit statements in component body
 
        self.visit_block_stmt(ctx, body_id)?;
 
        self.pop_scope(old_scope);
 

	
 
        // Assign total number of expressions and assign an in-block unique ID
 
        // to each of the locals in the procedure.
 
        let definition = &mut ctx.heap[id];
 
        let definition_scope = definition.scope;
 
        definition.num_expressions_in_body = self.next_expr_index;
 

	
 
        self.visit_scope_and_assign_local_ids(ctx, definition_scope, 0);
 
        self.resolve_pending_control_flow_targets(ctx)?;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_function_definition(&mut self, ctx: &mut Ctx, id: FunctionDefinitionId) -> VisitorResult {
 
        self.reset_state();
 

	
 
        // Set internal statement indices
 
        self.def_type = DefinitionType::Function(id);
 
        self.expr_parent = ExpressionParent::None;
 

	
 
        // Visit parameters and assign a unique scope ID
 
        let definition = &ctx.heap[id];
 
        let definition_scope_id = definition.scope;
 
        let old_scope = self.push_scope(ctx, true, definition_scope_id);
 

	
 
        let definition = &ctx.heap[id];
 
        let body_id = definition.body;
 
        let section = self.variable_buffer.start_section_initialized(&definition.parameters);
 
        for variable_idx in 0..section.len() {
 
            let variable_id = section[variable_idx];
 
            self.checked_at_single_scope_add_local(ctx, self.cur_scope, -1, variable_id)?;
 
        }
 
        section.forget();
 

	
 
        // Visit statements in function body
 
        self.visit_block_stmt(ctx, body_id)?;
 
        self.pop_scope(old_scope);
 

	
 
        // Assign total number of expressions and assign an in-block unique ID
 
        // to each of the locals in the procedure.
 
        let definition = &mut ctx.heap[id];
 
        let definition_scope = definition.scope;
 
        definition.num_expressions_in_body = self.next_expr_index;
 
        self.visit_scope_and_assign_local_ids(ctx, definition_scope, 0);
 

	
 
        self.resolve_pending_control_flow_targets(ctx)?;
 

	
 
        Ok(())
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Statement visitors
 
    //--------------------------------------------------------------------------
 

	
 
    fn visit_block_stmt(&mut self, ctx: &mut Ctx, id: BlockStatementId) -> VisitorResult {
 
        // Get end of block
 
        let block_stmt = &ctx.heap[id];
 
        let end_block_id = block_stmt.end_block;
 
        let scope_id = block_stmt.scope;
 

	
 
        // Traverse statements in block
 
        let statement_section = self.statement_buffer.start_section_initialized(&block_stmt.statements);
 
        let old_scope = self.push_scope(ctx, false, scope_id);
 
        assign_and_replace_next_stmt!(self, ctx, id.upcast());
 

	
 
        for stmt_idx in 0..statement_section.len() {
 
            self.relative_pos_in_parent = stmt_idx as i32;
 
            self.visit_stmt(ctx, statement_section[stmt_idx])?;
 
        }
 

	
 
        statement_section.forget();
 
        assign_and_replace_next_stmt!(self, ctx, end_block_id.upcast());
 

	
 
        self.pop_scope(old_scope);
 
        Ok(())
 
    }
 

	
 
    fn visit_local_memory_stmt(&mut self, ctx: &mut Ctx, id: MemoryStatementId) -> VisitorResult {
 
        let stmt = &ctx.heap[id];
 
        let expr_id = stmt.initial_expr;
 
        let variable_id = stmt.variable;
 

	
 
        self.checked_add_local(ctx, self.cur_scope, self.relative_pos_in_parent, variable_id)?;
 

	
 
        assign_and_replace_next_stmt!(self, ctx, id.upcast().upcast());
 
        debug_assert_eq!(self.expr_parent, ExpressionParent::None);
 
        self.expr_parent = ExpressionParent::Memory(id);
 
        self.visit_assignment_expr(ctx, expr_id)?;
 
        self.expr_parent = ExpressionParent::None;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_local_channel_stmt(&mut self, ctx: &mut Ctx, id: ChannelStatementId) -> VisitorResult {
 
        let stmt = &ctx.heap[id];
 
        let from_id = stmt.from;
 
        let to_id = stmt.to;
 

	
 
        self.checked_add_local(ctx, self.cur_scope, self.relative_pos_in_parent, from_id)?;
 
        self.checked_add_local(ctx, self.cur_scope, self.relative_pos_in_parent, to_id)?;
 

	
 
        assign_and_replace_next_stmt!(self, ctx, id.upcast().upcast());
 
        Ok(())
 
    }
 

	
 
    fn visit_labeled_stmt(&mut self, ctx: &mut Ctx, id: LabeledStatementId) -> VisitorResult {
 
        let stmt = &ctx.heap[id];
 
        let body_id = stmt.body;
 

	
 
        self.checked_add_label(ctx, self.relative_pos_in_parent, self.in_sync, id)?;
 

	
 
        self.visit_stmt(ctx, body_id)?;
 
        Ok(())
 
    }
 

	
 
    fn visit_if_stmt(&mut self, ctx: &mut Ctx, id: IfStatementId) -> VisitorResult {
 
        let if_stmt = &ctx.heap[id];
 
        let end_if_id = if_stmt.end_if;
 
        let test_expr_id = if_stmt.test;
 
        let true_case = if_stmt.true_case;
 
        let false_case = if_stmt.false_case;
 

	
 
        // Visit test expression
 
        debug_assert_eq!(self.expr_parent, ExpressionParent::None);
 
        debug_assert!(self.in_test_expr.is_invalid());
 

	
 
        self.in_test_expr = id.upcast();
 
        self.expr_parent = ExpressionParent::If(id);
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.in_test_expr = StatementId::new_invalid();
 

	
 
        self.expr_parent = ExpressionParent::None;
 

	
 
        // Visit true and false branch. Executor chooses next statement based on
 
        // test expression, not on if-statement itself. Hence the if statement
 
        // does not have a static subsequent statement.
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 
        let old_scope = self.push_scope(ctx, false, true_case.scope);
 
        self.visit_stmt(ctx, true_case.body)?;
 
        self.pop_scope(old_scope);
 
        assign_then_erase_next_stmt!(self, ctx, end_if_id.upcast());
 

	
 
        if let Some(false_case) = false_case {
 
            let old_scope = self.push_scope(ctx, false, false_case.scope);
 
            self.visit_stmt(ctx, false_case.body)?;
 
            self.pop_scope(old_scope);
 
            assign_then_erase_next_stmt!(self, ctx, end_if_id.upcast());
 
        }
 

	
 
        self.prev_stmt = end_if_id.upcast();
 
        Ok(())
 
    }
 

	
 
    fn visit_while_stmt(&mut self, ctx: &mut Ctx, id: WhileStatementId) -> VisitorResult {
 
        let stmt = &ctx.heap[id];
 
        let end_while_id = stmt.end_while;
 
        let test_expr_id = stmt.test;
 
        let body_stmt_id = stmt.body;
 
        let scope_id = stmt.scope;
 

	
 
        let old_while = self.in_while;
 
        self.in_while = id;
 

	
 
        // Visit test expression
 
        debug_assert_eq!(self.expr_parent, ExpressionParent::None);
 
        debug_assert!(self.in_test_expr.is_invalid());
 
        self.in_test_expr = id.upcast();
 
        self.expr_parent = ExpressionParent::While(id);
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.in_test_expr = StatementId::new_invalid();
 

	
 
        // Link up to body statement
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 

	
 
        self.expr_parent = ExpressionParent::None;
 
        let old_scope = self.push_scope(ctx, false, scope_id);
 
        self.visit_stmt(ctx, body_stmt_id)?;
 
        self.pop_scope(old_scope);
 
        self.in_while = old_while;
 

	
 
        // Link final entry in while's block statement back to the while. The
 
        // executor will go to the end-while statement if the test expression
 
        // is false, so put that in as the new previous stmt
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 
        self.prev_stmt = end_while_id.upcast();
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_break_stmt(&mut self, ctx: &mut Ctx, id: BreakStatementId) -> VisitorResult {
 
        self.control_flow_stmts.push(ControlFlowStatement{
 
            in_sync: self.in_sync,
 
            in_while: self.in_while,
 
            in_scope: self.cur_scope,
 
            statement: id.upcast()
 
        });
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_continue_stmt(&mut self, ctx: &mut Ctx, id: ContinueStatementId) -> VisitorResult {
 
        self.control_flow_stmts.push(ControlFlowStatement{
 
            in_sync: self.in_sync,
 
            in_while: self.in_while,
 
            in_scope: self.cur_scope,
 
            statement: id.upcast()
 
        });
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_synchronous_stmt(&mut self, ctx: &mut Ctx, id: SynchronousStatementId) -> VisitorResult {
 
        // Check for validity of synchronous statement
 
        let sync_stmt = &ctx.heap[id];
 
        let end_sync_id = sync_stmt.end_sync;
 
        let cur_sync_span = sync_stmt.span;
 
        let scope_id = sync_stmt.scope;
 

	
 
        if !self.in_sync.is_invalid() {
 
            // Nested synchronous statement
 
            let old_sync_span = ctx.heap[self.in_sync].span;
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, cur_sync_span, "Illegal nested synchronous statement"
 
            ).with_info_str_at_span(
 
                &ctx.module().source, old_sync_span, "It is nested in this synchronous statement"
 
            ));
 
        }
 

	
 
        if !self.def_type.is_primitive() {
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, cur_sync_span,
 
                "synchronous statements may only be used in primitive components"
 
            ));
 
        }
 

	
 
        // Synchronous statement implicitly moves to its block
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 

	
 
        // Visit block statement. Note that we explicitly push the scope here
 
        // (and the `visit_block_stmt` will also push, but without effect) to
 
        // ensure the scope contains the sync ID.
 
        let sync_body = ctx.heap[id].body;
 
        debug_assert!(self.in_sync.is_invalid());
 
        self.in_sync = id;
 
        let old_scope = self.push_scope(ctx, false, scope_id);
 
        self.visit_stmt(ctx, sync_body)?;
 
        self.pop_scope(old_scope);
 
        assign_and_replace_next_stmt!(self, ctx, end_sync_id.upcast());
 

	
 
        self.in_sync = SynchronousStatementId::new_invalid();
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_fork_stmt(&mut self, ctx: &mut Ctx, id: ForkStatementId) -> VisitorResult {
 
        let fork_stmt = &ctx.heap[id];
 
        let end_fork_id = fork_stmt.end_fork;
 
        let left_body_id = fork_stmt.left_body;
 
        let right_body_id = fork_stmt.right_body;
 

	
 
        // Fork statements may only occur inside sync blocks
 
        if self.in_sync.is_invalid() {
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, fork_stmt.span,
 
                "Forking may only occur inside sync blocks"
 
            ));
 
        }
 

	
 
        // Visit the respective bodies. Like the if statement, a fork statement
 
        // does not have a single static subsequent statement. It forks and then
 
        // each fork has a different next statement.
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 
        self.visit_stmt(ctx, left_body_id)?;
 
        assign_then_erase_next_stmt!(self, ctx, end_fork_id.upcast());
 

	
 
        if let Some(right_body_id) = right_body_id {
 
            self.visit_stmt(ctx, right_body_id)?;
 
            assign_then_erase_next_stmt!(self, ctx, end_fork_id.upcast());
 
        }
 

	
 
        self.prev_stmt = end_fork_id.upcast();
 
        Ok(())
 
    }
 

	
 
    fn visit_select_stmt(&mut self, ctx: &mut Ctx, id: SelectStatementId) -> VisitorResult {
 
        let select_stmt = &mut ctx.heap[id];
 
        select_stmt.relative_pos_in_parent = self.relative_pos_in_parent;
 
        self.relative_pos_in_parent += 1;
 

	
 
        let select_stmt = &ctx.heap[id];
 
        let end_select_id = select_stmt.end_select;
 

	
 
        // Select statements may only occur inside sync blocks
 
        if self.in_sync.is_invalid() {
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, select_stmt.span,
 
                "select statements may only occur inside sync blocks"
 
            ));
 
        }
 

	
 
        if !self.def_type.is_primitive() {
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, select_stmt.span,
 
                "select statements may only be used in primitive components"
 
            ));
 
        }
 

	
 
        // Visit the various arms in the select block
 
        let mut case_stmt_ids = self.statement_buffer.start_section();
 
        let mut case_scope_ids = self.scope_buffer.start_section();
 
        let num_cases = select_stmt.cases.len();
 
        for case in &select_stmt.cases {
 
            // We add them in pairs, so the subsequent for-loop retrieves in pairs
 
            case_stmt_ids.push(case.guard);
 
            case_stmt_ids.push(case.body);
 
            case_scope_ids.push(case.scope);
 
        }
 

	
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 

	
 
        for index in 0..num_cases {
 
            let base_index = 2 * index;
 
            let guard_id     = case_stmt_ids[base_index];
 
            let case_body_id = case_stmt_ids[base_index + 1];
 
            let case_scope_id = case_scope_ids[index];
 

	
 
            // The guard statement ends up belonging to the block statement
 
            // following the arm. The reason we parse it separately is to
 
            // extract all of the "get" calls.
 
            let old_scope = self.push_scope(ctx, false, case_scope_id);
 

	
 
            // Visit the guard of this arm
 
            debug_assert!(self.in_select_guard.is_invalid());
 
            self.in_select_guard = id;
 
            self.in_select_arm = index as u32;
 
            self.visit_stmt(ctx, guard_id)?;
 
            self.in_select_guard = SelectStatementId::new_invalid();
 

	
 
            // Visit the code associated with the guard
 
            self.relative_pos_in_parent += 1;
 
            self.visit_stmt(ctx, case_body_id)?;
 
            self.pop_scope(old_scope);
 

	
 
            // Link up last statement in block to EndSelect
 
            assign_then_erase_next_stmt!(self, ctx, end_select_id.upcast());
 
        }
 

	
 
        self.in_select_guard = SelectStatementId::new_invalid();
 
        self.prev_stmt = end_select_id.upcast();
 
        Ok(())
 
    }
 

	
 
    fn visit_return_stmt(&mut self, ctx: &mut Ctx, id: ReturnStatementId) -> VisitorResult {
 
        // Check if "return" occurs within a function
 
        let stmt = &ctx.heap[id];
 
        if !self.def_type.is_function() {
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, stmt.span,
 
                "return statements may only appear in function bodies"
 
            ));
 
        }
 

	
 
        // If here then we are within a function
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 
        debug_assert_eq!(self.expr_parent, ExpressionParent::None);
 
        debug_assert_eq!(ctx.heap[id].expressions.len(), 1);
 
        self.expr_parent = ExpressionParent::Return(id);
 
        self.visit_expr(ctx, ctx.heap[id].expressions[0])?;
 
        self.expr_parent = ExpressionParent::None;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_goto_stmt(&mut self, ctx: &mut Ctx, id: GotoStatementId) -> VisitorResult {
 
        self.control_flow_stmts.push(ControlFlowStatement{
 
            in_sync: self.in_sync,
 
            in_while: self.in_while,
 
            in_scope: self.cur_scope,
 
            statement: id.upcast(),
 
        });
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_new_stmt(&mut self, ctx: &mut Ctx, id: NewStatementId) -> VisitorResult {
 
        // Make sure the new statement occurs inside a composite component
 
        if !self.def_type.is_composite() {
 
            let new_stmt = &ctx.heap[id];
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, new_stmt.span,
 
                "instantiating components may only be done in composite components"
 
            ));
 
        }
 

	
 
        // Recurse into call expression (which will check the expression parent
 
        // to ensure that the "new" statment instantiates a component)
 
        let call_expr_id = ctx.heap[id].expression;
 

	
 
        assign_and_replace_next_stmt!(self, ctx, id.upcast());
 
        debug_assert_eq!(self.expr_parent, ExpressionParent::None);
 
        self.expr_parent = ExpressionParent::New(id);
 
        self.visit_call_expr(ctx, call_expr_id)?;
 
        self.expr_parent = ExpressionParent::None;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_expr_stmt(&mut self, ctx: &mut Ctx, id: ExpressionStatementId) -> VisitorResult {
 
        let expr_id = ctx.heap[id].expression;
 

	
 
        assign_and_replace_next_stmt!(self, ctx, id.upcast());
 
        debug_assert_eq!(self.expr_parent, ExpressionParent::None);
 
        self.expr_parent = ExpressionParent::ExpressionStmt(id);
 
        self.visit_expr(ctx, expr_id)?;
 
        self.expr_parent = ExpressionParent::None;
 

	
 
        Ok(())
 
    }
 

	
 

	
 
    //--------------------------------------------------------------------------
 
    // Expression visitors
 
    //--------------------------------------------------------------------------
 

	
 
    fn visit_assignment_expr(&mut self, ctx: &mut Ctx, id: AssignmentExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
@@ -1119,778 +1116,716 @@ impl Visitor for PassValidationLinking {
 
                        &ctx.module().source, literal.parser_type.full_span, format!(
 
                            "The variant '{}' of union '{}' expects {} embedded values, but {} were specified",
 
                            literal.variant.value.as_str(), ast_definition.identifier.value.as_str(),
 
                            union_variant.embedded.len(), literal.values.len()
 
                        ),
 
                    ))
 
                }
 

	
 
                // Traverse embedded values of union (if any) and evaluate the
 
                // polymorphic arguments
 
                let upcast_id = id.upcast();
 
                let mut expr_section = self.expression_buffer.start_section();
 
                for value in &literal.values {
 
                    expr_section.push(*value);
 
                }
 

	
 
                for expr_idx in 0..expr_section.len() {
 
                    let expr_id = expr_section[expr_idx];
 
                    self.expr_parent = ExpressionParent::Expression(upcast_id, expr_idx as u32);
 
                    self.visit_expr(ctx, expr_id)?;
 
                }
 

	
 
                expr_section.forget();
 
            },
 
            Literal::Array(literal) | Literal::Tuple(literal) => {
 
                // Visit all expressions in the array
 
                let upcast_id = id.upcast();
 
                let expr_section = self.expression_buffer.start_section_initialized(literal);
 
                for expr_idx in 0..expr_section.len() {
 
                    let expr_id = expr_section[expr_idx];
 
                    self.expr_parent = ExpressionParent::Expression(upcast_id, expr_idx as u32);
 
                    self.visit_expr(ctx, expr_id)?;
 
                }
 

	
 
                expr_section.forget();
 
            }
 
        }
 

	
 
        self.expr_parent = old_expr_parent;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_cast_expr(&mut self, ctx: &mut Ctx, id: CastExpressionId) -> VisitorResult {
 
        let cast_expr = &mut ctx.heap[id];
 

	
 
        if let Some(span) = self.must_be_assignable {
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, span, "cannot assign to the result from a cast expression"
 
            ))
 
        }
 

	
 
        let upcast_id = id.upcast();
 
        let old_expr_parent = self.expr_parent;
 
        cast_expr.parent = old_expr_parent;
 
        cast_expr.unique_id_in_definition = self.next_expr_index;
 
        self.next_expr_index += 1;
 

	
 
        // Recurse into the thing that we're casting
 
        self.expr_parent = ExpressionParent::Expression(upcast_id, 0);
 
        let subject_id = cast_expr.subject;
 
        self.visit_expr(ctx, subject_id)?;
 
        self.expr_parent = old_expr_parent;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_call_expr(&mut self, ctx: &mut Ctx, id: CallExpressionId) -> VisitorResult {
 
        let call_expr = &ctx.heap[id];
 

	
 
        if let Some(span) = self.must_be_assignable {
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, span, "cannot assign to the result from a call expression"
 
            ))
 
        }
 

	
 
        // Check whether the method is allowed to be called within the code's
 
        // context (in sync, definition type, etc.)
 
        let mut expecting_wrapping_new_stmt = false;
 
        let mut expecting_primitive_def = false;
 
        let mut expecting_wrapping_sync_stmt = false;
 
        let mut expecting_no_select_stmt = false;
 

	
 
        match call_expr.method {
 
            Method::Get => {
 
                expecting_primitive_def = true;
 
                expecting_wrapping_sync_stmt = true;
 
                if !self.in_select_guard.is_invalid() {
 
                    // In a select guard. Take the argument (i.e. the port we're
 
                    // retrieving from) and add it to the list of involved ports
 
                    // of the guard
 
                    if call_expr.arguments.len() == 1 {
 
                        // We're checking the number of arguments later, for now
 
                        // assume it is correct.
 
                        let argument = call_expr.arguments[0];
 
                        let select_stmt = &mut ctx.heap[self.in_select_guard];
 
                        let select_case = &mut select_stmt.cases[self.in_select_arm as usize];
 
                        select_case.involved_ports.push((id, argument));
 
                    }
 
                }
 
            },
 
            Method::Put => {
 
                expecting_primitive_def = true;
 
                expecting_wrapping_sync_stmt = true;
 
                expecting_no_select_stmt = true;
 
            },
 
            Method::Fires => {
 
                expecting_primitive_def = true;
 
                expecting_wrapping_sync_stmt = true;
 
            },
 
            Method::Create => {},
 
            Method::Length => {},
 
            Method::Assert => {
 
                expecting_wrapping_sync_stmt = true;
 
                expecting_no_select_stmt = true;
 
                if self.def_type.is_function() {
 
                    let call_span = call_expr.func_span;
 
                    return Err(ParseError::new_error_str_at_span(
 
                        &ctx.module().source, call_span,
 
                        "assert statement may only occur in components"
 
                    ));
 
                }
 
            },
 
            Method::Print => {},
 
            Method::SelectStart
 
            | Method::SelectRegisterCasePort
 
            | Method::SelectWait => unreachable!(), // not usable by programmer directly
 
            Method::UserFunction => {},
 
            Method::UserComponent => {
 
                expecting_wrapping_new_stmt = true;
 
            },
 
        }
 

	
 
        let call_expr = &mut ctx.heap[id];
 

	
 
        fn get_span_and_name<'a>(ctx: &'a Ctx, id: CallExpressionId) -> (InputSpan, String) {
 
            let call = &ctx.heap[id];
 
            let span = call.func_span;
 
            let name = String::from_utf8_lossy(ctx.module().source.section_at_span(span)).to_string();
 
            return (span, name);
 
        }
 
        if expecting_primitive_def {
 
            if !self.def_type.is_primitive() {
 
                let (call_span, func_name) = get_span_and_name(ctx, id);
 
                return Err(ParseError::new_error_at_span(
 
                    &ctx.module().source, call_span,
 
                    format!("a call to '{}' may only occur in primitive component definitions", func_name)
 
                ));
 
            }
 
        }
 

	
 
        if expecting_wrapping_sync_stmt {
 
            if self.in_sync.is_invalid() {
 
                let (call_span, func_name) = get_span_and_name(ctx, id);
 
                return Err(ParseError::new_error_at_span(
 
                    &ctx.module().source, call_span,
 
                    format!("a call to '{}' may only occur inside synchronous blocks", func_name)
 
                ))
 
            }
 
        }
 

	
 
        if expecting_no_select_stmt {
 
            if !self.in_select_guard.is_invalid() {
 
                let (call_span, func_name) = get_span_and_name(ctx, id);
 
                return Err(ParseError::new_error_at_span(
 
                    &ctx.module().source, call_span,
 
                    format!("a call to '{}' may not occur in a select statement's guard", func_name)
 
                ));
 
            }
 
        }
 

	
 
        if expecting_wrapping_new_stmt {
 
            if !self.expr_parent.is_new() {
 
                let call_span = call_expr.func_span;
 
                return Err(ParseError::new_error_str_at_span(
 
                    &ctx.module().source, call_span,
 
                    "cannot call a component, it can only be instantiated by using 'new'"
 
                ));
 
            }
 
        } else {
 
            if self.expr_parent.is_new() {
 
                let call_span = call_expr.func_span;
 
                return Err(ParseError::new_error_str_at_span(
 
                    &ctx.module().source, call_span,
 
                    "only components can be instantiated, this is a function"
 
                ));
 
            }
 
        }
 

	
 
        // Check the number of arguments
 
        let call_definition = ctx.types.get_base_definition(&call_expr.definition).unwrap();
 
        let num_expected_args = match &call_definition.definition {
 
            DefinedTypeVariant::Function(definition) => definition.arguments.len(),
 
            DefinedTypeVariant::Component(definition) => definition.arguments.len(),
 
            v => unreachable!("encountered {} type in call expression", v.type_class()),
 
        };
 

	
 
        let num_provided_args = call_expr.arguments.len();
 
        if num_provided_args != num_expected_args {
 
            let argument_text = if num_expected_args == 1 { "argument" } else { "arguments" };
 
            let call_span = call_expr.full_span;
 
            return Err(ParseError::new_error_at_span(
 
                &ctx.module().source, call_span, format!(
 
                    "expected {} {}, but {} were provided",
 
                    num_expected_args, argument_text, num_provided_args
 
                )
 
            ));
 
        }
 

	
 
        // Recurse into all of the arguments and set the expression's parent
 
        let upcast_id = id.upcast();
 

	
 
        let section = self.expression_buffer.start_section_initialized(&call_expr.arguments);
 
        let old_expr_parent = self.expr_parent;
 
        call_expr.parent = old_expr_parent;
 
        call_expr.unique_id_in_definition = self.next_expr_index;
 
        self.next_expr_index += 1;
 

	
 
        for arg_expr_idx in 0..section.len() {
 
            let arg_expr_id = section[arg_expr_idx];
 
            self.expr_parent = ExpressionParent::Expression(upcast_id, arg_expr_idx as u32);
 
            self.visit_expr(ctx, arg_expr_id)?;
 
        }
 

	
 
        section.forget();
 
        self.expr_parent = old_expr_parent;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_variable_expr(&mut self, ctx: &mut Ctx, id: VariableExpressionId) -> VisitorResult {
 
        let var_expr = &ctx.heap[id];
 

	
 
        // Check if declaration was already resolved (this occurs for the
 
        // variable expr that is on the LHS of the assignment expr that is
 
        // associated with a variable declaration)
 
        let mut variable_id = var_expr.declaration;
 
        let mut is_binding_target = false;
 

	
 
        // Otherwise try to find it
 
        if variable_id.is_none() {
 
            variable_id = self.find_variable(ctx, self.relative_pos_in_parent, &var_expr.identifier);
 
        }
 

	
 
        // Otherwise try to see if is a variable introduced by a binding expr
 
        let variable_id = if let Some(variable_id) = variable_id {
 
            variable_id
 
        } else {
 
            if self.in_binding_expr.is_invalid() || !self.in_binding_expr_lhs {
 
                return Err(ParseError::new_error_str_at_span(
 
                    &ctx.module().source, var_expr.identifier.span, "unresolved variable"
 
                ));
 
            }
 

	
 
            // This is a binding variable, but it may only appear in very
 
            // specific locations.
 
            let is_valid_binding = match self.expr_parent {
 
                ExpressionParent::Expression(expr_id, idx) => {
 
                    match &ctx.heap[expr_id] {
 
                        Expression::Binding(_binding_expr) => {
 
                            // Nested binding is disallowed, and because of
 
                            // the check above we know we're directly at the
 
                            // LHS of the binding expression
 
                            debug_assert_eq!(_binding_expr.this, self.in_binding_expr);
 
                            debug_assert_eq!(idx, 0);
 
                            true
 
                        }
 
                        Expression::Literal(lit_expr) => {
 
                            // Only struct, unions, tuples and arrays can
 
                            // have subexpressions, so we're always fine
 
                            if cfg!(debug_assertions) {
 
                                match lit_expr.value {
 
                                    Literal::Struct(_) | Literal::Union(_) | Literal::Array(_) | Literal::Tuple(_) => {},
 
                                    _ => unreachable!(),
 
                                }
 
                            }
 

	
 
                            true
 
                        },
 
                        _ => false,
 
                    }
 
                },
 
                _ => {
 
                    false
 
                }
 
            };
 

	
 
            if !is_valid_binding {
 
                let binding_expr = &ctx.heap[self.in_binding_expr];
 
                return Err(ParseError::new_error_str_at_span(
 
                    &ctx.module().source, var_expr.identifier.span,
 
                    "illegal location for binding variable: binding variables may only be nested under a binding expression, or a struct, union or array literal"
 
                ).with_info_at_span(
 
                    &ctx.module().source, binding_expr.operator_span, format!(
 
                        "'{}' was interpreted as a binding variable because the variable is not declared and it is nested under this binding expression",
 
                        var_expr.identifier.value.as_str()
 
                    )
 
                ));
 
            }
 

	
 
            // By now we know that this is a valid binding expression. Given
 
            // that a binding expression must be nested under an if/while
 
            // statement, we now add the variable to the scope associated with
 
            // that statement.
 
            let bound_identifier = var_expr.identifier.clone();
 
            let bound_variable_id = ctx.heap.alloc_variable(|this| Variable {
 
                this,
 
                kind: VariableKind::Binding,
 
                parser_type: ParserType {
 
                    elements: vec![ParserTypeElement {
 
                        element_span: bound_identifier.span,
 
                        variant: ParserTypeVariant::Inferred
 
                    }],
 
                    full_span: bound_identifier.span
 
                },
 
                identifier: bound_identifier,
 
                relative_pos_in_parent: 0,
 
                unique_id_in_scope: -1,
 
            });
 

	
 
            let scope_id = match &ctx.heap[self.in_test_expr] {
 
                Statement::If(stmt) => stmt.true_case.scope,
 
                Statement::While(stmt) => stmt.scope,
 
                _ => unreachable!(),
 
            };
 

	
 
            self.checked_at_single_scope_add_local(ctx, scope_id, -1, bound_variable_id)?; // add at -1 such that first statement can find the variable if needed
 

	
 
            is_binding_target = true;
 
            bound_variable_id
 
        };
 

	
 
        let var_expr = &mut ctx.heap[id];
 
        var_expr.declaration = Some(variable_id);
 
        var_expr.used_as_binding_target = is_binding_target;
 
        var_expr.parent = self.expr_parent;
 
        var_expr.unique_id_in_definition = self.next_expr_index;
 
        self.next_expr_index += 1;
 

	
 
        Ok(())
 
    }
 
}
 

	
 
impl PassValidationLinking {
 
    //--------------------------------------------------------------------------
 
    // Special traversal
 
    //--------------------------------------------------------------------------
 

	
 
    /// Pushes a new scope associated with a particular statement. If that
 
    /// statement already has an associated scope (i.e. scope associated with
 
    /// sync statement or select statement's arm) then we won't do anything.
 
    /// In all cases the caller must call `pop_statement_scope` with the scope
 
    /// and relative scope position returned by this function.
 
    fn push_scope(&mut self, ctx: &mut Ctx, is_top_level_scope: bool, pushed_scope_id: ScopeId) -> (ScopeId, i32) {
 
        // Set the properties of the pushed scope (it is already created during
 
        // AST construction, but most values are not yet set to their correct
 
        // values)
 
        let old_scope_id = self.cur_scope;
 

	
 
        let scope = &mut ctx.heap[pushed_scope_id];
 
        if !is_top_level_scope {
 
            scope.parent = Some(old_scope_id);
 
        }
 

	
 
        scope.relative_pos_in_parent = self.relative_pos_in_parent;
 
        let old_relative_pos = self.relative_pos_in_parent;
 
        self.relative_pos_in_parent = 0;
 

	
 
        // Link up scopes
 
        if !is_top_level_scope {
 
            let old_scope = &mut ctx.heap[old_scope_id];
 
            old_scope.nested.push(pushed_scope_id);
 
        }
 

	
 
        // Set as current traversal scope, then return old scope
 
        self.cur_scope = pushed_scope_id;
 
        return (old_scope_id, old_relative_pos)
 
    }
 

	
 
    fn pop_scope(&mut self, scope_to_restore: (ScopeId, i32)) {
 
        self.cur_scope = scope_to_restore.0;
 
        self.relative_pos_in_parent = scope_to_restore.1;
 
    }
 

	
 
    fn visit_scope_and_assign_local_ids(&mut self, ctx: &mut Ctx, scope_id: ScopeId, mut variable_counter: i32) {
 
        let scope = &mut ctx.heap[scope_id];
 
        scope.first_unique_id_in_scope = variable_counter;
 

	
 
        let variable_section = self.variable_buffer.start_section_initialized(&scope.variables);
 
        let child_scope_section = self.scope_buffer.start_section_initialized(&scope.nested);
 

	
 
        let mut variable_index = 0;
 
        let mut child_scope_index = 0;
 

	
 
        loop {
 
            // Determine relative positions of variable and scope to determine
 
            // which one occurs first within the current scope.
 
            let variable_relative_pos;
 
            if variable_index < variable_section.len() {
 
                let variable_id = variable_section[variable_index];
 
                let variable = &ctx.heap[variable_id];
 
                variable_relative_pos = variable.relative_pos_in_parent;
 
            } else {
 
                variable_relative_pos = i32::MAX;
 
            }
 

	
 
            let child_scope_relative_pos;
 
            if child_scope_index < child_scope_section.len() {
 
                let child_scope_id = child_scope_section[child_scope_index];
 
                let child_scope = &ctx.heap[child_scope_id];
 
                child_scope_relative_pos = child_scope.relative_pos_in_parent;
 
            } else {
 
                child_scope_relative_pos = i32::MAX;
 
            }
 

	
 
            if variable_relative_pos == i32::MAX && child_scope_relative_pos == i32::MAX {
 
                // Done, no more elements in the scope to consider
 
                break;
 
            }
 

	
 
            // Label the variable/scope, whichever comes first. When dealing
 
            // with binding variables, where both variable and scope are
 
            // considered to have the same position in the scope, we treat the
 
            // variable first.
 
            // TODO: Think about this some more, isn't it correct that we
 
            //  consider it part of the fresh scope? So we'll have to deal with
 
            //  the scope first, and add the variable to that scope?
 
            if variable_relative_pos <= child_scope_relative_pos {
 
                let variable = &mut ctx.heap[variable_section[variable_index]];
 
                variable.unique_id_in_scope = variable_counter;
 
                variable_counter += 1;
 
                variable_index += 1;
 
            } else {
 
                let child_scope_id = child_scope_section[child_scope_index];
 
                self.visit_scope_and_assign_local_ids(ctx, child_scope_id, variable_counter);
 
                child_scope_index += 1;
 
            }
 
        }
 

	
 
        variable_section.forget();
 
        child_scope_section.forget();
 

	
 
        let scope = &mut ctx.heap[scope_id];
 
        scope.next_unique_id_in_scope = variable_counter;
 
    }
 

	
 
    fn resolve_pending_control_flow_targets(&mut self, ctx: &mut Ctx) -> Result<(), ParseError> {
 
        for entry in &self.control_flow_stmts {
 
            let stmt = &ctx.heap[entry.statement];
 

	
 
            match stmt {
 
                Statement::Break(stmt) => {
 
                    let stmt_id = stmt.this;
 
                    let target_while_id = Self::resolve_break_or_continue_target(ctx, entry, stmt.span, &stmt.label)?;
 
                    let target_while_stmt = &ctx.heap[target_while_id];
 
                    let target_end_while_id = target_while_stmt.end_while;
 
                    debug_assert!(!target_end_while_id.is_invalid());
 

	
 
                    let break_stmt = &mut ctx.heap[stmt_id];
 
                    break_stmt.target = target_end_while_id;
 
                },
 
                Statement::Continue(stmt) => {
 
                    let stmt_id = stmt.this;
 
                    let target_while_id = Self::resolve_break_or_continue_target(ctx, entry, stmt.span, &stmt.label)?;
 

	
 
                    let continue_stmt = &mut ctx.heap[stmt_id];
 
                    continue_stmt.target = target_while_id;
 
                },
 
                Statement::Goto(stmt) => {
 
                    let stmt_id = stmt.this;
 
                    let target_id = Self::find_label(entry.in_scope, ctx, &stmt.label)?;
 
                    let target_stmt = &ctx.heap[target_id];
 
                    if entry.in_sync != target_stmt.in_sync {
 
                        // Nested sync not allowed. And goto can only go to
 
                        // outer scopes, so we must be escaping from a sync.
 
                        debug_assert!(target_stmt.in_sync.is_invalid());    // target not in sync
 
                        debug_assert!(!entry.in_sync.is_invalid()); // but the goto is in sync
 
                        let goto_stmt = &ctx.heap[stmt_id];
 
                        let sync_stmt = &ctx.heap[entry.in_sync];
 
                        return Err(
 
                            ParseError::new_error_str_at_span(&ctx.module().source, goto_stmt.span, "goto may not escape the surrounding synchronous block")
 
                            .with_info_str_at_span(&ctx.module().source, target_stmt.label.span, "this is the target of the goto statement")
 
                            .with_info_str_at_span(&ctx.module().source, sync_stmt.span, "which will jump past this statement")
 
                        );
 
                    }
 

	
 
                    let goto_stmt = &mut ctx.heap[stmt_id];
 
                    goto_stmt.target = target_id;
 
                },
 
                _ => unreachable!("cannot resolve control flow target for {:?}", stmt),
 
            }
 
        }
 

	
 
        return Ok(())
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Utilities
 
    //--------------------------------------------------------------------------
 

	
 
    /// Adds a local variable to the current scope. It will also annotate the
 
    /// `Local` in the AST with its relative position in the block.
 
    fn checked_add_local(&mut self, ctx: &mut Ctx, target_scope_id: ScopeId, target_relative_pos: i32, new_variable_id: VariableId) -> Result<(), ParseError> {
 
        let new_variable = &ctx.heap[new_variable_id];
 

	
 
        // We immediately go to the parent scope. We check the target scope
 
        // in the call at the end. That is also where we check for collisions
 
        // with symbols.
 
        let mut scope = &ctx.heap[target_scope_id];
 
        let mut cur_relative_pos = scope.relative_pos_in_parent;
 
        while let Some(scope_parent_id) = scope.parent {
 
            scope = &ctx.heap[scope_parent_id];
 

	
 
            // Check for collisions
 
            for variable_id in scope.variables.iter().copied() {
 
                let existing_variable = &ctx.heap[variable_id];
 
                if existing_variable.identifier == new_variable.identifier &&
 
                    existing_variable.this != new_variable_id &&
 
                    cur_relative_pos >= existing_variable.relative_pos_in_parent {
 
                    return Err(
 
                        ParseError::new_error_str_at_span(
 
                            &ctx.module().source, new_variable.identifier.span, "Local variable name conflicts with another variable"
 
                        ).with_info_str_at_span(
 
                            &ctx.module().source, existing_variable.identifier.span, "Previous variable is found here"
 
                        )
 
                    );
 
                }
 
            }
 

	
 
            cur_relative_pos = scope.relative_pos_in_parent;
 
        }
 

	
 
        // No collisions in any of the parent scope, attempt to add to scope
 
        self.checked_at_single_scope_add_local(ctx, target_scope_id, target_relative_pos, new_variable_id)
 
    }
 

	
 
    /// Adds a local variable to the specified scope. Will check the specified
 
    /// scope for variable conflicts and the symbol table for global conflicts.
 
    /// Will NOT check parent scopes of the specified scope.
 
    fn checked_at_single_scope_add_local(
 
        &mut self, ctx: &mut Ctx, scope_id: ScopeId, relative_pos: i32, new_variable_id: VariableId
 
    ) -> Result<(), ParseError> {
 
        // Check the symbol table for conflicts
 
        {
 
            let cur_scope = SymbolScope::Definition(self.def_type.definition_id());
 
            let ident = &ctx.heap[new_variable_id].identifier;
 
            if let Some(symbol) = ctx.symbols.get_symbol_by_name(cur_scope, &ident.value.as_bytes()) {
 
                return Err(ParseError::new_error_str_at_span(
 
                    &ctx.module().source, ident.span,
 
                    "local variable declaration conflicts with symbol"
 
                ).with_info_str_at_span(
 
                    &ctx.module().source, symbol.variant.span_of_introduction(&ctx.heap), "the conflicting symbol is introduced here"
 
                ));
 
            }
 
        }
 

	
 
        // Check the specified scope for conflicts
 
        let new_variable = &ctx.heap[new_variable_id];
 
        let scope = &ctx.heap[scope_id];
 

	
 
        for variable_id in scope.variables.iter().copied() {
 
            let old_variable = &ctx.heap[variable_id];
 
            if new_variable.this != old_variable.this &&
 
                // relative_pos >= other_local.relative_pos_in_block &&
 
                new_variable.identifier == old_variable.identifier {
 
                // Collision
 
                return Err(
 
                    ParseError::new_error_str_at_span(
 
                        &ctx.module().source, new_variable.identifier.span, "Local variable name conflicts with another variable"
 
                    ).with_info_str_at_span(
 
                        &ctx.module().source, old_variable.identifier.span, "Previous variable is found here"
 
                    )
 
                );
 
            }
 
        }
 

	
 
        // No collisions
 
        let scope = &mut ctx.heap[scope_id];
 
        scope.variables.push(new_variable_id);
 

	
 
        let variable = &mut ctx.heap[new_variable_id];
 
        variable.relative_pos_in_parent = relative_pos;
 

	
 
        Ok(())
 
    }
 

	
 
    /// Finds a variable in the visitor's scope that must appear before the
 
    /// specified relative position within that block.
 
    fn find_variable(&self, ctx: &Ctx, mut relative_pos: i32, identifier: &Identifier) -> Option<VariableId> {
 
        let mut scope_id = self.cur_scope;
 

	
 
        loop {
 
            // Check if we can find the variable in the current scope
 
            let scope = &ctx.heap[scope_id];
 
            
 
            for variable_id in scope.variables.iter().copied() {
 
                let variable = &ctx.heap[variable_id];
 
                
 
                if variable.relative_pos_in_parent < relative_pos && identifier == &variable.identifier {
 
                    return Some(variable_id);
 
                }
 
            }
 

	
 
            // Could not find variable, move to parent scope and try again
 
            if scope.parent.is_none() {
 
                return None;
 
            }
 

	
 
            scope_id = scope.parent.unwrap();
 
            relative_pos = scope.relative_pos_in_parent;
 
        }
 
    }
 

	
 
    /// Adds a particular label to the current scope. Will return an error if
 
    /// there is another label with the same name visible in the current scope.
 
    fn checked_add_label(&mut self, ctx: &mut Ctx, relative_pos: i32, in_sync: SynchronousStatementId, new_label_id: LabeledStatementId) -> Result<(), ParseError> {
 
        // Make sure label is not defined within the current scope or any of the
 
        // parent scope.
 
        let new_label = &mut ctx.heap[new_label_id];
 
        new_label.relative_pos_in_parent = relative_pos;
 
        new_label.in_sync = in_sync;
 

	
 
        let new_label = &ctx.heap[new_label_id];
 
        let mut scope_id = self.cur_scope;
 

	
 
        loop {
 
            let scope = &ctx.heap[scope_id];
 
            for existing_label_id in scope.labels.iter().copied() {
 
                let existing_label = &ctx.heap[existing_label_id];
 
                if existing_label.label == new_label.label {
 
                    // Collision
 
                    return Err(ParseError::new_error_str_at_span(
 
                        &ctx.module().source, new_label.label.span, "label name is used more than once"
 
                    ).with_info_str_at_span(
 
                        &ctx.module().source, existing_label.label.span, "the other label is found here"
 
                    ));
 
                }
 
            }
 

	
 
            if scope.parent.is_none() {
 
                break;
 
            }
 

	
 
            scope_id = scope.parent.unwrap();
 
        }
 

	
 
        // No collisions
 
        let scope = &mut ctx.heap[self.cur_scope];
 
        scope.labels.push(new_label_id);
 

	
 
        Ok(())
 
    }
 

	
 
    /// Finds a particular labeled statement by its identifier. Once found it
 
    /// will make sure that the target label does not skip over any variable
 
    /// declarations within the scope in which the label was found.
 
    fn find_label(mut scope_id: ScopeId, ctx: &Ctx, identifier: &Identifier) -> Result<LabeledStatementId, ParseError> {
 
        loop {
 
            let scope = &ctx.heap[scope_id];
 
            let relative_scope_pos = scope.relative_pos_in_parent;
 

	
 
            for label_id in scope.labels.iter().copied() {
 
                let label = &ctx.heap[label_id];
 
                if label.label == *identifier {
 
                    // Found the target label, now make sure that the jump to
 
                    // the label doesn't imply a skipped variable declaration
 
                    for variable_id in scope.variables.iter().copied() {
 
                        // TODO: Better to do this in control flow analysis, it
 
                        //  is legal to skip over a variable declaration if it
 
                        //  is not actually being used.
 
                        let variable = &ctx.heap[variable_id];
 
                        if variable.relative_pos_in_parent > relative_scope_pos && variable.relative_pos_in_parent < label.relative_pos_in_parent {
 
                            return Err(
 
                                ParseError::new_error_str_at_span(&ctx.module().source, identifier.span, "this target label skips over a variable declaration")
 
                                .with_info_str_at_span(&ctx.module().source, label.label.span, "because it jumps to this label")
 
                                .with_info_str_at_span(&ctx.module().source, variable.identifier.span, "which skips over this variable")
 
                            );
 
                        }
 
                    }
 
                    return Ok(label_id);
 
                }
 
            }
 

	
 
            if scope.parent.is_none() {
 
                return Err(ParseError::new_error_str_at_span(
 
                    &ctx.module().source, identifier.span, "could not find this label"
 
                ));
 
            }
 

	
 
            scope_id = scope.parent.unwrap();
 
        }
 
    }
 

	
 
    /// This function will check if the provided scope has a parent that belongs
 
    /// to a while statement.
 
    fn scope_is_nested_in_while_statement(mut scope_id: ScopeId, ctx: &Ctx, expected_while_id: WhileStatementId) -> bool {
 
        let while_stmt = &ctx.heap[expected_while_id];
 

	
 
        loop {
 
            let scope = &ctx.heap[scope_id];
 
            if scope.this == while_stmt.scope {
 
                return true;
 
            }
 

	
 
            match scope.parent {
 
                Some(new_scope_id) => scope_id = new_scope_id,
 
                None => return false, // walked all the way up, not encountering the while statement
 
            }
 
        }
 
    }
 

	
 
    /// This function should be called while dealing with break/continue
 
    /// statements. It will try to find the targeted while statement, using the
 
    /// target label if provided. If a valid target is found then the loop's
 
    /// ID will be returned, otherwise a parsing error is constructed.
 
    /// The provided input position should be the position of the break/continue
 
    /// statement.
 
    fn resolve_break_or_continue_target(ctx: &Ctx, control_flow: &ControlFlowStatement, span: InputSpan, label: &Option<Identifier>) -> Result<WhileStatementId, ParseError> {
 
        let target = match label {
 
            Some(label) => {
 
                let target_id = Self::find_label(control_flow.in_scope, ctx, label)?;
 

	
 
                // Make sure break target is a while statement
 
                let target = &ctx.heap[target_id];
 
                if let Statement::While(target_stmt) = &ctx.heap[target.body] {
 
                    // Even though we have a target while statement, the control
 
                    // flow statement might not be present underneath this
 
                    // particular labeled while statement.
 
                    if !Self::scope_is_nested_in_while_statement(control_flow.in_scope, ctx, target_stmt.this) {
 
                        return Err(ParseError::new_error_str_at_span(
 
                            &ctx.module().source, label.span, "break statement is not nested under the target label's while statement"
 
                        ).with_info_str_at_span(
 
                            &ctx.module().source, target.label.span, "the targeted label is found here"
 
                        ));
 
                    }
 

	
 
                    target_stmt.this
 
                } else {
 
                    return Err(ParseError::new_error_str_at_span(
 
                        &ctx.module().source, label.span, "incorrect break target label, it must target a while loop"
 
                    ).with_info_str_at_span(
 
                        &ctx.module().source, target.label.span, "The targeted label is found here"
 
                    ));
 
                }
 
            },
 
            None => {
 
                // Use the enclosing while statement, the break must be
 
                // nested within that while statement
 
                if control_flow.in_while.is_invalid() {
 
                    return Err(ParseError::new_error_str_at_span(
 
                        &ctx.module().source, span, "Break statement is not nested under a while loop"
 
                    ));
 
                }
 

	
 
                control_flow.in_while
 
            }
 
        };
 

	
 
        // We have a valid target for the break statement. But we need to
 
        // make sure we will not break out of a synchronous block
 
        {
 
            let target_while = &ctx.heap[target];
 
            if target_while.in_sync != control_flow.in_sync {
 
                // Break is nested under while statement, so can only escape a
 
                // sync block if the sync is nested inside the while statement.
 
                debug_assert!(!control_flow.in_sync.is_invalid());
 
                let sync_stmt = &ctx.heap[control_flow.in_sync];
 
                return Err(
 
                    ParseError::new_error_str_at_span(&ctx.module().source, span, "break may not escape the surrounding synchronous block")
 
                        .with_info_str_at_span(&ctx.module().source, target_while.span, "the break escapes out of this loop")
 
                        .with_info_str_at_span(&ctx.module().source, sync_stmt.span, "And would therefore escape this synchronous block")
 
                );
 
            }
 
        }
 

	
 
        Ok(target)
 
    }
 
}
 
\ No newline at end of file
0 comments (0 inline, 0 general)