Changeset - 28df9835906f
[Not reviewed]
0 10 0
MH - 4 years ago 2021-04-02 14:05:27
contact@maxhenger.nl
Reimplement namespaced identifier to support polymorphic args

This is somewhat of a temporary hack, as a namespaced identifier should
not really refer to types or polymorphic arguments. But we need a
tokenizer and a prepass to properly distinguish identifiers from types.
So it works, but error messages may be cryptic.
10 files changed with 374 insertions and 195 deletions:
0 comments (0 inline, 0 general)
src/protocol/ast.rs
Show inline comments
 
@@ -675,6 +675,7 @@ impl NamespacedIdentifierPart {
 
/// parsing phase (e.g. Foo<A,B>::Bar<C,D>::Qux). But in our current language 
 
/// implementation we can only have valid namespaced identifier that contain one
 
/// set of polymorphic arguments at the appropriate position.
 
/// TODO: @tokens Reimplement/rename once we have a tokenizer
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct NamespacedIdentifier2 {
 
    pub position: InputPosition,
 
@@ -684,6 +685,26 @@ pub struct NamespacedIdentifier2 {
 
}
 

	
 
impl NamespacedIdentifier2 {
 
    /// Returns the identifier value without any of the specific polymorphic
 
    /// arguments.
 
    pub fn strip_poly_args(&self) -> Vec<u8> {
 
        debug_assert!(!self.parts.is_empty() && self.parts[0].is_identifier());
 

	
 
        let mut result = Vec::with_capacity(self.value.len());
 
        let mut iter = self.iter();
 
        let (first_ident, _) = iter.next().unwrap();
 
        result.extend(first_ident);
 

	
 
        for (ident, _) in iter.next() {
 
            result.push(b':');
 
            result.push(b':');
 
            result.extend(ident);
 
        }
 

	
 
        result
 
    }
 

	
 
    /// Returns an iterator of the elements in the namespaced identifier
 
    pub fn iter(&self) -> NamespacedIdentifier2Iter {
 
        return NamespacedIdentifier2Iter{
 
            identifier: self,
 
@@ -691,23 +712,59 @@ impl NamespacedIdentifier2 {
 
        }
 
    }
 

	
 
    pub fn has_poly_args(&self) -> bool {
 
        return !self.poly_args.is_empty();
 
    pub fn get_poly_args(&self) -> Option<&[ParserTypeId]> {
 
        let has_poly_args = self.parts.iter().any(|v| !v.is_identifier());
 
        if has_poly_args {
 
            Some(&self.poly_args)
 
        } else {
 
            None
 
        }
 
    }
 
}
 

	
 
impl PartialEq for NamespacedIdentifier2 {
 
    fn eq(&self, other: &Self) -> bool {
 
        return self.value == other.value
 
    // Check if two namespaced identifiers match eachother when not considering
 
    // the polymorphic arguments
 
    pub fn matches_namespaced_identifier(&self, other: &Self) -> bool {
 
        let mut iter_self = self.iter();
 
        let mut iter_other = other.iter();
 

	
 
        loop {
 
            let val_self = iter_self.next();
 
            let val_other = iter_other.next();
 
            if val_self.is_some() != val_other.is_some() {
 
                // One is longer than the other
 
                return false;
 
            }
 
            if val_self.is_none() {
 
                // Both are none
 
                return true;
 
            }
 

	
 
            // Both are something
 
            let (val_self, _) = val_self.unwrap();
 
            let (val_other, _) = val_other.unwrap();
 
            if val_self != val_other { return false; }
 
        }
 
    }
 
}
 

	
 
impl PartialEq<Identifier> for NamespacedIdentifier2 {
 
    fn eq(&self, other: &Identifier) -> bool {
 
        return self.value == other.value
 
    // Check if the namespaced identifier matches an identifier when not 
 
    // considering the polymorphic arguments
 
    pub fn matches_identifier(&self, other: &Identifier) -> bool {
 
        let mut iter = self.iter();
 
        let (first_ident, _) = iter.next().unwrap();
 
        if first_ident != other.value { 
 
            return false;
 
        }
 

	
 
        if iter.next().is_some() {
 
            return false;
 
        }
 

	
 
        return true;
 
    }
 
}
 

	
 
/// Iterator over elements of the namespaced identifier. The element index will
 
/// only ever be at the start of an identifier element.
 
#[derive(Debug)]
 
pub struct NamespacedIdentifier2Iter<'a> {
 
    identifier: &'a NamespacedIdentifier2,
 
@@ -718,9 +775,12 @@ impl<'a> Iterator for NamespacedIdentifier2Iter<'a> {
 
    type Item = (&'a [u8], Option<&'a [ParserTypeId]>);
 
    fn next(&mut self) -> Option<Self::Item> {
 
        match self.get(self.element_idx) {
 
            Some(result) => {
 
            Some((ident, poly)) => {
 
                self.element_idx += 1;
 
                Some(result)
 
                if poly.is_some() {
 
                    self.element_idx += 1;
 
                }
 
                Some((ident, poly))
 
            },
 
            None => None
 
        }
 
@@ -728,6 +788,9 @@ impl<'a> Iterator for NamespacedIdentifier2Iter<'a> {
 
}
 

	
 
impl<'a> NamespacedIdentifier2Iter<'a> {
 
    /// Returns number of parts iterated over, may not correspond to number of
 
    /// times one called `next()` because returning an identifier with 
 
    /// polymorphic arguments increments the internal counter by 2.
 
    pub fn num_returned(&self) -> usize {
 
        return self.element_idx;
 
    }
 
@@ -736,13 +799,25 @@ impl<'a> NamespacedIdentifier2Iter<'a> {
 
        return self.identifier.parts.len() - self.element_idx;
 
    }
 

	
 
    pub fn returned_section(&self) -> &[u8] {
 
        if self.element_idx == 0 { return &self.identifier.value[0..0]; }
 

	
 
        let last_idx = match &self.identifier.parts[self.element_idx - 1] {
 
            NamespacedIdentifierPart::Identifier{end, ..} => *end,
 
            NamespacedIdentifierPart::PolyArgs{end, ..} => *end,
 
        };
 

	
 
        return &self.identifier.value[..last_idx as usize];
 
    }
 

	
 
    /// Returns a specific element from the namespaced identifier
 
    pub fn get(&self, idx: usize) -> Option<<Self as Iterator>::Item> {
 
        if idx >= self.identifier.parts.len() { 
 
            return None 
 
        }
 

	
 
        let cur_part = &self.identifier.parts[idx];
 
        let next_part = self.identifier.parts.get(idx);
 
        let next_part = self.identifier.parts.get(idx + 1);
 

	
 
        let (ident_start, ident_end) = cur_part.as_identifier();
 
        let poly_slice = match next_part {
 
@@ -761,12 +836,29 @@ impl<'a> NamespacedIdentifier2Iter<'a> {
 
        ))
 
    }
 

	
 
    pub fn prev(&self) -> Option<<Self as Iterator>::Item> {
 
        if self.element_idx == 0 {
 
    /// Returns the previously returend index into the parts array of the 
 
    /// identifier.
 
    pub fn prev_idx(&self) -> Option<usize> {
 
        if self.element_idx == 0 { 
 
            return None;
 
        };
 
        
 
        if self.identifier.parts[self.element_idx - 1].is_identifier() { 
 
            return Some(self.element_idx - 1);
 
        }
 

	
 
        self.get(self.element_idx - 1)
 
        // Previous part had polymorphic arguments, so the one before that must
 
        // be an identifier (if well formed)
 
        debug_assert!(self.element_idx >= 2 && self.identifier.parts[self.element_idx - 2].is_identifier());
 
        return Some(self.element_idx - 2)
 
    }
 

	
 
    /// Returns the previously returned result from `next()`
 
    pub fn prev(&self) -> Option<<Self as Iterator>::Item> {
 
        match self.prev_idx() {
 
            None => None,
 
            Some(idx) => self.get(idx)
 
        }
 
    }
 
}
 

	
 
@@ -912,6 +1004,7 @@ pub struct SymbolicParserType {
 
    pub identifier: NamespacedIdentifier2,
 
    // Phase 2: validation/linking (for types in function/component bodies) and
 
    //  type table construction (for embedded types of structs/unions)
 
    pub poly_args2: Vec<ParserTypeId>, // taken from identifier or inferred
 
    pub variant: Option<SymbolicParserTypeVariant>
 
}
 

	
 
@@ -1133,6 +1226,7 @@ pub struct LiteralStruct {
 
    pub(crate) identifier: NamespacedIdentifier2,
 
    pub(crate) fields: Vec<LiteralStructField>,
 
    // Phase 2: linker
 
    pub(crate) poly_args2: Vec<ParserTypeId>, // taken from identifier
 
    pub(crate) definition: Option<DefinitionId>
 
}
 

	
src/protocol/ast_printer.rs
Show inline comments
 
@@ -237,7 +237,7 @@ impl ASTWriter {
 
                    .with_s_key("ImportModule");
 

	
 
                self.kv(indent2).with_s_key("Name").with_ascii_val(&import.module_name);
 
                self.kv(indent2).with_s_key("Alias").with_ascii_val(&import.alias);
 
                self.kv(indent2).with_s_key("Alias").with_ascii_val(&import.alias.value);
 
                self.kv(indent2).with_s_key("Target")
 
                    .with_opt_disp_val(import.module_id.as_ref().map(|v| &v.index));
 
            },
 
@@ -255,8 +255,8 @@ impl ASTWriter {
 
                let indent4 = indent3 + 1;
 
                for symbol in &import.symbols {
 
                    self.kv(indent3).with_s_key("AliasedSymbol");
 
                    self.kv(indent4).with_s_key("Name").with_ascii_val(&symbol.name);
 
                    self.kv(indent4).with_s_key("Alias").with_ascii_val(&symbol.alias);
 
                    self.kv(indent4).with_s_key("Name").with_ascii_val(&symbol.name.value);
 
                    self.kv(indent4).with_s_key("Alias").with_ascii_val(&symbol.alias.value);
 
                    self.kv(indent4).with_s_key("Definition")
 
                        .with_opt_disp_val(symbol.definition_id.as_ref().map(|v| &v.index));
 
                }
 
@@ -630,9 +630,9 @@ impl ASTWriter {
 
                        let indent4 = indent3 + 1;
 

	
 
                        // Polymorphic arguments
 
                        if !data.poly_args.is_empty() {
 
                        if !data.poly_args2.is_empty() {
 
                            self.kv(indent3).with_s_key("PolymorphicArguments");
 
                            for poly_arg in &data.poly_args {
 
                            for poly_arg in &data.poly_args2 {
 
                                self.kv(indent4).with_s_key("Argument")
 
                                    .with_custom_val(|v| write_parser_type(v, heap, &heap[*poly_arg]));
 
                            }
 
@@ -771,7 +771,7 @@ fn write_parser_type(target: &mut String, heap: &Heap, t: &ParserType) {
 
                    target.push_str("{None}");
 
                }
 
            }
 
            embedded.extend(&symbolic.poly_args);
 
            embedded.extend(&symbolic.poly_args2);
 
        }
 
    };
 

	
src/protocol/lexer.rs
Show inline comments
 
@@ -6,10 +6,10 @@ const MAX_NAMESPACES: u8 = 8; // only three levels are supported at the moment
 

	
 
macro_rules! debug_log {
 
    ($format:literal) => {
 
        enabled_debug_print!(false, "lexer", $format);
 
        enabled_debug_print!(true, "lexer", $format);
 
    };
 
    ($format:literal, $($args:expr),*) => {
 
        enabled_debug_print!(false, "lexer", $format, $($args),*);
 
        enabled_debug_print!(true, "lexer", $format, $($args),*);
 
    };
 
}
 

	
 
@@ -94,6 +94,19 @@ fn lowercase(x: u8) -> u8 {
 
    }
 
}
 

	
 
fn identifier_as_namespaced(identifier: Identifier) -> NamespacedIdentifier2 {
 
    let identifier_len = identifier.value.len();
 
    debug_assert!(identifier_len < u16::max_value() as usize);
 
    NamespacedIdentifier2{
 
        position: identifier.position,
 
        value: identifier.value,
 
        poly_args: Vec::new(),
 
        parts: vec![
 
            NamespacedIdentifierPart::Identifier{start: 0, end: identifier_len as u16}
 
        ],
 
    }
 
}
 

	
 
pub struct Lexer<'a> {
 
    source: &'a mut InputSource,
 
    level: usize,
 
@@ -478,6 +491,10 @@ impl Lexer<'_> {
 

	
 
        // Consumes a part of the namespaced identifier, returns a boolean
 
        // indicating whether polymorphic arguments were specified.
 
        // TODO: Continue here: if we fail to properly parse the polymorphic
 
        //  arguments, assume we have reached the end of the namespaced 
 
        //  identifier and are instead dealing with a less-than operator. Ugly?
 
        //  Yes. Needs tokenizer? Yes. 
 
        fn consume_part(
 
            l: &mut Lexer, h: &mut Heap, ident: &mut NamespacedIdentifier2,
 
            backup_pos: &mut InputPosition
 
@@ -630,7 +647,7 @@ impl Lexer<'_> {
 
        } else {
 
            // Must be a symbolic type
 
            let identifier = self.consume_namespaced_identifier2(h)?;
 
            ParserTypeVariant::Symbolic(SymbolicParserType{identifier, variant: None})
 
            ParserTypeVariant::Symbolic(SymbolicParserType{identifier, variant: None, poly_args2: Vec::new()})
 
        };
 

	
 
        // If the type was a basic type (not supporting polymorphic type
 
@@ -1557,6 +1574,7 @@ impl Lexer<'_> {
 
            value: Literal::Struct(LiteralStruct{
 
                identifier,
 
                fields,
 
                poly_args2: Vec::new(),
 
                definition: None,
 
            }),
 
            parent: ExpressionParent::None,
 
@@ -1590,8 +1608,10 @@ impl Lexer<'_> {
 
        let position = self.source.pos();
 

	
 
        // Consume method identifier
 
        // TODO: @token Replace this conditional polymorphic arg parsing once we have a tokenizer.
 
        debug_log!("consume_call_expression: {}", debug_line!(self.source));
 
        let method;
 
        let mut consume_poly_args_explicitly = true;
 
        if self.has_keyword(b"get") {
 
            self.consume_keyword(b"get")?;
 
            method = Method::Get;
 
@@ -1609,12 +1629,17 @@ impl Lexer<'_> {
 
            method = Method::Symbolic(MethodSymbolic{
 
                identifier,
 
                definition: None
 
            })
 
        }
 
            });
 
            consume_poly_args_explicitly = false;
 
        };
 

	
 
        // Consume polymorphic arguments
 
        self.consume_whitespace(false)?;
 
        let poly_args = self.consume_polymorphic_args(h, true)?.unwrap_or_default();
 
        let poly_args = if consume_poly_args_explicitly {
 
            self.consume_whitespace(false)?;
 
            self.consume_polymorphic_args(h, true)?.unwrap_or_default()
 
        } else {
 
            Vec::new()
 
        };
 

	
 
        // Consume arguments to call
 
        self.consume_whitespace(false)?;
 
@@ -1650,7 +1675,10 @@ impl Lexer<'_> {
 
    ) -> Result<VariableExpressionId, ParseError2> {
 
        let position = self.source.pos();
 
        debug_log!("consume_variable_expression: {}", debug_line!(self.source));
 
        let identifier = self.consume_namespaced_identifier()?;
 

	
 
        // TODO: @token Reimplement when tokenizer is implemented, prevent ambiguities
 
        let identifier = identifier_as_namespaced(self.consume_identifier()?);
 

	
 
        Ok(h.alloc_variable_expression(|this| VariableExpression {
 
            this,
 
            position,
 
@@ -1911,11 +1939,7 @@ impl Lexer<'_> {
 
        let variable_expr_id = h.alloc_variable_expression(|this| VariableExpression{
 
            this,
 
            position: identifier.position.clone(),
 
            identifier: NamespacedIdentifier {
 
                position: identifier.position.clone(),
 
                num_namespaces: 1,
 
                value: identifier.value.clone(),
 
            },
 
            identifier: identifier_as_namespaced(identifier),
 
            declaration: None,
 
            parent: ExpressionParent::None,
 
            concrete_type: Default::default()
src/protocol/parser/mod.rs
Show inline comments
 
@@ -167,7 +167,7 @@ impl Parser {
 

	
 
                    for symbol in &mut import.symbols {
 
                        debug_assert!(symbol.definition_id.is_none(), "symbol import already resolved");
 
                        let (_, target_definition_id) = self.symbol_table.resolve_symbol(module_root_id, &symbol.alias)
 
                        let (_, target_definition_id) = self.symbol_table.resolve_identifier(module_root_id, &symbol.alias)
 
                            .expect("symbol import is resolved by symbol table")
 
                            .as_definition()
 
                            .expect("symbol import does not resolve to namespace symbol");
src/protocol/parser/symbol_table.rs
Show inline comments
 
@@ -23,20 +23,7 @@ impl SymbolKey {
 
    }
 

	
 
    fn from_namespaced_identifier(module_id: RootId, symbol: &NamespacedIdentifier2) -> Self {
 
        // Strip polymorpic arguments from the identifier
 
        let symbol_name = Vec::with_capacity(symbol.value.len());
 
        debug_assert!(symbol.parts.len() > 0 && symbol.parts[0].is_identifier());
 

	
 
        let mut iter = symbol.iter();
 
        let (first_ident, _) = iter.next().unwrap();
 
        symbol_name.extend(first_ident);
 

	
 
        for (ident, _) in iter {
 
            symbol_name.push(b':');
 
            symbol_name.extend(ident);
 
        }
 

	
 
        Self{ module_id, symbol_name }
 
        Self{ module_id, symbol_name: symbol.strip_poly_args() }
 
    }
 
}
 

	
 
@@ -326,6 +313,20 @@ impl SymbolTable {
 
        self.module_lookup.get(identifier).map(|v| *v)
 
    }
 

	
 
    pub(crate) fn resolve_symbol<'t>(
 
        &'t self, root_module_id: RootId, identifier: &[u8]
 
    ) -> Option<&'t SymbolValue> {
 
        let lookup_key = SymbolKey{ module_id: root_module_id, symbol_name: Vec::from(identifier) };
 
        self.symbol_lookup.get(&lookup_key)
 
    }
 

	
 
    pub(crate) fn resolve_identifier<'t>(
 
        &'t self, root_module_id: RootId, identifier: &Identifier
 
    ) -> Option<&'t SymbolValue> {
 
        let lookup_key = SymbolKey::from_identifier(root_module_id, identifier);
 
        self.symbol_lookup.get(&lookup_key)
 
    }
 

	
 
    /// Resolves a namespaced symbol. This method will go as far as possible in
 
    /// going to the right symbol. It will halt the search when:
 
    /// 1. Polymorphic arguments are encountered on the identifier.
 
@@ -333,7 +334,7 @@ impl SymbolTable {
 
    /// 3. A part of the identifier couldn't be resolved to anything
 
    /// The returned iterator will always point to the next symbol (even if 
 
    /// nothing was found)
 
    pub(crate) fn resolve_namespaced_symbol<'t, 'i>(
 
    pub(crate) fn resolve_namespaced_identifier<'t, 'i>(
 
        &'t self, root_module_id: RootId, identifier: &'i NamespacedIdentifier2
 
    ) -> (Option<&'t SymbolValue>, NamespacedIdentifier2Iter<'i>) {
 
        let mut iter = identifier.iter();
src/protocol/parser/type_resolver.rs
Show inline comments
 
@@ -2767,9 +2767,9 @@ impl TypeResolvingVisitor {
 
        let literal = ctx.heap[lit_id].value.as_struct();
 

	
 
        // Handle polymorphic arguments
 
        let mut poly_vars = Vec::with_capacity(literal.poly_args.len());
 
        let mut poly_vars = Vec::with_capacity(literal.poly_args2.len());
 
        let mut total_num_poly_parts = 0;
 
        for poly_arg_type_id in literal.poly_args.clone() { // TODO: @performance
 
        for poly_arg_type_id in literal.poly_args2.clone() { // TODO: @performance
 
            let inference_type = self.determine_inference_type_from_parser_type(
 
                ctx, poly_arg_type_id, true
 
            ); 
 
@@ -2931,7 +2931,7 @@ impl TypeResolvingVisitor {
 
                    match symbolic.variant.as_ref().unwrap() {
 
                        SymbolicParserTypeVariant::PolyArg(_, arg_idx) => {
 
                            let arg_idx = *arg_idx;
 
                            debug_assert!(symbolic.poly_args.is_empty()); // TODO: @hkt
 
                            debug_assert!(symbolic.poly_args2.is_empty()); // TODO: @hkt
 

	
 
                            if parser_type_in_body {
 
                                // Polymorphic argument refers to definition's
 
@@ -2960,14 +2960,14 @@ impl TypeResolvingVisitor {
 
                                    Definition::Enum(v) => v.poly_vars.len(),
 
                                    _ => unreachable!(),
 
                                };
 
                                debug_assert_eq!(symbolic.poly_args.len(), num_poly);
 
                                debug_assert_eq!(symbolic.poly_args2.len(), num_poly);
 
                            }
 

	
 
                            infer_type.push(ITP::Instance(*definition_id, symbolic.poly_args.len()));
 
                            let mut poly_arg_idx = symbolic.poly_args.len();
 
                            infer_type.push(ITP::Instance(*definition_id, symbolic.poly_args2.len()));
 
                            let mut poly_arg_idx = symbolic.poly_args2.len();
 
                            while poly_arg_idx > 0 {
 
                                poly_arg_idx -= 1;
 
                                to_consider.push_front(symbolic.poly_args[poly_arg_idx]);
 
                                to_consider.push_front(symbolic.poly_args2[poly_arg_idx]);
 
                            }
 
                        }
 
                    }
src/protocol/parser/type_table.rs
Show inline comments
 
@@ -109,7 +109,7 @@ pub struct DefinedType {
 
    pub(crate) ast_root: RootId,
 
    pub(crate) ast_definition: DefinitionId,
 
    pub(crate) definition: DefinedTypeVariant,
 
    pub(crate) poly_args: Vec<PolyArg>,
 
    pub(crate) poly_vars: Vec<PolyVar>,
 
    pub(crate) is_polymorph: bool,
 
    pub(crate) is_pointerlike: bool,
 
    // TODO: @optimize
 
@@ -127,7 +127,7 @@ impl DefinedType {
 
    }
 

	
 
    pub(crate) fn has_monomorph(&self, types: &Vec<ConcreteType>) -> bool {
 
        debug_assert_eq!(self.poly_args.len(), types.len(), "mismatch in number of polymorphic types");
 
        debug_assert_eq!(self.poly_vars.len(), types.len(), "mismatch in number of polymorphic types");
 
        for monomorph in &self.monomorphs {
 
            if monomorph == types { return true; }
 
        }
 
@@ -144,9 +144,9 @@ pub enum DefinedTypeVariant {
 
    Component(ComponentType)
 
}
 

	
 
pub struct PolyArg {
 
pub struct PolyVar {
 
    identifier: Identifier,
 
    /// Whether the polymorphic argument is used directly in the definition of
 
    /// Whether the polymorphic variables is used directly in the definition of
 
    /// the type (not including bodies of function/component types)
 
    is_in_use: bool,
 
}
 
@@ -497,7 +497,7 @@ impl TypeTable {
 
            )?;
 
            self.check_poly_args_collision(ctx, root_id, &definition.poly_vars)?;
 

	
 
            let mut poly_args = self.create_initial_poly_args(&definition.poly_vars);
 
            let mut poly_args = self.create_initial_poly_vars(&definition.poly_vars);
 
            for variant in &variants {
 
                if let Some(embedded) = variant.parser_type {
 
                    self.check_and_resolve_embedded_type_and_modify_poly_args(ctx, definition_id, &mut poly_args, root_id, embedded)?;
 
@@ -513,7 +513,7 @@ impl TypeTable {
 
                    variants,
 
                    tag_representation: Self::enum_tag_type(-1, tag_value),
 
                }),
 
                poly_args,
 
                poly_vars: poly_args,
 
                is_polymorph,
 
                is_pointerlike: false, // TODO: @cyclic_types
 
                monomorphs: Vec::new()
 
@@ -565,7 +565,7 @@ impl TypeTable {
 
                    variants,
 
                    representation: Self::enum_tag_type(min_enum_value, max_enum_value)
 
                }),
 
                poly_args: self.create_initial_poly_args(&definition.poly_vars),
 
                poly_vars: self.create_initial_poly_vars(&definition.poly_vars),
 
                is_polymorph: false,
 
                is_pointerlike: false,
 
                monomorphs: Vec::new()
 
@@ -608,7 +608,7 @@ impl TypeTable {
 
        self.check_poly_args_collision(ctx, root_id, &definition.poly_vars)?;
 

	
 
        // Construct representation of polymorphic arguments
 
        let mut poly_args = self.create_initial_poly_args(&definition.poly_vars);
 
        let mut poly_args = self.create_initial_poly_vars(&definition.poly_vars);
 
        for field in &fields {
 
            self.check_and_resolve_embedded_type_and_modify_poly_args(ctx, definition_id, &mut poly_args, root_id, field.parser_type)?;
 
        }
 
@@ -621,7 +621,7 @@ impl TypeTable {
 
            definition: DefinedTypeVariant::Struct(StructType{
 
                fields,
 
            }),
 
            poly_args,
 
            poly_vars: poly_args,
 
            is_polymorph,
 
            is_pointerlike: false, // TODO: @cyclic
 
            monomorphs: Vec::new(),
 
@@ -676,7 +676,7 @@ impl TypeTable {
 
        self.check_poly_args_collision(ctx, root_id, &definition.poly_vars)?;
 

	
 
        // Construct polymorphic arguments
 
        let mut poly_args = self.create_initial_poly_args(&definition.poly_vars);
 
        let mut poly_args = self.create_initial_poly_vars(&definition.poly_vars);
 
        let return_type_id = definition.return_type;
 
        self.check_and_resolve_embedded_type_and_modify_poly_args(ctx, definition_id, &mut poly_args, root_id, return_type_id)?;
 
        for argument in &arguments {
 
@@ -693,7 +693,7 @@ impl TypeTable {
 
                return_type,
 
                arguments,
 
            }),
 
            poly_args,
 
            poly_vars: poly_args,
 
            is_polymorph,
 
            is_pointerlike: false, // TODO: @cyclic
 
            monomorphs: Vec::new(),
 
@@ -740,7 +740,7 @@ impl TypeTable {
 
        self.check_poly_args_collision(ctx, root_id, &definition.poly_vars)?;
 

	
 
        // Construct polymorphic arguments
 
        let mut poly_args = self.create_initial_poly_args(&definition.poly_vars);
 
        let mut poly_args = self.create_initial_poly_vars(&definition.poly_vars);
 
        for argument in &arguments {
 
            self.check_and_resolve_embedded_type_and_modify_poly_args(ctx, definition_id, &mut poly_args, root_id, argument.parser_type)?;
 
        }
 
@@ -755,7 +755,7 @@ impl TypeTable {
 
                variant: component_variant,
 
                arguments,
 
            }),
 
            poly_args,
 
            poly_vars: poly_args,
 
            is_polymorph,
 
            is_pointerlike: false, // TODO: @cyclic
 
            monomorphs: Vec::new(),
 
@@ -857,14 +857,14 @@ impl TypeTable {
 
                    // polymorphic arguments. If so then we can halt the
 
                    // execution
 
                    for (poly_arg_idx, poly_arg) in poly_vars.iter().enumerate() {
 
                        if symbolic.identifier == *poly_arg {
 
                        if symbolic.identifier.matches_identifier(poly_arg) {
 
                            set_resolve_result(ResolveResult::PolyArg(poly_arg_idx));
 
                            continue 'resolve_loop;
 
                        }
 
                    }
 

	
 
                    // Lookup the definition in the symbol table
 
                    let (symbol, mut ident_iter) = ctx.symbols.resolve_namespaced_symbol(root_id, &symbolic.identifier);
 
                    let (symbol, mut ident_iter) = ctx.symbols.resolve_namespaced_identifier(root_id, &symbolic.identifier);
 
                    if symbol.is_none() {
 
                        return Err(ParseError2::new_error(
 
                            &ctx.modules[root_id.index as usize].source, symbolic.identifier.position,
 
@@ -965,10 +965,10 @@ impl TypeTable {
 
        return Ok(resolve_result.unwrap())
 
    }
 

	
 
    fn create_initial_poly_args(&self, poly_args: &[Identifier]) -> Vec<PolyArg> {
 
    fn create_initial_poly_vars(&self, poly_args: &[Identifier]) -> Vec<PolyVar> {
 
        poly_args
 
            .iter()
 
            .map(|v| PolyArg{ identifier: v.clone(), is_in_use: false })
 
            .map(|v| PolyVar{ identifier: v.clone(), is_in_use: false })
 
            .collect()
 
    }
 

	
 
@@ -987,7 +987,7 @@ impl TypeTable {
 
    /// user-defined type.
 
    fn check_and_resolve_embedded_type_and_modify_poly_args(
 
        &mut self, ctx: &mut TypeCtx, 
 
        type_definition_id: DefinitionId, poly_args: &mut [PolyArg], 
 
        type_definition_id: DefinitionId, poly_args: &mut [PolyVar], 
 
        root_id: RootId, embedded_type_id: ParserTypeId,
 
    ) -> Result<(), ParseError2> {
 
        use ParserTypeVariant as PTV;
 
@@ -1013,17 +1013,17 @@ impl TypeTable {
 
                PTV::Array(subtype_id) |
 
                PTV::Input(subtype_id) |
 
                PTV::Output(subtype_id) => {
 
                    // Outer type is fixed, but inner type might be symbolix
 
                    // Outer type is fixed, but inner type might be symbolic
 
                    self.parser_type_iter.push_back(*subtype_id);
 
                },
 
                PTV::Symbolic(symbolic) => {
 
                    for (poly_arg_idx, poly_arg) in poly_args.iter_mut().enumerate() {
 
                        if symbolic.identifier == poly_arg.identifier {
 
                        if symbolic.identifier.matches_identifier(&poly_arg.identifier) {
 
                            poly_arg.is_in_use = true;
 
                            // TODO: If we allow higher-kinded types in the future,
 
                            //  then we can't continue here, but must resolve the
 
                            //  polyargs as well
 
                            debug_assert!(!symbolic.identifier.has_poly_args(), "got polymorphic arguments to a polymorphic variable");
 
                            debug_assert!(symbolic.identifier.get_poly_args().is_none(), "got polymorphic arguments to a polymorphic variable");
 
                            debug_assert!(symbolic.variant.is_none(), "symbolic parser type's variant already resolved");
 
                            symbolic.variant = Some(SymbolicParserTypeVariant::PolyArg(type_definition_id, poly_arg_idx));
 
                            continue 'type_loop;
 
@@ -1031,56 +1031,51 @@ impl TypeTable {
 
                    }
 

	
 
                    // Must match a definition
 
                    let (symbol, _) = ctx.symbols.resolve_namespaced_symbol(root_id, &symbolic.identifier);
 
                    let (symbol, ident_iter) = ctx.symbols.resolve_namespaced_identifier(root_id, &symbolic.identifier);
 
                    debug_assert!(symbol.is_some(), "could not resolve symbolic parser type when determining poly args");
 
                    let (symbol, ident_iter) = symbol.unwrap();
 
                    let symbol = symbol.unwrap();
 
                    debug_assert_eq!(ident_iter.num_remaining(), 0, "no exact symbol match when determining poly args");
 
                    let (_root_id, definition_id) = symbol.as_definition().unwrap();
 
    
 
                    // Must be a struct, enum, or union, we checked this
 
                    let defined_type = self.lookup.get(&definition_id).unwrap();
 
                    let (_, poly_args) = ident_iter.prev().unwrap();
 
                    let poly_args = poly_args.unwrap_or_default();
 

	
 
                    if cfg!(debug_assertions) {
 
                        // Make sure type class is correct
 
                        // Everything here should already be checked in 
 
                        // `resolve_base_parser_type`.
 
                        let type_class = defined_type.definition.type_class();
 
                        debug_assert!(
 
                            type_class == TypeClass::Struct || type_class == TypeClass::Enum || type_class == TypeClass::Union,
 
                            "embedded type's class is not struct, enum or union"
 
                        );
 
                        // Make sure polymorphic arguments occurred at the end
 
                        let num_poly = symbolic.identifier.iter()
 
                            .map(|(_, v)| v)
 
                            .filter(|v| v.is_some())
 
                            .count();
 
                        debug_assert!(num_poly <= 1, "more than one section with polymorphic arguments");
 
                        if num_poly == 1 {
 
                            let (_, poly_args) = symbolic.identifier.iter().last().unwrap();
 
                            debug_assert!(poly_args.is_some(), "got poly args, but not at end of identifier");
 
                        }
 
                        debug_assert_eq!(poly_args.len(), symbolic.identifier.poly_args.len());
 
                    }
 
    
 
                    if symbolic.poly_args.len() != defined_type.poly_args.len() {
 
                    if poly_args.len() != defined_type.poly_vars.len() {
 
                        // Mismatch in number of polymorphic arguments. This is 
 
                        // not allowed in type definitions (no inference is 
 
                        // allowed within type definitions, only in bodies of
 
                        // functions/components).
 
                        let module_source = &ctx.modules[root_id.index as usize].source;
 
                        let number_args_msg = if defined_type.poly_args.is_empty() {
 
                        let number_args_msg = if defined_type.poly_vars.is_empty() {
 
                            String::from("is not polymorphic")
 
                        } else {
 
                            format!("accepts {} polymorphic arguments", defined_type.poly_args.len())
 
                            format!("accepts {} polymorphic arguments", defined_type.poly_vars.len())
 
                        };
 
    
 
                        return Err(ParseError2::new_error(
 
                            module_source, symbolic.identifier.position,
 
                            &format!(
 
                                "The type '{}' {}, but {} polymorphic arguments were provided",
 
                                String::from_utf8_lossy(&symbolic.identifier.value),
 
                                number_args_msg, symbolic.poly_args.len()
 
                                String::from_utf8_lossy(&symbolic.identifier.strip_poly_args()),
 
                                number_args_msg, poly_args.len()
 
                            )
 
                        ));
 
                    }
 
    
 
                    self.parser_type_iter.extend(&symbolic.poly_args);
 
                    self.parser_type_iter.extend(poly_args);
 
                    debug_assert!(symbolic.variant.is_none(), "symbolic parser type's variant already resolved");
 
                    symbolic.variant = Some(SymbolicParserTypeVariant::Definition(definition_id));
 
                }
src/protocol/parser/utils.rs
Show inline comments
 
@@ -6,11 +6,11 @@ use super::type_table::*;
 
/// Utility result type.
 
pub(crate) enum FindTypeResult<'t, 'i> {
 
    // Found the type exactly
 
    Found(&'t DefinedType),
 
    Found((&'t DefinedType, NamespacedIdentifier2Iter<'i>)),
 
    // Could not match symbol
 
    SymbolNotFound{ident_pos: InputPosition},
 
    // Matched part of the namespaced identifier, but not completely
 
    SymbolPartial{ident_pos: InputPosition, symbol_pos: InputPosition, ident_iter: NamespacedIdentifierIter<'i>},
 
    SymbolPartial{ident_pos: InputPosition, symbol_pos: InputPosition, ident_iter: NamespacedIdentifier2Iter<'i>},
 
    // Symbol matched, but points to a namespace/module instead of a type
 
    SymbolNamespace{ident_pos: InputPosition, symbol_pos: InputPosition},
 
}
 
@@ -20,7 +20,7 @@ impl<'t, 'i> FindTypeResult<'t, 'i> {
 
    /// Utility function to transform the `FindTypeResult` into a `Result` where
 
    /// `Ok` contains the resolved type, and `Err` contains a `ParseError` which
 
    /// can be readily returned. This is the most common use.
 
    pub(crate) fn as_parse_error(self, module_source: &InputSource) -> Result<&'t DefinedType, ParseError2> {
 
    pub(crate) fn as_parse_error(self, module_source: &InputSource) -> Result<(&'t DefinedType, NamespacedIdentifier2Iter<'i>), ParseError2> {
 
        match self {
 
            FindTypeResult::Found(defined_type) => Ok(defined_type),
 
            FindTypeResult::SymbolNotFound{ident_pos} => {
 
@@ -59,16 +59,16 @@ impl<'t, 'i> FindTypeResult<'t, 'i> {
 
/// must be a type, not a namespace. 
 
pub(crate) fn find_type_definition<'t, 'i>(
 
    symbols: &SymbolTable, types: &'t TypeTable, 
 
    root_id: RootId, identifier: &'i NamespacedIdentifier
 
    root_id: RootId, identifier: &'i NamespacedIdentifier2
 
) -> FindTypeResult<'t, 'i> {
 
    // Lookup symbol
 
    let symbol = symbols.resolve_namespaced_symbol(root_id, identifier);
 
    let (symbol, ident_iter) = symbols.resolve_namespaced_identifier(root_id, identifier);
 
    if symbol.is_none() { 
 
        return FindTypeResult::SymbolNotFound{ident_pos: identifier.position};
 
    }
 
    
 
    // Make sure we resolved it exactly
 
    let (symbol, ident_iter) = symbol.unwrap();
 
    let symbol = symbol.unwrap();
 
    if ident_iter.num_remaining() != 0 { 
 
        return FindTypeResult::SymbolPartial{
 
            ident_pos: identifier.position, 
 
@@ -89,7 +89,88 @@ pub(crate) fn find_type_definition<'t, 'i>(
 
            // able to match the definition's ID to an entry in the type table.
 
            let definition = types.get_base_definition(&definition_id);
 
            debug_assert!(definition.is_some());
 
            FindTypeResult::Found(definition.unwrap())
 
            FindTypeResult::Found((definition.unwrap(), ident_iter))
 
        }
 
    }
 
}
 

	
 
pub(crate) enum MatchPolymorphResult<'t> {
 
    Matching,
 
    InferAll(usize),
 
    Mismatch{defined_type: &'t DefinedType, ident_position: InputPosition, num_specified: usize},
 
    NoneExpected{defined_type: &'t DefinedType, ident_position: InputPosition, num_specified: usize},
 
}
 

	
 
impl<'t> MatchPolymorphResult<'t> {
 
    pub(crate) fn as_parse_error(self, heap: &Heap, module_source: &InputSource) -> Result<usize, ParseError2> {
 
        match self {
 
            MatchPolymorphResult::Matching => Ok(0),
 
            MatchPolymorphResult::InferAll(count) => {
 
                debug_assert!(count > 0);
 
                Ok(count)
 
            },
 
            MatchPolymorphResult::Mismatch{defined_type, ident_position, num_specified} => {
 
                let type_identifier = heap[defined_type.ast_definition].identifier();
 
                let args_name = if defined_type.poly_vars.len() == 1 {
 
                    "argument"
 
                } else {
 
                    "arguments"
 
                };
 

	
 
                return Err(ParseError2::new_error(
 
                    module_source, ident_position,
 
                    &format!(
 
                        "expected {} polymorphic {} (or none, to infer them) for the type {}, but {} were specified",
 
                        defined_type.poly_vars.len(), args_name, 
 
                        &String::from_utf8_lossy(&type_identifier.value),
 
                        num_specified
 
                    )
 
                ))
 
            },
 
            MatchPolymorphResult::NoneExpected{defined_type, ident_position, ..} => {
 
                let type_identifier = heap[defined_type.ast_definition].identifier();
 
                return Err(ParseError2::new_error(
 
                    module_source, ident_position,
 
                    &format!(
 
                        "the type {} is not polymorphic",
 
                        &String::from_utf8_lossy(&type_identifier.value)
 
                    )
 
                ))
 
            }
 
        }
 
    }
 
}
 

	
 
/// Attempt to match the polymorphic arguments to the number of polymorphic
 
/// variables in the definition.
 
pub(crate) fn match_polymorphic_args_to_vars<'t>(
 
    defined_type: &'t DefinedType, poly_args: Option<&[ParserTypeId]>, ident_position: InputPosition
 
) -> MatchPolymorphResult<'t> {
 
    if defined_type.poly_vars.is_empty() {
 
        // No polymorphic variables on type
 
        if poly_args.is_some() {
 
            return MatchPolymorphResult::NoneExpected{
 
                defined_type,
 
                ident_position, 
 
                num_specified: poly_args.unwrap().len()};
 
        }
 
    } else {
 
        // Polymorphic variables on type
 
        let has_specified = poly_args.map_or(false, |a| a.len() != 0);
 
        if !has_specified {
 
            // Implicitly infer all of the polymorphic arguments
 
            return MatchPolymorphResult::InferAll(defined_type.poly_vars.len());
 
        }
 

	
 
        let num_specified = poly_args.unwrap().len();
 
        if num_specified != defined_type.poly_vars.len() {
 
            return MatchPolymorphResult::Mismatch{
 
                defined_type,
 
                ident_position,
 
                num_specified,
 
            };
 
        }
 
    }
 

	
 
    MatchPolymorphResult::Matching
 
}
 
\ No newline at end of file
src/protocol/parser/visitor_linker.rs
Show inline comments
 
@@ -1075,10 +1075,10 @@ impl ValidityAndLinkerVisitor {
 

	
 
                    let mut symbolic_variant = None;
 
                    for (poly_var_idx, poly_var) in poly_vars.iter().enumerate() {
 
                        if symbolic.identifier == *poly_var {
 
                        if symbolic.identifier.matches_identifier(poly_var) {
 
                            // Type refers to a polymorphic variable.
 
                            // TODO: @hkt Maybe allow higher-kinded types?
 
                            if !symbolic.poly_args.is_empty() {
 
                            if symbolic.identifier.get_poly_args().is_some() {
 
                                return Err(ParseError2::new_error(
 
                                    &ctx.module.source, symbolic.identifier.position,
 
                                    "Polymorphic arguments to a polymorphic variable (higher-kinded types) are not allowed (yet)"
 
@@ -1089,11 +1089,11 @@ impl ValidityAndLinkerVisitor {
 
                    }
 

	
 
                    if let Some(symbolic_variant) = symbolic_variant {
 
                        // Identifier points to a symbolic type
 
                        // Identifier points to a polymorphic argument
 
                        (symbolic.identifier.position, symbolic_variant, 0)
 
                    } else {
 
                        // Must be a user-defined type, otherwise an error
 
                        let found_type = find_type_definition(
 
                        let (found_type, ident_iter) = find_type_definition(
 
                            &ctx.symbols, &ctx.types, ctx.module.root_id, &symbolic.identifier
 
                        ).as_parse_error(&ctx.module.source)?;
 

	
 
@@ -1113,40 +1113,22 @@ impl ValidityAndLinkerVisitor {
 
                        // the programmer did not specify the polyargs then we
 
                        // assume we're going to infer all of them. Otherwise we
 
                        // make sure that they match in count.
 
                        if !found_type.poly_args.is_empty() && symbolic.poly_args.is_empty() {
 
                            // All inferred
 
                            (
 
                                symbolic.identifier.position,
 
                                SymbolicParserTypeVariant::Definition(found_type.ast_definition),
 
                                found_type.poly_args.len()
 
                            )
 
                        } else if symbolic.poly_args.len() != found_type.poly_args.len() {
 
                            return Err(ParseError2::new_error(
 
                                &ctx.module.source, symbolic.identifier.position,
 
                                &format!(
 
                                    "Expected {} polymorphic arguments (or none, to infer them), but {} were specified",
 
                                    found_type.poly_args.len(), symbolic.poly_args.len()
 
                                )
 
                            ))
 
                        } else {
 
                            // If here then the type is not polymorphic, or all
 
                            // types are properly specified by the user.
 
                            for specified_poly_arg in &symbolic.poly_args {
 
                                self.parser_type_buffer.push(*specified_poly_arg);
 
                            }
 

	
 
                            (
 
                                symbolic.identifier.position,
 
                                SymbolicParserTypeVariant::Definition(found_type.ast_definition),
 
                                0
 
                            )
 
                        }
 
                        let (_, poly_args) = ident_iter.prev().unwrap();
 
                        let num_to_infer = match_polymorphic_args_to_vars(
 
                            found_type, poly_args, symbolic.identifier.position
 
                        ).as_parse_error(&ctx.heap, &ctx.module.source)?;
 

	
 
                        (
 
                            symbolic.identifier.position,
 
                            SymbolicParserTypeVariant::Definition(found_type.ast_definition),
 
                            num_to_infer
 
                        )
 
                    }
 
                }
 
            };
 

	
 
            // If here then type is symbolic, perform a mutable borrow to set
 
            // the target of the symbolic type.
 
            // If here then type is symbolic, perform a mutable borrow (and do
 
            // some rust shenanigans) to set the required information.
 
            for _ in 0..num_inferred_to_allocate {
 
                // TODO: @hack, not very user friendly to manually allocate
 
                //  `inferred` ParserTypes with the InputPosition of the
 
@@ -1161,8 +1143,13 @@ impl ValidityAndLinkerVisitor {
 
            }
 

	
 
            if let PTV::Symbolic(symbolic) = &mut ctx.heap[parser_type_id].variant {
 
                for _ in 0..num_inferred_to_allocate {
 
                    symbolic.poly_args.push(self.parser_type_buffer.pop().unwrap());
 
                if num_inferred_to_allocate != 0 {
 
                    symbolic.poly_args2.reserve(num_inferred_to_allocate);
 
                    for _ in 0..num_inferred_to_allocate {
 
                        symbolic.poly_args2.push(self.parser_type_buffer.pop().unwrap());
 
                    }
 
                } else if !symbolic.identifier.poly_args.is_empty() {
 
                    symbolic.poly_args2.extend(&symbolic.identifier.poly_args)
 
                }
 
                symbolic.variant = Some(symbolic_variant);
 
            } else {
 
@@ -1252,14 +1239,9 @@ impl ValidityAndLinkerVisitor {
 

	
 
    /// Finds a variable in the visitor's scope that must appear before the
 
    /// specified relative position within that block.
 
    fn find_variable(&self, ctx: &Ctx, mut relative_pos: u32, identifier: &NamespacedIdentifier) -> Result<VariableId, ParseError2> {
 
    fn find_variable(&self, ctx: &Ctx, mut relative_pos: u32, identifier: &NamespacedIdentifier2) -> Result<VariableId, ParseError2> {
 
        debug_assert!(self.cur_scope.is_some());
 
        debug_assert!(identifier.num_namespaces > 0);
 

	
 
        // TODO: Update once globals are possible as well
 
        if identifier.num_namespaces > 1 {
 
            todo!("Implement namespaced constant seeking")
 
        }
 
        debug_assert!(identifier.parts.len() == 1, "implement namespaced seeking of target associated with identifier");
 

	
 
        // TODO: May still refer to an alias of a global symbol using a single
 
        //  identifier in the namespace.
 
@@ -1273,7 +1255,7 @@ impl ValidityAndLinkerVisitor {
 
            for local_id in &block.locals {
 
                let local = &ctx.heap[*local_id];
 
                
 
                if local.relative_pos_in_block < relative_pos && local.identifier == *identifier {
 
                if local.relative_pos_in_block < relative_pos && identifier.matches_identifier(&local.identifier) {
 
                    return Ok(local_id.upcast());
 
                }
 
            }
 
@@ -1287,7 +1269,7 @@ impl ValidityAndLinkerVisitor {
 
                        let definition = &ctx.heap[*definition_id];
 
                        for parameter_id in definition.parameters() {
 
                            let parameter = &ctx.heap[*parameter_id];
 
                            if parameter.identifier == *identifier {
 
                            if identifier.matches_identifier(&parameter.identifier) {
 
                                return Ok(parameter_id.upcast());
 
                            }
 
                        }
 
@@ -1391,10 +1373,10 @@ impl ValidityAndLinkerVisitor {
 
    //  borrowing errors
 
    fn find_symbol_of_type<'a>(
 
        &self, source: &InputSource, root_id: RootId, symbols: &SymbolTable, types: &'a TypeTable,
 
        identifier: &NamespacedIdentifier, expected_type_class: TypeClass
 
        identifier: &NamespacedIdentifier2, expected_type_class: TypeClass
 
    ) -> Result<&'a DefinedType, ParseError2> {
 
        // Find symbol associated with identifier
 
        let find_result = find_type_definition(symbols, types, root_id, identifier)
 
        let (find_result, _) = find_type_definition(symbols, types, root_id, identifier)
 
            .as_parse_error(source)?;
 

	
 
        let definition_type_class = find_result.definition.type_class();
 
@@ -1497,6 +1479,14 @@ impl ValidityAndLinkerVisitor {
 

	
 
    // TODO: @cleanup, merge with function below
 
    fn visit_call_poly_args(&mut self, ctx: &mut Ctx, call_id: CallExpressionId) -> VisitorResult {
 
        // TODO: @token Revisit when tokenizer is implemented
 
        let call_expr = &mut ctx.heap[call_id];
 
        if let Method::Symbolic(symbolic) = &mut call_expr.method {
 
            if let Some(poly_args) = symbolic.identifier.get_poly_args() {
 
                call_expr.poly_args.extend(poly_args);
 
            }
 
        }
 

	
 
        let call_expr = &ctx.heap[call_id];
 

	
 
        // Determine the polyarg signature
 
@@ -1514,6 +1504,9 @@ impl ValidityAndLinkerVisitor {
 
                1
 
            }
 
            Method::Symbolic(symbolic) => {
 
                // Retrieve type and make sure number of specified polymorphic 
 
                // arguments is correct
 

	
 
                let definition = &ctx.heap[symbolic.definition.unwrap()];
 
                match definition {
 
                    Definition::Function(definition) => definition.poly_vars.len(),
 
@@ -1571,9 +1564,15 @@ impl ValidityAndLinkerVisitor {
 
    }
 

	
 
    fn visit_literal_poly_args(&mut self, ctx: &mut Ctx, lit_id: LiteralExpressionId) -> VisitorResult {
 
        // TODO: @token Revisit when tokenizer is implemented
 
        let literal_expr = &mut ctx.heap[lit_id];
 
        if let Literal::Struct(literal) = &mut literal_expr.value {
 
            literal.poly_args2.extend(&literal.identifier.poly_args);
 
        }
 

	
 
        let literal_expr = &ctx.heap[lit_id];
 
        let literal_pos = literal_expr.position;
 
        let (num_specified, num_expected) = match &literal_expr.value {
 
        let num_poly_args_to_infer = match &literal_expr.value {
 
            Literal::Null | Literal::False | Literal::True |
 
            Literal::Character(_) | Literal::Integer(_) => {
 
                // Not really an error, but a programmer error as we're likely
 
@@ -1582,58 +1581,43 @@ impl ValidityAndLinkerVisitor {
 
                unreachable!();
 
            },
 
            Literal::Struct(literal) => {
 
                let definition = &ctx.heap[literal.definition.unwrap()];
 
                let num_expected = match definition {
 
                    Definition::Struct(definition) => definition.poly_vars.len(),
 
                    _ => {
 
                        debug_assert!(false, "expected struct literal while visiting literal poly args");
 
                        unreachable!();
 
                    }
 
                };
 
                let num_specified = literal.poly_args.len();
 

	
 
                // Visit all embedded parser types (they might not be of the
 
                // correct length, but we check this below)
 
                // Retrieve type and make sure number of specified polymorphic
 
                // arguments is correct.
 
                let defined_type = ctx.types.get_base_definition(literal.definition.as_ref().unwrap())
 
                    .unwrap();
 
                let maybe_poly_args = literal.identifier.get_poly_args();
 
                let num_to_infer = match_polymorphic_args_to_vars(
 
                    defined_type, maybe_poly_args, literal.identifier.position
 
                ).as_parse_error(&ctx.heap, &ctx.module.source)?;
 

	
 
                // Visit all specified parser types
 
                let old_num_types = self.parser_type_buffer.len();
 
                self.parser_type_buffer.extend(&literal.poly_args);
 
                self.parser_type_buffer.extend(&literal.poly_args2);
 
                while self.parser_type_buffer.len() > old_num_types {
 
                    let parser_type_id = self.parser_type_buffer.pop().unwrap();
 
                    self.visit_parser_type(ctx, parser_type_id)?;
 
                }
 
                self.parser_type_buffer.truncate(old_num_types);
 

	
 
                (num_specified, num_expected)
 
                num_to_infer
 
            }
 
        };
 

	
 
        if num_specified == 0 {
 
            // None are specified
 
            if num_expected != 0 {
 
                // So assumed to all be inferred
 
                for _ in 0..num_expected {
 
                    self.parser_type_buffer.push(ctx.heap.alloc_parser_type(|this| ParserType{
 
                        this, pos: literal_pos, variant: ParserTypeVariant::Inferred
 
                    }));
 
                }
 
        if num_poly_args_to_infer != 0 {
 
            for _ in 0..num_poly_args_to_infer {
 
                self.parser_type_buffer.push(ctx.heap.alloc_parser_type(|this| ParserType{
 
                    this, pos: literal_pos, variant: ParserTypeVariant::Inferred
 
                }));
 
            }
 

	
 
                let literal = match &mut ctx.heap[lit_id].value {
 
                    Literal::Struct(literal) => literal,
 
                    _ => unreachable!(),
 
                };
 
                literal.poly_args.reserve(num_expected);
 
                for _ in 0..num_expected {
 
                    literal.poly_args.push(self.parser_type_buffer.pop().unwrap());
 
                }
 
            let literal = match &mut ctx.heap[lit_id].value {
 
                Literal::Struct(literal) => literal,
 
                _ => unreachable!(),
 
            };
 
            literal.poly_args2.reserve(num_poly_args_to_infer);
 
            for _ in 0..num_poly_args_to_infer {
 
                literal.poly_args2.push(self.parser_type_buffer.pop().unwrap());
 
            }
 
        } else if num_specified != num_expected {
 
            // Incorrect specification of poly args
 
            return Err(ParseError2::new_error(
 
                &ctx.module.source, literal_pos,
 
                &format!(
 
                    "Expected {} polymorphic arguments (or none, to infer them), but {} were specified",
 
                    num_expected, num_specified
 
                )
 
            ))
 
        }
 

	
 
        Ok(())
src/protocol/tests/utils.rs
Show inline comments
 
@@ -675,9 +675,9 @@ fn serialize_parser_type(buffer: &mut String, heap: &Heap, id: ParserTypeId) {
 
        },
 
        PTV::Symbolic(symbolic) => {
 
            buffer.push_str(&String::from_utf8_lossy(&symbolic.identifier.value));
 
            if symbolic.poly_args.len() > 0 {
 
            if symbolic.poly_args2.len() > 0 {
 
                buffer.push('<');
 
                for (poly_idx, poly_arg) in symbolic.poly_args.iter().enumerate() {
 
                for (poly_idx, poly_arg) in symbolic.poly_args2.iter().enumerate() {
 
                    if poly_idx != 0 { buffer.push(','); }
 
                    serialize_parser_type(buffer, heap, *poly_arg);
 
                }
0 comments (0 inline, 0 general)