Changeset - 28df9835906f
[Not reviewed]
0 10 0
MH - 4 years ago 2021-04-02 14:05:27
contact@maxhenger.nl
Reimplement namespaced identifier to support polymorphic args

This is somewhat of a temporary hack, as a namespaced identifier should
not really refer to types or polymorphic arguments. But we need a
tokenizer and a prepass to properly distinguish identifiers from types.
So it works, but error messages may be cryptic.
10 files changed with 356 insertions and 177 deletions:
0 comments (0 inline, 0 general)
src/protocol/ast.rs
Show inline comments
 
@@ -666,116 +666,208 @@ impl NamespacedIdentifierPart {
 
            NamespacedIdentifierPart::Identifier{..} => {
 
                unreachable!("Tried to obtain {:?} as PolyArgs", self)
 
            }
 
        }
 
    }
 
}
 

	
 
/// An identifier with optional namespaces and polymorphic variables. Note that 
 
/// we allow each identifier to be followed by polymorphic arguments during the 
 
/// parsing phase (e.g. Foo<A,B>::Bar<C,D>::Qux). But in our current language 
 
/// implementation we can only have valid namespaced identifier that contain one
 
/// set of polymorphic arguments at the appropriate position.
 
/// TODO: @tokens Reimplement/rename once we have a tokenizer
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct NamespacedIdentifier2 {
 
    pub position: InputPosition,
 
    pub value: Vec<u8>, // Full name as it resides in the input source
 
    pub poly_args: Vec<ParserTypeId>, // All poly args littered throughout the namespaced identifier
 
    pub parts: Vec<NamespacedIdentifierPart>, // Indices into value/poly_args
 
}
 

	
 
impl NamespacedIdentifier2 {
 
    /// Returns the identifier value without any of the specific polymorphic
 
    /// arguments.
 
    pub fn strip_poly_args(&self) -> Vec<u8> {
 
        debug_assert!(!self.parts.is_empty() && self.parts[0].is_identifier());
 

	
 
        let mut result = Vec::with_capacity(self.value.len());
 
        let mut iter = self.iter();
 
        let (first_ident, _) = iter.next().unwrap();
 
        result.extend(first_ident);
 

	
 
        for (ident, _) in iter.next() {
 
            result.push(b':');
 
            result.push(b':');
 
            result.extend(ident);
 
        }
 

	
 
        result
 
    }
 

	
 
    /// Returns an iterator of the elements in the namespaced identifier
 
    pub fn iter(&self) -> NamespacedIdentifier2Iter {
 
        return NamespacedIdentifier2Iter{
 
            identifier: self,
 
            element_idx: 0
 
        }
 
    }
 

	
 
    pub fn has_poly_args(&self) -> bool {
 
        return !self.poly_args.is_empty();
 
    pub fn get_poly_args(&self) -> Option<&[ParserTypeId]> {
 
        let has_poly_args = self.parts.iter().any(|v| !v.is_identifier());
 
        if has_poly_args {
 
            Some(&self.poly_args)
 
        } else {
 
            None
 
        }
 
    }
 

	
 
impl PartialEq for NamespacedIdentifier2 {
 
    fn eq(&self, other: &Self) -> bool {
 
        return self.value == other.value
 
    // Check if two namespaced identifiers match eachother when not considering
 
    // the polymorphic arguments
 
    pub fn matches_namespaced_identifier(&self, other: &Self) -> bool {
 
        let mut iter_self = self.iter();
 
        let mut iter_other = other.iter();
 

	
 
        loop {
 
            let val_self = iter_self.next();
 
            let val_other = iter_other.next();
 
            if val_self.is_some() != val_other.is_some() {
 
                // One is longer than the other
 
                return false;
 
            }
 
            if val_self.is_none() {
 
                // Both are none
 
                return true;
 
            }
 

	
 
impl PartialEq<Identifier> for NamespacedIdentifier2 {
 
    fn eq(&self, other: &Identifier) -> bool {
 
        return self.value == other.value
 
            // Both are something
 
            let (val_self, _) = val_self.unwrap();
 
            let (val_other, _) = val_other.unwrap();
 
            if val_self != val_other { return false; }
 
        }
 
    }
 

	
 
    // Check if the namespaced identifier matches an identifier when not 
 
    // considering the polymorphic arguments
 
    pub fn matches_identifier(&self, other: &Identifier) -> bool {
 
        let mut iter = self.iter();
 
        let (first_ident, _) = iter.next().unwrap();
 
        if first_ident != other.value { 
 
            return false;
 
        }
 

	
 
        if iter.next().is_some() {
 
            return false;
 
        }
 

	
 
        return true;
 
    }
 
}
 

	
 
/// Iterator over elements of the namespaced identifier. The element index will
 
/// only ever be at the start of an identifier element.
 
#[derive(Debug)]
 
pub struct NamespacedIdentifier2Iter<'a> {
 
    identifier: &'a NamespacedIdentifier2,
 
    element_idx: usize,
 
}
 

	
 
impl<'a> Iterator for NamespacedIdentifier2Iter<'a> {
 
    type Item = (&'a [u8], Option<&'a [ParserTypeId]>);
 
    fn next(&mut self) -> Option<Self::Item> {
 
        match self.get(self.element_idx) {
 
            Some(result) => {
 
            Some((ident, poly)) => {
 
                self.element_idx += 1;
 
                Some(result)
 
                if poly.is_some() {
 
                    self.element_idx += 1;
 
                }
 
                Some((ident, poly))
 
            },
 
            None => None
 
        }
 
    }
 
}
 

	
 
impl<'a> NamespacedIdentifier2Iter<'a> {
 
    /// Returns number of parts iterated over, may not correspond to number of
 
    /// times one called `next()` because returning an identifier with 
 
    /// polymorphic arguments increments the internal counter by 2.
 
    pub fn num_returned(&self) -> usize {
 
        return self.element_idx;
 
    }
 

	
 
    pub fn num_remaining(&self) -> usize {
 
        return self.identifier.parts.len() - self.element_idx;
 
    }
 

	
 
    pub fn returned_section(&self) -> &[u8] {
 
        if self.element_idx == 0 { return &self.identifier.value[0..0]; }
 

	
 
        let last_idx = match &self.identifier.parts[self.element_idx - 1] {
 
            NamespacedIdentifierPart::Identifier{end, ..} => *end,
 
            NamespacedIdentifierPart::PolyArgs{end, ..} => *end,
 
        };
 

	
 
        return &self.identifier.value[..last_idx as usize];
 
    }
 

	
 
    /// Returns a specific element from the namespaced identifier
 
    pub fn get(&self, idx: usize) -> Option<<Self as Iterator>::Item> {
 
        if idx >= self.identifier.parts.len() { 
 
            return None 
 
        }
 

	
 
        let cur_part = &self.identifier.parts[idx];
 
        let next_part = self.identifier.parts.get(idx);
 
        let next_part = self.identifier.parts.get(idx + 1);
 

	
 
        let (ident_start, ident_end) = cur_part.as_identifier();
 
        let poly_slice = match next_part {
 
            Some(part) => match part {
 
                NamespacedIdentifierPart::Identifier{..} => None,
 
                NamespacedIdentifierPart::PolyArgs{start, end} => Some(
 
                    &self.identifier.poly_args[*start as usize..*end as usize]
 
                ),
 
            },
 
            None => None
 
        };
 

	
 
        Some((
 
            &self.identifier.value[ident_start as usize..ident_end as usize],
 
            poly_slice
 
        ))
 
    }
 

	
 
    pub fn prev(&self) -> Option<<Self as Iterator>::Item> {
 
    /// Returns the previously returend index into the parts array of the 
 
    /// identifier.
 
    pub fn prev_idx(&self) -> Option<usize> {
 
        if self.element_idx == 0 { 
 
            return None;
 
        };
 
        
 
        if self.identifier.parts[self.element_idx - 1].is_identifier() { 
 
            return Some(self.element_idx - 1);
 
        }
 

	
 
        self.get(self.element_idx - 1)
 
        // Previous part had polymorphic arguments, so the one before that must
 
        // be an identifier (if well formed)
 
        debug_assert!(self.element_idx >= 2 && self.identifier.parts[self.element_idx - 2].is_identifier());
 
        return Some(self.element_idx - 2)
 
    }
 

	
 
    /// Returns the previously returned result from `next()`
 
    pub fn prev(&self) -> Option<<Self as Iterator>::Item> {
 
        match self.prev_idx() {
 
            None => None,
 
            Some(idx) => self.get(idx)
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct NamespacedIdentifier {
 
    pub position: InputPosition,
 
    pub num_namespaces: u8,
 
    pub value: Vec<u8>,
 
}
 

	
 
impl NamespacedIdentifier {
 
    pub(crate) fn iter(&self) -> NamespacedIdentifierIter {
 
@@ -903,24 +995,25 @@ pub struct ParserType {
 

	
 
/// SymbolicParserType is the specification of a symbolic type. During the
 
/// parsing phase we will only store the identifier of the type. During the
 
/// validation phase we will determine whether it refers to a user-defined type,
 
/// or a polymorphic argument. After the validation phase it may still be the
 
/// case that the resulting `variant` will not pass the typechecker.
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct SymbolicParserType {
 
    // Phase 1: parser
 
    pub identifier: NamespacedIdentifier2,
 
    // Phase 2: validation/linking (for types in function/component bodies) and
 
    //  type table construction (for embedded types of structs/unions)
 
    pub poly_args2: Vec<ParserTypeId>, // taken from identifier or inferred
 
    pub variant: Option<SymbolicParserTypeVariant>
 
}
 

	
 
/// Specifies whether the symbolic type points to an actual user-defined type,
 
/// or whether it points to a polymorphic argument within the definition (e.g.
 
/// a defined variable `T var` within a function `int func<T>()`
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum SymbolicParserTypeVariant {
 
    Definition(DefinitionId),
 
    // TODO: figure out if I need the DefinitionId here
 
    PolyArg(DefinitionId, usize), // index of polyarg in the definition
 
}
 
@@ -1124,24 +1217,25 @@ pub struct LiteralStructField {
 
    pub(crate) identifier: Identifier,
 
    pub(crate) value: ExpressionId,
 
    // Phase 2: linker
 
    pub(crate) field_idx: usize, // in struct definition
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct LiteralStruct {
 
    // Phase 1: parser
 
    pub(crate) identifier: NamespacedIdentifier2,
 
    pub(crate) fields: Vec<LiteralStructField>,
 
    // Phase 2: linker
 
    pub(crate) poly_args2: Vec<ParserTypeId>, // taken from identifier
 
    pub(crate) definition: Option<DefinitionId>
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct LiteralEnum {
 
    // Phase 1: parser
 
    pub(crate) identifier: NamespacedIdentifier2,
 
    pub(crate) poly_args: Vec<ParserTypeId>,
 
    // Phase 2: linker
 
    pub(crate) definition: Option<DefinitionId>,
 
    pub(crate) variant_idx: usize,
 
}
src/protocol/ast_printer.rs
Show inline comments
 
@@ -228,44 +228,44 @@ impl ASTWriter {
 
    }
 

	
 
    fn write_import(&mut self, heap: &Heap, import_id: ImportId, indent: usize) {
 
        let import = &heap[import_id];
 
        let indent2 = indent + 1;
 

	
 
        match import {
 
            Import::Module(import) => {
 
                self.kv(indent).with_id(PREFIX_IMPORT_ID, import.this.index)
 
                    .with_s_key("ImportModule");
 

	
 
                self.kv(indent2).with_s_key("Name").with_ascii_val(&import.module_name);
 
                self.kv(indent2).with_s_key("Alias").with_ascii_val(&import.alias);
 
                self.kv(indent2).with_s_key("Alias").with_ascii_val(&import.alias.value);
 
                self.kv(indent2).with_s_key("Target")
 
                    .with_opt_disp_val(import.module_id.as_ref().map(|v| &v.index));
 
            },
 
            Import::Symbols(import) => {
 
                self.kv(indent).with_id(PREFIX_IMPORT_ID, import.this.index)
 
                    .with_s_key("ImportSymbol");
 

	
 
                self.kv(indent2).with_s_key("Name").with_ascii_val(&import.module_name);
 
                self.kv(indent2).with_s_key("Target")
 
                    .with_opt_disp_val(import.module_id.as_ref().map(|v| &v.index));
 

	
 
                self.kv(indent2).with_s_key("Symbols");
 

	
 
                let indent3 = indent2 + 1;
 
                let indent4 = indent3 + 1;
 
                for symbol in &import.symbols {
 
                    self.kv(indent3).with_s_key("AliasedSymbol");
 
                    self.kv(indent4).with_s_key("Name").with_ascii_val(&symbol.name);
 
                    self.kv(indent4).with_s_key("Alias").with_ascii_val(&symbol.alias);
 
                    self.kv(indent4).with_s_key("Name").with_ascii_val(&symbol.name.value);
 
                    self.kv(indent4).with_s_key("Alias").with_ascii_val(&symbol.alias.value);
 
                    self.kv(indent4).with_s_key("Definition")
 
                        .with_opt_disp_val(symbol.definition_id.as_ref().map(|v| &v.index));
 
                }
 
            }
 
        }
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Top-level definition writing
 
    //--------------------------------------------------------------------------
 

	
 
    fn write_definition(&mut self, heap: &Heap, def_id: DefinitionId, indent: usize) {
 
@@ -621,27 +621,27 @@ impl ASTWriter {
 
                let val = self.kv(indent2).with_s_key("Value");
 
                match &expr.value {
 
                    Literal::Null => { val.with_s_val("null"); },
 
                    Literal::True => { val.with_s_val("true"); },
 
                    Literal::False => { val.with_s_val("false"); },
 
                    Literal::Character(data) => { val.with_ascii_val(data); },
 
                    Literal::Integer(data) => { val.with_disp_val(data); },
 
                    Literal::Struct(data) => {
 
                        val.with_s_val("Struct");
 
                        let indent4 = indent3 + 1;
 

	
 
                        // Polymorphic arguments
 
                        if !data.poly_args.is_empty() {
 
                        if !data.poly_args2.is_empty() {
 
                            self.kv(indent3).with_s_key("PolymorphicArguments");
 
                            for poly_arg in &data.poly_args {
 
                            for poly_arg in &data.poly_args2 {
 
                                self.kv(indent4).with_s_key("Argument")
 
                                    .with_custom_val(|v| write_parser_type(v, heap, &heap[*poly_arg]));
 
                            }
 
                        }
 

	
 
                        for field in &data.fields {
 
                            self.kv(indent3).with_s_key("Field");
 
                            self.kv(indent4).with_s_key("Name").with_ascii_val(&field.identifier.value);
 
                            self.kv(indent4).with_s_key("Index").with_disp_val(&field.field_idx);
 
                            self.kv(indent4).with_s_key("ParserType");
 
                            self.write_expr(heap, field.value, indent4 + 1);
 
                        }
 
@@ -762,25 +762,25 @@ fn write_parser_type(target: &mut String, heap: &Heap, t: &ParserType) {
 
            target.push_str(&String::from_utf8_lossy(&symbolic.identifier.value));
 
            match symbolic.variant {
 
                Some(SymbolicParserTypeVariant::PolyArg(def_id, idx)) => {
 
                    target.push_str(&format!("{{def: {}, idx: {}}}", def_id.index, idx));
 
                },
 
                Some(SymbolicParserTypeVariant::Definition(def_id)) => {
 
                    target.push_str(&format!("{{def: {}}}", def_id.index));
 
                },
 
                None => {
 
                    target.push_str("{None}");
 
                }
 
            }
 
            embedded.extend(&symbolic.poly_args);
 
            embedded.extend(&symbolic.poly_args2);
 
        }
 
    };
 

	
 
    if !embedded.is_empty() {
 
        target.push_str("<");
 
        for (idx, embedded_id) in embedded.into_iter().enumerate() {
 
            if idx != 0 { target.push_str(", "); }
 
            write_parser_type(target, heap, &heap[embedded_id]);
 
        }
 
        target.push_str(">");
 
    }
 
}
src/protocol/lexer.rs
Show inline comments
 
use crate::protocol::ast::*;
 
use crate::protocol::inputsource::*;
 

	
 
const MAX_LEVEL: usize = 128;
 
const MAX_NAMESPACES: u8 = 8; // only three levels are supported at the moment
 

	
 
macro_rules! debug_log {
 
    ($format:literal) => {
 
        enabled_debug_print!(false, "lexer", $format);
 
        enabled_debug_print!(true, "lexer", $format);
 
    };
 
    ($format:literal, $($args:expr),*) => {
 
        enabled_debug_print!(false, "lexer", $format, $($args),*);
 
        enabled_debug_print!(true, "lexer", $format, $($args),*);
 
    };
 
}
 

	
 
macro_rules! debug_line {
 
    ($source:expr) => {
 
        {
 
            let mut buffer = String::with_capacity(128);
 
            for idx in 0..buffer.capacity() {
 
                let next = $source.lookahead(idx);
 
                if next.is_none() || Some(b'\n') == next { break; }
 
                buffer.push(next.unwrap() as char);
 
            }
 
@@ -85,24 +85,37 @@ fn is_integer_rest(x: Option<u8>) -> bool {
 
        false
 
    }
 
}
 

	
 
fn lowercase(x: u8) -> u8 {
 
    if x >= b'A' && x <= b'Z' {
 
        x - b'A' + b'a'
 
    } else {
 
        x
 
    }
 
}
 

	
 
fn identifier_as_namespaced(identifier: Identifier) -> NamespacedIdentifier2 {
 
    let identifier_len = identifier.value.len();
 
    debug_assert!(identifier_len < u16::max_value() as usize);
 
    NamespacedIdentifier2{
 
        position: identifier.position,
 
        value: identifier.value,
 
        poly_args: Vec::new(),
 
        parts: vec![
 
            NamespacedIdentifierPart::Identifier{start: 0, end: identifier_len as u16}
 
        ],
 
    }
 
}
 

	
 
pub struct Lexer<'a> {
 
    source: &'a mut InputSource,
 
    level: usize,
 
}
 

	
 
impl Lexer<'_> {
 
    pub fn new(source: &mut InputSource) -> Lexer {
 
        Lexer { source, level: 0 }
 
    }
 
    fn error_at_pos(&self, msg: &str) -> ParseError2 {
 
        ParseError2::new_error(self.source, self.source.pos(), msg)
 
    }
 
@@ -469,24 +482,28 @@ impl Lexer<'_> {
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn consume_namespaced_identifier2(&mut self, h: &mut Heap) -> Result<NamespacedIdentifier2, ParseError2> {
 
        if self.has_reserved() {
 
            return Err(self.error_at_pos("Encountered reserved keyword"));
 
        }
 

	
 
        // Consumes a part of the namespaced identifier, returns a boolean
 
        // indicating whether polymorphic arguments were specified.
 
        // TODO: Continue here: if we fail to properly parse the polymorphic
 
        //  arguments, assume we have reached the end of the namespaced 
 
        //  identifier and are instead dealing with a less-than operator. Ugly?
 
        //  Yes. Needs tokenizer? Yes. 
 
        fn consume_part(
 
            l: &mut Lexer, h: &mut Heap, ident: &mut NamespacedIdentifier2,
 
            backup_pos: &mut InputPosition
 
        ) -> Result<(), ParseError2> {
 
            // Consume identifier
 
            let ident_start = ident.value.len();
 
            ident.value.extend(l.consume_ident()?);
 
            ident.parts.push(NamespacedIdentifierPart::Identifier{
 
                start: ident_start as u16,
 
                end: ident.value.len() as u16
 
            });
 

	
 
@@ -621,25 +638,25 @@ impl Lexer<'_> {
 
                .map_err(|infer_error| {
 
                    let msg = if infer_error {
 
                        "Type inference is not allowed here"
 
                    } else {
 
                        "Type 'out' only allows for 1 polymorphic argument, but {} were specified"
 
                    };
 
                    ParseError2::new_error(&self.source, pos, msg)
 
                })?;
 
            ParserTypeVariant::Output(poly_arg)
 
        } else {
 
            // Must be a symbolic type
 
            let identifier = self.consume_namespaced_identifier2(h)?;
 
            ParserTypeVariant::Symbolic(SymbolicParserType{identifier, variant: None})
 
            ParserTypeVariant::Symbolic(SymbolicParserType{identifier, variant: None, poly_args2: Vec::new()})
 
        };
 

	
 
        // If the type was a basic type (not supporting polymorphic type
 
        // arguments), then we make sure the user did not specify any of them.
 
        let mut backup_pos = self.source.pos();
 
        if !parser_type_variant.supports_polymorphic_args() {
 
            self.consume_whitespace(false)?;
 
            if let Some(b'<') = self.source.next() {
 
                return Err(ParseError2::new_error(
 
                    &self.source, self.source.pos(),
 
                    "This type does not allow polymorphic arguments"
 
                ));
 
@@ -1548,24 +1565,25 @@ impl Lexer<'_> {
 
            None => return Err(ParseError2::new_error(
 
                self.source, self.source.pos(),
 
                "A struct literal must be followed by its field values"
 
            ))
 
        };
 

	
 
        Ok(h.alloc_literal_expression(|this| LiteralExpression{
 
            this,
 
            position,
 
            value: Literal::Struct(LiteralStruct{
 
                identifier,
 
                fields,
 
                poly_args2: Vec::new(),
 
                definition: None,
 
            }),
 
            parent: ExpressionParent::None,
 
            concrete_type: Default::default()
 
        }))
 
    }
 

	
 
    fn has_call_expression(&mut self) -> bool {
 
        // We need to prevent ambiguity with various operators (because we may
 
        // be specifying polymorphic variables) and variables.
 
        if self.has_builtin_keyword() {
 
            return true;
 
@@ -1581,49 +1599,56 @@ impl Lexer<'_> {
 
            self.source.next() == Some(b'(') {
 
            // Seems like we have a function call or an enum literal
 
            result = true;
 
        }
 

	
 
        self.source.seek(backup_pos);
 
        return result;
 
    }
 
    fn consume_call_expression(&mut self, h: &mut Heap) -> Result<CallExpressionId, ParseError2> {
 
        let position = self.source.pos();
 

	
 
        // Consume method identifier
 
        // TODO: @token Replace this conditional polymorphic arg parsing once we have a tokenizer.
 
        debug_log!("consume_call_expression: {}", debug_line!(self.source));
 
        let method;
 
        let mut consume_poly_args_explicitly = true;
 
        if self.has_keyword(b"get") {
 
            self.consume_keyword(b"get")?;
 
            method = Method::Get;
 
        } else if self.has_keyword(b"put") {
 
            self.consume_keyword(b"put")?;
 
            method = Method::Put;
 
        } else if self.has_keyword(b"fires") {
 
            self.consume_keyword(b"fires")?;
 
            method = Method::Fires;
 
        } else if self.has_keyword(b"create") {
 
            self.consume_keyword(b"create")?;
 
            method = Method::Create;
 
        } else {
 
            let identifier = self.consume_namespaced_identifier2(h)?;
 
            method = Method::Symbolic(MethodSymbolic{
 
                identifier,
 
                definition: None
 
            })
 
        }
 
            });
 
            consume_poly_args_explicitly = false;
 
        };
 

	
 
        // Consume polymorphic arguments
 
        let poly_args = if consume_poly_args_explicitly {
 
            self.consume_whitespace(false)?;
 
        let poly_args = self.consume_polymorphic_args(h, true)?.unwrap_or_default();
 
            self.consume_polymorphic_args(h, true)?.unwrap_or_default()
 
        } else {
 
            Vec::new()
 
        };
 

	
 
        // Consume arguments to call
 
        self.consume_whitespace(false)?;
 
        let mut arguments = Vec::new();
 
        self.consume_string(b"(")?;
 
        self.consume_whitespace(false)?;
 
        if !self.has_string(b")") {
 
            // TODO: allow trailing comma
 
            while self.source.next().is_some() {
 
                arguments.push(self.consume_expression(h)?);
 
                self.consume_whitespace(false)?;
 
                if self.has_string(b")") {
 
@@ -1641,25 +1666,28 @@ impl Lexer<'_> {
 
            arguments,
 
            poly_args,
 
            parent: ExpressionParent::None,
 
            concrete_type: ConcreteType::default(),
 
        }))
 
    }
 
    fn consume_variable_expression(
 
        &mut self,
 
        h: &mut Heap,
 
    ) -> Result<VariableExpressionId, ParseError2> {
 
        let position = self.source.pos();
 
        debug_log!("consume_variable_expression: {}", debug_line!(self.source));
 
        let identifier = self.consume_namespaced_identifier()?;
 

	
 
        // TODO: @token Reimplement when tokenizer is implemented, prevent ambiguities
 
        let identifier = identifier_as_namespaced(self.consume_identifier()?);
 

	
 
        Ok(h.alloc_variable_expression(|this| VariableExpression {
 
            this,
 
            position,
 
            identifier,
 
            declaration: None,
 
            parent: ExpressionParent::None,
 
            concrete_type: ConcreteType::default(),
 
        }))
 
    }
 

	
 
    // ====================
 
    // Statements
 
@@ -1902,29 +1930,25 @@ impl Lexer<'_> {
 
        self.consume_string(b";")?;
 

	
 
        // Transform into the variable declaration, followed by an assignment
 
        let memory_stmt_id = h.alloc_memory_statement(|this| MemoryStatement {
 
            this,
 
            position,
 
            variable,
 
            next: None,
 
        });
 
        let variable_expr_id = h.alloc_variable_expression(|this| VariableExpression{
 
            this,
 
            position: identifier.position.clone(),
 
            identifier: NamespacedIdentifier {
 
                position: identifier.position.clone(),
 
                num_namespaces: 1,
 
                value: identifier.value.clone(),
 
            },
 
            identifier: identifier_as_namespaced(identifier),
 
            declaration: None,
 
            parent: ExpressionParent::None,
 
            concrete_type: Default::default()
 
        });
 
        let assignment_expr_id = h.alloc_assignment_expression(|this| AssignmentExpression{
 
            this,
 
            position: assignment_position,
 
            left: variable_expr_id.upcast(),
 
            operation: AssignmentOperator::Set,
 
            right: initial,
 
            parent: ExpressionParent::None,
 
            concrete_type: Default::default()
src/protocol/parser/mod.rs
Show inline comments
 
@@ -158,25 +158,25 @@ impl Parser {
 
                    let target_module_id = self.symbol_table.resolve_module(&import.module_name)
 
                        .expect("module import is resolved by symbol table");
 
                    import.module_id = Some(target_module_id)
 
                },
 
                Import::Symbols(import) => {
 
                    debug_assert!(import.module_id.is_none(), "module of symbol import already resolved");
 
                    let target_module_id = self.symbol_table.resolve_module(&import.module_name)
 
                        .expect("symbol import's module is resolved by symbol table");
 
                    import.module_id = Some(target_module_id);
 

	
 
                    for symbol in &mut import.symbols {
 
                        debug_assert!(symbol.definition_id.is_none(), "symbol import already resolved");
 
                        let (_, target_definition_id) = self.symbol_table.resolve_symbol(module_root_id, &symbol.alias)
 
                        let (_, target_definition_id) = self.symbol_table.resolve_identifier(module_root_id, &symbol.alias)
 
                            .expect("symbol import is resolved by symbol table")
 
                            .as_definition()
 
                            .expect("symbol import does not resolve to namespace symbol");
 
                        symbol.definition_id = Some(target_definition_id);
 
                    }
 
                }
 
            }
 

	
 
            import_index += 1;
 
        }
 

	
 
        // All imports in the AST are now annotated. We now use the symbol table
src/protocol/parser/symbol_table.rs
Show inline comments
 
@@ -14,38 +14,25 @@ use crate::protocol::parser::LexedModule;
 
#[derive(PartialEq, Eq, Hash)]
 
struct SymbolKey {
 
    module_id: RootId,
 
    symbol_name: Vec<u8>,
 
}
 

	
 
impl SymbolKey {
 
    fn from_identifier(module_id: RootId, symbol: &Identifier) -> Self {
 
        Self{ module_id, symbol_name: symbol.value.clone() }
 
    }
 

	
 
    fn from_namespaced_identifier(module_id: RootId, symbol: &NamespacedIdentifier2) -> Self {
 
        // Strip polymorpic arguments from the identifier
 
        let symbol_name = Vec::with_capacity(symbol.value.len());
 
        debug_assert!(symbol.parts.len() > 0 && symbol.parts[0].is_identifier());
 

	
 
        let mut iter = symbol.iter();
 
        let (first_ident, _) = iter.next().unwrap();
 
        symbol_name.extend(first_ident);
 

	
 
        for (ident, _) in iter {
 
            symbol_name.push(b':');
 
            symbol_name.extend(ident);
 
        }
 

	
 
        Self{ module_id, symbol_name }
 
        Self{ module_id, symbol_name: symbol.strip_poly_args() }
 
    }
 
}
 

	
 
pub(crate) enum Symbol {
 
    Namespace(RootId),
 
    Definition((RootId, DefinitionId)),
 
}
 

	
 
pub(crate) struct SymbolValue {
 
    // Position is the place where the symbol is introduced to a module (this
 
    // position always corresponds to the module whose RootId is stored in the
 
    // `SymbolKey` associated with this `SymbolValue`). For a definition this
 
@@ -317,32 +304,46 @@ impl SymbolTable {
 
        debug_assert_eq!(
 
            self.symbol_lookup.len(), lookup_reserve_size,
 
            "miscalculated reserved size for symbol lookup table"
 
        );
 
        Ok(())
 
    }
 

	
 
    /// Resolves a module by its defined name
 
    pub(crate) fn resolve_module(&self, identifier: &Vec<u8>) -> Option<RootId> {
 
        self.module_lookup.get(identifier).map(|v| *v)
 
    }
 

	
 
    pub(crate) fn resolve_symbol<'t>(
 
        &'t self, root_module_id: RootId, identifier: &[u8]
 
    ) -> Option<&'t SymbolValue> {
 
        let lookup_key = SymbolKey{ module_id: root_module_id, symbol_name: Vec::from(identifier) };
 
        self.symbol_lookup.get(&lookup_key)
 
    }
 

	
 
    pub(crate) fn resolve_identifier<'t>(
 
        &'t self, root_module_id: RootId, identifier: &Identifier
 
    ) -> Option<&'t SymbolValue> {
 
        let lookup_key = SymbolKey::from_identifier(root_module_id, identifier);
 
        self.symbol_lookup.get(&lookup_key)
 
    }
 

	
 
    /// Resolves a namespaced symbol. This method will go as far as possible in
 
    /// going to the right symbol. It will halt the search when:
 
    /// 1. Polymorphic arguments are encountered on the identifier.
 
    /// 2. A non-namespace symbol is encountered.
 
    /// 3. A part of the identifier couldn't be resolved to anything
 
    /// The returned iterator will always point to the next symbol (even if 
 
    /// nothing was found)
 
    pub(crate) fn resolve_namespaced_symbol<'t, 'i>(
 
    pub(crate) fn resolve_namespaced_identifier<'t, 'i>(
 
        &'t self, root_module_id: RootId, identifier: &'i NamespacedIdentifier2
 
    ) -> (Option<&'t SymbolValue>, NamespacedIdentifier2Iter<'i>) {
 
        let mut iter = identifier.iter();
 
        let mut symbol: Option<&SymbolValue> = None;
 
        let mut within_module_id = root_module_id;
 

	
 
        while let Some((partial, poly_args)) = iter.next() {
 
            // Lookup the symbol within the currently iterated upon module
 
            let lookup_key = SymbolKey{ module_id: within_module_id, symbol_name: Vec::from(partial) };
 
            let new_symbol = self.symbol_lookup.get(&lookup_key);
 
            
 
            match new_symbol {
src/protocol/parser/type_resolver.rs
Show inline comments
 
@@ -2758,27 +2758,27 @@ impl TypeResolvingVisitor {
 
            embedded: embedded_types,
 
            returned: return_type
 
        });
 
    }
 

	
 
    fn insert_initial_struct_polymorph_data(
 
        &mut self, ctx: &mut Ctx, lit_id: LiteralExpressionId,
 
    ) {
 
        use InferenceTypePart as ITP;
 
        let literal = ctx.heap[lit_id].value.as_struct();
 

	
 
        // Handle polymorphic arguments
 
        let mut poly_vars = Vec::with_capacity(literal.poly_args.len());
 
        let mut poly_vars = Vec::with_capacity(literal.poly_args2.len());
 
        let mut total_num_poly_parts = 0;
 
        for poly_arg_type_id in literal.poly_args.clone() { // TODO: @performance
 
        for poly_arg_type_id in literal.poly_args2.clone() { // TODO: @performance
 
            let inference_type = self.determine_inference_type_from_parser_type(
 
                ctx, poly_arg_type_id, true
 
            ); 
 
            total_num_poly_parts += inference_type.parts.len();
 
            poly_vars.push(inference_type);
 
        }
 

	
 
        // Handle parser types on struct definition
 
        let definition = &ctx.heap[literal.definition.unwrap()];
 
        let definition = match definition {
 
            Definition::Struct(definition) => {
 
                debug_assert_eq!(poly_vars.len(), definition.poly_vars.len());
 
@@ -2922,25 +2922,25 @@ impl TypeResolvingVisitor {
 
                    infer_type.push(ITP::Input);
 
                    to_consider.push_front(*subtype_id);
 
                },
 
                PTV::Output(subtype_id) => {
 
                    infer_type.push(ITP::Output);
 
                    to_consider.push_front(*subtype_id);
 
                },
 
                PTV::Symbolic(symbolic) => {
 
                    debug_assert!(symbolic.variant.is_some(), "symbolic variant not yet determined");
 
                    match symbolic.variant.as_ref().unwrap() {
 
                        SymbolicParserTypeVariant::PolyArg(_, arg_idx) => {
 
                            let arg_idx = *arg_idx;
 
                            debug_assert!(symbolic.poly_args.is_empty()); // TODO: @hkt
 
                            debug_assert!(symbolic.poly_args2.is_empty()); // TODO: @hkt
 

	
 
                            if parser_type_in_body {
 
                                // Polymorphic argument refers to definition's
 
                                // polymorphic variables
 
                                debug_assert!(arg_idx < self.poly_vars.len());
 
                                debug_assert!(!self.poly_vars[arg_idx].has_marker());
 
                                infer_type.push(ITP::MarkerDefinition(arg_idx));
 
                                for concrete_part in &self.poly_vars[arg_idx].parts {
 
                                    infer_type.push(ITP::from(*concrete_part));
 
                                }
 
                            } else {
 
                                // Polymorphic argument has to be inferred
 
@@ -2951,32 +2951,32 @@ impl TypeResolvingVisitor {
 
                            }
 
                        },
 
                        SymbolicParserTypeVariant::Definition(definition_id) => {
 
                            // TODO: @cleanup
 
                            if cfg!(debug_assertions) {
 
                                let definition = &ctx.heap[*definition_id];
 
                                debug_assert!(definition.is_struct() || definition.is_enum()); // TODO: @function_ptrs
 
                                let num_poly = match definition {
 
                                    Definition::Struct(v) => v.poly_vars.len(),
 
                                    Definition::Enum(v) => v.poly_vars.len(),
 
                                    _ => unreachable!(),
 
                                };
 
                                debug_assert_eq!(symbolic.poly_args.len(), num_poly);
 
                                debug_assert_eq!(symbolic.poly_args2.len(), num_poly);
 
                            }
 

	
 
                            infer_type.push(ITP::Instance(*definition_id, symbolic.poly_args.len()));
 
                            let mut poly_arg_idx = symbolic.poly_args.len();
 
                            infer_type.push(ITP::Instance(*definition_id, symbolic.poly_args2.len()));
 
                            let mut poly_arg_idx = symbolic.poly_args2.len();
 
                            while poly_arg_idx > 0 {
 
                                poly_arg_idx -= 1;
 
                                to_consider.push_front(symbolic.poly_args[poly_arg_idx]);
 
                                to_consider.push_front(symbolic.poly_args2[poly_arg_idx]);
 
                            }
 
                        }
 
                    }
 
                }
 
            }
 
        }
 

	
 
        InferenceType::new(has_markers, !has_inferred, infer_type)
 
    }
 

	
 
    /// Construct an error when an expression's type does not match. This
 
    /// happens if we infer the expression type from its arguments (e.g. the
src/protocol/parser/type_table.rs
Show inline comments
 
@@ -100,62 +100,62 @@ impl std::fmt::Display for TypeClass {
 

	
 
/// Struct wrapping around a potentially polymorphic type. If the type does not
 
/// have any polymorphic arguments then it will not have any monomorphs and
 
/// `is_polymorph` will be set to `false`. A type with polymorphic arguments
 
/// only has `is_polymorph` set to `true` if the polymorphic arguments actually
 
/// appear in the types associated types (function return argument, struct
 
/// field, enum variant, etc.). Otherwise the polymorphic argument is just a
 
/// marker and does not influence the bytesize of the type.
 
pub struct DefinedType {
 
    pub(crate) ast_root: RootId,
 
    pub(crate) ast_definition: DefinitionId,
 
    pub(crate) definition: DefinedTypeVariant,
 
    pub(crate) poly_args: Vec<PolyArg>,
 
    pub(crate) poly_vars: Vec<PolyVar>,
 
    pub(crate) is_polymorph: bool,
 
    pub(crate) is_pointerlike: bool,
 
    // TODO: @optimize
 
    pub(crate) monomorphs: Vec<Vec<ConcreteType>>,
 
}
 

	
 
impl DefinedType {
 
    fn add_monomorph(&mut self, types: Vec<ConcreteType>) {
 
        debug_assert!(!self.has_monomorph(&types), "monomorph already exists");
 
        self.monomorphs.push(types);
 
    }
 

	
 
    pub(crate) fn has_any_monomorph(&self) -> bool {
 
        !self.monomorphs.is_empty()
 
    }
 

	
 
    pub(crate) fn has_monomorph(&self, types: &Vec<ConcreteType>) -> bool {
 
        debug_assert_eq!(self.poly_args.len(), types.len(), "mismatch in number of polymorphic types");
 
        debug_assert_eq!(self.poly_vars.len(), types.len(), "mismatch in number of polymorphic types");
 
        for monomorph in &self.monomorphs {
 
            if monomorph == types { return true; }
 
        }
 

	
 
        return false;
 
    }
 
}
 

	
 
pub enum DefinedTypeVariant {
 
    Enum(EnumType),
 
    Union(UnionType),
 
    Struct(StructType),
 
    Function(FunctionType),
 
    Component(ComponentType)
 
}
 

	
 
pub struct PolyArg {
 
pub struct PolyVar {
 
    identifier: Identifier,
 
    /// Whether the polymorphic argument is used directly in the definition of
 
    /// Whether the polymorphic variables is used directly in the definition of
 
    /// the type (not including bodies of function/component types)
 
    is_in_use: bool,
 
}
 

	
 
impl DefinedTypeVariant {
 
    pub(crate) fn type_class(&self) -> TypeClass {
 
        match self {
 
            DefinedTypeVariant::Enum(_) => TypeClass::Enum,
 
            DefinedTypeVariant::Union(_) => TypeClass::Union,
 
            DefinedTypeVariant::Struct(_) => TypeClass::Struct,
 
            DefinedTypeVariant::Function(_) => TypeClass::Function,
 
            DefinedTypeVariant::Component(_) => TypeClass::Component
 
@@ -488,41 +488,41 @@ impl TypeTable {
 
                    identifier: variant.identifier.clone(),
 
                    parser_type,
 
                    tag_value,
 
                })
 
            }
 

	
 
            // Ensure union names and polymorphic args do not conflict
 
            self.check_identifier_collision(
 
                ctx, root_id, &variants, |variant| &variant.identifier, "enum variant"
 
            )?;
 
            self.check_poly_args_collision(ctx, root_id, &definition.poly_vars)?;
 

	
 
            let mut poly_args = self.create_initial_poly_args(&definition.poly_vars);
 
            let mut poly_args = self.create_initial_poly_vars(&definition.poly_vars);
 
            for variant in &variants {
 
                if let Some(embedded) = variant.parser_type {
 
                    self.check_and_resolve_embedded_type_and_modify_poly_args(ctx, definition_id, &mut poly_args, root_id, embedded)?;
 
                }
 
            }
 
            let is_polymorph = poly_args.iter().any(|arg| arg.is_in_use);
 

	
 
            // Insert base definition in type table
 
            self.lookup.insert(definition_id, DefinedType {
 
                ast_root: root_id,
 
                ast_definition: definition_id,
 
                definition: DefinedTypeVariant::Union(UnionType{
 
                    variants,
 
                    tag_representation: Self::enum_tag_type(-1, tag_value),
 
                }),
 
                poly_args,
 
                poly_vars: poly_args,
 
                is_polymorph,
 
                is_pointerlike: false, // TODO: @cyclic_types
 
                monomorphs: Vec::new()
 
            });
 
        } else {
 
            // Implement as a regular enum
 
            let mut enum_value = -1;
 
            let mut min_enum_value = 0;
 
            let mut max_enum_value = 0;
 
            let mut variants = Vec::with_capacity(definition.variants.len());
 
            for variant in &definition.variants {
 
                enum_value += 1;
 
@@ -556,25 +556,25 @@ impl TypeTable {
 
            self.check_poly_args_collision(ctx, root_id, &definition.poly_vars)?;
 

	
 
            // Note: although we cannot have embedded type dependent on the
 
            // polymorphic variables, they might still be present as tokens
 
            let definition_id = definition.this.upcast();
 
            self.lookup.insert(definition_id, DefinedType {
 
                ast_root: root_id,
 
                ast_definition: definition_id,
 
                definition: DefinedTypeVariant::Enum(EnumType{
 
                    variants,
 
                    representation: Self::enum_tag_type(min_enum_value, max_enum_value)
 
                }),
 
                poly_args: self.create_initial_poly_args(&definition.poly_vars),
 
                poly_vars: self.create_initial_poly_vars(&definition.poly_vars),
 
                is_polymorph: false,
 
                is_pointerlike: false,
 
                monomorphs: Vec::new()
 
            });
 
        }
 

	
 
        Ok(true)
 
    }
 

	
 
    /// Resolves the basic struct definition to an entry in the type table. It
 
    /// will not instantiate any monomorphized instances of polymorphic struct
 
    /// definitions.
 
@@ -599,38 +599,38 @@ impl TypeTable {
 
                identifier: field_definition.field.clone(),
 
                parser_type: field_definition.parser_type,
 
            })
 
        }
 

	
 
        // And make sure no conflicts exist in field names and/or polymorphic args
 
        self.check_identifier_collision(
 
            ctx, root_id, &fields, |field| &field.identifier, "struct field"
 
        )?;
 
        self.check_poly_args_collision(ctx, root_id, &definition.poly_vars)?;
 

	
 
        // Construct representation of polymorphic arguments
 
        let mut poly_args = self.create_initial_poly_args(&definition.poly_vars);
 
        let mut poly_args = self.create_initial_poly_vars(&definition.poly_vars);
 
        for field in &fields {
 
            self.check_and_resolve_embedded_type_and_modify_poly_args(ctx, definition_id, &mut poly_args, root_id, field.parser_type)?;
 
        }
 

	
 
        let is_polymorph = poly_args.iter().any(|arg| arg.is_in_use);
 

	
 
        self.lookup.insert(definition_id, DefinedType{
 
            ast_root: root_id,
 
            ast_definition: definition_id,
 
            definition: DefinedTypeVariant::Struct(StructType{
 
                fields,
 
            }),
 
            poly_args,
 
            poly_vars: poly_args,
 
            is_polymorph,
 
            is_pointerlike: false, // TODO: @cyclic
 
            monomorphs: Vec::new(),
 
        });
 

	
 
        Ok(true)
 
    }
 

	
 
    /// Resolves the basic function definition to an entry in the type table. It
 
    /// will not instantiate any monomorphized instances of polymorphic function
 
    /// definitions.
 
    fn resolve_base_function_definition(&mut self, ctx: &mut TypeCtx, root_id: RootId, definition_id: DefinitionId) -> Result<bool, ParseError2> {
 
@@ -667,42 +667,42 @@ impl TypeTable {
 
                identifier: param.identifier.clone(),
 
                parser_type: param.parser_type,
 
            })
 
        }
 

	
 
        // Check conflict of argument and polyarg identifiers
 
        self.check_identifier_collision(
 
            ctx, root_id, &arguments, |arg| &arg.identifier, "function argument"
 
        )?;
 
        self.check_poly_args_collision(ctx, root_id, &definition.poly_vars)?;
 

	
 
        // Construct polymorphic arguments
 
        let mut poly_args = self.create_initial_poly_args(&definition.poly_vars);
 
        let mut poly_args = self.create_initial_poly_vars(&definition.poly_vars);
 
        let return_type_id = definition.return_type;
 
        self.check_and_resolve_embedded_type_and_modify_poly_args(ctx, definition_id, &mut poly_args, root_id, return_type_id)?;
 
        for argument in &arguments {
 
            self.check_and_resolve_embedded_type_and_modify_poly_args(ctx, definition_id, &mut poly_args, root_id, argument.parser_type)?;
 
        }
 

	
 
        let is_polymorph = poly_args.iter().any(|arg| arg.is_in_use);
 

	
 
        // Construct entry in type table
 
        self.lookup.insert(definition_id, DefinedType{
 
            ast_root: root_id,
 
            ast_definition: definition_id,
 
            definition: DefinedTypeVariant::Function(FunctionType{
 
                return_type,
 
                arguments,
 
            }),
 
            poly_args,
 
            poly_vars: poly_args,
 
            is_polymorph,
 
            is_pointerlike: false, // TODO: @cyclic
 
            monomorphs: Vec::new(),
 
        });
 

	
 
        Ok(true)
 
    }
 

	
 
    /// Resolves the basic component definition to an entry in the type table.
 
    /// It will not instantiate any monomorphized instancees of polymorphic
 
    /// component definitions.
 
    fn resolve_base_component_definition(&mut self, ctx: &mut TypeCtx, root_id: RootId, definition_id: DefinitionId) -> Result<bool, ParseError2> {
 
@@ -731,40 +731,40 @@ impl TypeTable {
 
                identifier: param.identifier.clone(),
 
                parser_type: param.parser_type
 
            })
 
        }
 

	
 
        // Check conflict of argument and polyarg identifiers
 
        self.check_identifier_collision(
 
            ctx, root_id, &arguments, |arg| &arg.identifier, "component argument"
 
        )?;
 
        self.check_poly_args_collision(ctx, root_id, &definition.poly_vars)?;
 

	
 
        // Construct polymorphic arguments
 
        let mut poly_args = self.create_initial_poly_args(&definition.poly_vars);
 
        let mut poly_args = self.create_initial_poly_vars(&definition.poly_vars);
 
        for argument in &arguments {
 
            self.check_and_resolve_embedded_type_and_modify_poly_args(ctx, definition_id, &mut poly_args, root_id, argument.parser_type)?;
 
        }
 

	
 
        let is_polymorph = poly_args.iter().any(|v| v.is_in_use);
 

	
 
        // Construct entry in type table
 
        self.lookup.insert(definition_id, DefinedType{
 
            ast_root: root_id,
 
            ast_definition: definition_id,
 
            definition: DefinedTypeVariant::Component(ComponentType{
 
                variant: component_variant,
 
                arguments,
 
            }),
 
            poly_args,
 
            poly_vars: poly_args,
 
            is_polymorph,
 
            is_pointerlike: false, // TODO: @cyclic
 
            monomorphs: Vec::new(),
 
        });
 

	
 
        Ok(true)
 
    }
 

	
 
    /// Takes a ResolveResult and returns `true` if the caller can happily
 
    /// continue resolving its current type, or `false` if the caller must break
 
    /// resolving the current type and exit to the outer resolving loop. In the
 
    /// latter case the `result` value was `ResolveResult::Unresolved`, implying
 
@@ -848,32 +848,32 @@ impl TypeTable {
 
                PTV::Inferred => {
 
                    debug_assert!(false, "Encountered illegal ParserTypeVariant within type definition");
 
                    unreachable!();
 
                },
 
                // Symbolic type, make sure its base type, and the base types
 
                // of all members of the embedded type tree are resolved. We
 
                // don't care about monomorphs yet.
 
                PTV::Symbolic(symbolic) => {
 
                    // Check if the symbolic type is one of the definition's
 
                    // polymorphic arguments. If so then we can halt the
 
                    // execution
 
                    for (poly_arg_idx, poly_arg) in poly_vars.iter().enumerate() {
 
                        if symbolic.identifier == *poly_arg {
 
                        if symbolic.identifier.matches_identifier(poly_arg) {
 
                            set_resolve_result(ResolveResult::PolyArg(poly_arg_idx));
 
                            continue 'resolve_loop;
 
                        }
 
                    }
 

	
 
                    // Lookup the definition in the symbol table
 
                    let (symbol, mut ident_iter) = ctx.symbols.resolve_namespaced_symbol(root_id, &symbolic.identifier);
 
                    let (symbol, mut ident_iter) = ctx.symbols.resolve_namespaced_identifier(root_id, &symbolic.identifier);
 
                    if symbol.is_none() {
 
                        return Err(ParseError2::new_error(
 
                            &ctx.modules[root_id.index as usize].source, symbolic.identifier.position,
 
                            "Could not resolve type"
 
                        ))
 
                    }
 

	
 
                    let symbol_value = symbol.unwrap();
 
                    let module_source = &ctx.modules[root_id.index as usize].source;
 

	
 
                    match symbol_value.symbol {
 
                        Symbol::Namespace(_) => {
 
@@ -956,47 +956,47 @@ impl TypeTable {
 
                            }
 
                        }
 
                    }
 
                }
 
            }
 
        }
 

	
 
        // If here then all types in the embedded type's tree were resolved.
 
        debug_assert!(resolve_result.is_some(), "faulty logic in ParserType resolver");
 
        return Ok(resolve_result.unwrap())
 
    }
 

	
 
    fn create_initial_poly_args(&self, poly_args: &[Identifier]) -> Vec<PolyArg> {
 
    fn create_initial_poly_vars(&self, poly_args: &[Identifier]) -> Vec<PolyVar> {
 
        poly_args
 
            .iter()
 
            .map(|v| PolyArg{ identifier: v.clone(), is_in_use: false })
 
            .map(|v| PolyVar{ identifier: v.clone(), is_in_use: false })
 
            .collect()
 
    }
 

	
 
    /// This function modifies the passed `poly_args` by checking the embedded
 
    /// type tree. This should be called after `resolve_base_parser_type` is
 
    /// called on each node in this tree: we assume that each symbolic type was
 
    /// resolved to either a polymorphic arg or a definition.
 
    ///
 
    /// This function will also make sure that if the embedded type has
 
    /// polymorphic variables itself, that the number of polymorphic variables
 
    /// matches the number of arguments in the associated definition.
 
    ///
 
    /// Finally, for all embedded types (which includes function/component 
 
    /// arguments and return types) in type definitions we will modify the AST
 
    /// when the embedded type is a polymorphic variable or points to another
 
    /// user-defined type.
 
    fn check_and_resolve_embedded_type_and_modify_poly_args(
 
        &mut self, ctx: &mut TypeCtx, 
 
        type_definition_id: DefinitionId, poly_args: &mut [PolyArg], 
 
        type_definition_id: DefinitionId, poly_args: &mut [PolyVar], 
 
        root_id: RootId, embedded_type_id: ParserTypeId,
 
    ) -> Result<(), ParseError2> {
 
        use ParserTypeVariant as PTV;
 

	
 
        self.parser_type_iter.clear();
 
        self.parser_type_iter.push_back(embedded_type_id);
 

	
 
        'type_loop: while let Some(embedded_type_id) = self.parser_type_iter.pop_back() {
 
            let embedded_type = &mut ctx.heap[embedded_type_id];
 

	
 
            match &mut embedded_type.variant {
 
                PTV::Message | PTV::Bool | 
 
@@ -1004,92 +1004,87 @@ impl TypeTable {
 
                PTV::String => {
 
                    // Builtins, no modification/iteration required
 
                },
 
                PTV::IntegerLiteral | PTV::Inferred => {
 
                    // TODO: @hack Allowed for now so we can continue testing 
 
                    //  the parser/lexer
 
                    // debug_assert!(false, "encountered illegal parser type during ParserType/PolyArg modification");
 
                    // unreachable!();
 
                },
 
                PTV::Array(subtype_id) |
 
                PTV::Input(subtype_id) |
 
                PTV::Output(subtype_id) => {
 
                    // Outer type is fixed, but inner type might be symbolix
 
                    // Outer type is fixed, but inner type might be symbolic
 
                    self.parser_type_iter.push_back(*subtype_id);
 
                },
 
                PTV::Symbolic(symbolic) => {
 
                    for (poly_arg_idx, poly_arg) in poly_args.iter_mut().enumerate() {
 
                        if symbolic.identifier == poly_arg.identifier {
 
                        if symbolic.identifier.matches_identifier(&poly_arg.identifier) {
 
                            poly_arg.is_in_use = true;
 
                            // TODO: If we allow higher-kinded types in the future,
 
                            //  then we can't continue here, but must resolve the
 
                            //  polyargs as well
 
                            debug_assert!(!symbolic.identifier.has_poly_args(), "got polymorphic arguments to a polymorphic variable");
 
                            debug_assert!(symbolic.identifier.get_poly_args().is_none(), "got polymorphic arguments to a polymorphic variable");
 
                            debug_assert!(symbolic.variant.is_none(), "symbolic parser type's variant already resolved");
 
                            symbolic.variant = Some(SymbolicParserTypeVariant::PolyArg(type_definition_id, poly_arg_idx));
 
                            continue 'type_loop;
 
                        }
 
                    }
 

	
 
                    // Must match a definition
 
                    let (symbol, _) = ctx.symbols.resolve_namespaced_symbol(root_id, &symbolic.identifier);
 
                    let (symbol, ident_iter) = ctx.symbols.resolve_namespaced_identifier(root_id, &symbolic.identifier);
 
                    debug_assert!(symbol.is_some(), "could not resolve symbolic parser type when determining poly args");
 
                    let (symbol, ident_iter) = symbol.unwrap();
 
                    let symbol = symbol.unwrap();
 
                    debug_assert_eq!(ident_iter.num_remaining(), 0, "no exact symbol match when determining poly args");
 
                    let (_root_id, definition_id) = symbol.as_definition().unwrap();
 
    
 
                    // Must be a struct, enum, or union, we checked this
 
                    let defined_type = self.lookup.get(&definition_id).unwrap();
 
                    let (_, poly_args) = ident_iter.prev().unwrap();
 
                    let poly_args = poly_args.unwrap_or_default();
 

	
 
                    if cfg!(debug_assertions) {
 
                        // Make sure type class is correct
 
                        // Everything here should already be checked in 
 
                        // `resolve_base_parser_type`.
 
                        let type_class = defined_type.definition.type_class();
 
                        debug_assert!(
 
                            type_class == TypeClass::Struct || type_class == TypeClass::Enum || type_class == TypeClass::Union,
 
                            "embedded type's class is not struct, enum or union"
 
                        );
 
                        // Make sure polymorphic arguments occurred at the end
 
                        let num_poly = symbolic.identifier.iter()
 
                            .map(|(_, v)| v)
 
                            .filter(|v| v.is_some())
 
                            .count();
 
                        debug_assert!(num_poly <= 1, "more than one section with polymorphic arguments");
 
                        if num_poly == 1 {
 
                            let (_, poly_args) = symbolic.identifier.iter().last().unwrap();
 
                            debug_assert!(poly_args.is_some(), "got poly args, but not at end of identifier");
 
                        }
 
                        debug_assert_eq!(poly_args.len(), symbolic.identifier.poly_args.len());
 
                    }
 
    
 
                    if symbolic.poly_args.len() != defined_type.poly_args.len() {
 
                    if poly_args.len() != defined_type.poly_vars.len() {
 
                        // Mismatch in number of polymorphic arguments. This is 
 
                        // not allowed in type definitions (no inference is 
 
                        // allowed within type definitions, only in bodies of
 
                        // functions/components).
 
                        let module_source = &ctx.modules[root_id.index as usize].source;
 
                        let number_args_msg = if defined_type.poly_args.is_empty() {
 
                        let number_args_msg = if defined_type.poly_vars.is_empty() {
 
                            String::from("is not polymorphic")
 
                        } else {
 
                            format!("accepts {} polymorphic arguments", defined_type.poly_args.len())
 
                            format!("accepts {} polymorphic arguments", defined_type.poly_vars.len())
 
                        };
 
    
 
                        return Err(ParseError2::new_error(
 
                            module_source, symbolic.identifier.position,
 
                            &format!(
 
                                "The type '{}' {}, but {} polymorphic arguments were provided",
 
                                String::from_utf8_lossy(&symbolic.identifier.value),
 
                                number_args_msg, symbolic.poly_args.len()
 
                                String::from_utf8_lossy(&symbolic.identifier.strip_poly_args()),
 
                                number_args_msg, poly_args.len()
 
                            )
 
                        ));
 
                    }
 
    
 
                    self.parser_type_iter.extend(&symbolic.poly_args);
 
                    self.parser_type_iter.extend(poly_args);
 
                    debug_assert!(symbolic.variant.is_none(), "symbolic parser type's variant already resolved");
 
                    symbolic.variant = Some(SymbolicParserTypeVariant::Definition(definition_id));
 
                }
 
            }
 
        }
 

	
 
        // All nodes in the embedded type tree were valid
 
        Ok(())
 
    }
 

	
 
    /// Go through a list of identifiers and ensure that all identifiers have
 
    /// unique names
src/protocol/parser/utils.rs
Show inline comments
 
use crate::protocol::ast::*;
 
use crate::protocol::inputsource::*;
 
use super::symbol_table::*;
 
use super::type_table::*;
 

	
 
/// Utility result type.
 
pub(crate) enum FindTypeResult<'t, 'i> {
 
    // Found the type exactly
 
    Found(&'t DefinedType),
 
    Found((&'t DefinedType, NamespacedIdentifier2Iter<'i>)),
 
    // Could not match symbol
 
    SymbolNotFound{ident_pos: InputPosition},
 
    // Matched part of the namespaced identifier, but not completely
 
    SymbolPartial{ident_pos: InputPosition, symbol_pos: InputPosition, ident_iter: NamespacedIdentifierIter<'i>},
 
    SymbolPartial{ident_pos: InputPosition, symbol_pos: InputPosition, ident_iter: NamespacedIdentifier2Iter<'i>},
 
    // Symbol matched, but points to a namespace/module instead of a type
 
    SymbolNamespace{ident_pos: InputPosition, symbol_pos: InputPosition},
 
}
 

	
 
// TODO: @cleanup Find other uses of this pattern
 
impl<'t, 'i> FindTypeResult<'t, 'i> {
 
    /// Utility function to transform the `FindTypeResult` into a `Result` where
 
    /// `Ok` contains the resolved type, and `Err` contains a `ParseError` which
 
    /// can be readily returned. This is the most common use.
 
    pub(crate) fn as_parse_error(self, module_source: &InputSource) -> Result<&'t DefinedType, ParseError2> {
 
    pub(crate) fn as_parse_error(self, module_source: &InputSource) -> Result<(&'t DefinedType, NamespacedIdentifier2Iter<'i>), ParseError2> {
 
        match self {
 
            FindTypeResult::Found(defined_type) => Ok(defined_type),
 
            FindTypeResult::SymbolNotFound{ident_pos} => {
 
                Err(ParseError2::new_error(
 
                    module_source, ident_pos,
 
                    "Could not resolve this identifier to a symbol"
 
                ))
 
            },
 
            FindTypeResult::SymbolPartial{ident_pos, symbol_pos, ident_iter} => {
 
                Err(ParseError2::new_error(
 
                    module_source, ident_pos, 
 
                    "Could not fully resolve this identifier to a symbol"
 
@@ -50,46 +50,127 @@ impl<'t, 'i> FindTypeResult<'t, 'i> {
 
                    "This is the referenced namespace"
 
                ))
 
            }
 
        }
 
    }
 
}
 

	
 
/// Attempt to find the type pointer to by a (root, identifier) combination. The
 
/// type must match exactly (no parts in the namespace iterator remaining) and
 
/// must be a type, not a namespace. 
 
pub(crate) fn find_type_definition<'t, 'i>(
 
    symbols: &SymbolTable, types: &'t TypeTable, 
 
    root_id: RootId, identifier: &'i NamespacedIdentifier
 
    root_id: RootId, identifier: &'i NamespacedIdentifier2
 
) -> FindTypeResult<'t, 'i> {
 
    // Lookup symbol
 
    let symbol = symbols.resolve_namespaced_symbol(root_id, identifier);
 
    let (symbol, ident_iter) = symbols.resolve_namespaced_identifier(root_id, identifier);
 
    if symbol.is_none() { 
 
        return FindTypeResult::SymbolNotFound{ident_pos: identifier.position};
 
    }
 
    
 
    // Make sure we resolved it exactly
 
    let (symbol, ident_iter) = symbol.unwrap();
 
    let symbol = symbol.unwrap();
 
    if ident_iter.num_remaining() != 0 { 
 
        return FindTypeResult::SymbolPartial{
 
            ident_pos: identifier.position, 
 
            symbol_pos: symbol.position, 
 
            ident_iter
 
        };
 
    }
 

	
 
    match symbol.symbol {
 
        Symbol::Namespace(_) => {
 
            FindTypeResult::SymbolNamespace{
 
                ident_pos: identifier.position, 
 
                symbol_pos: symbol.position
 
            }
 
        },
 
        Symbol::Definition((_, definition_id)) => {
 
            // If this function is called correctly, then we should always be
 
            // able to match the definition's ID to an entry in the type table.
 
            let definition = types.get_base_definition(&definition_id);
 
            debug_assert!(definition.is_some());
 
            FindTypeResult::Found(definition.unwrap())
 
            FindTypeResult::Found((definition.unwrap(), ident_iter))
 
        }
 
    }
 
}
 

	
 
pub(crate) enum MatchPolymorphResult<'t> {
 
    Matching,
 
    InferAll(usize),
 
    Mismatch{defined_type: &'t DefinedType, ident_position: InputPosition, num_specified: usize},
 
    NoneExpected{defined_type: &'t DefinedType, ident_position: InputPosition, num_specified: usize},
 
}
 

	
 
impl<'t> MatchPolymorphResult<'t> {
 
    pub(crate) fn as_parse_error(self, heap: &Heap, module_source: &InputSource) -> Result<usize, ParseError2> {
 
        match self {
 
            MatchPolymorphResult::Matching => Ok(0),
 
            MatchPolymorphResult::InferAll(count) => {
 
                debug_assert!(count > 0);
 
                Ok(count)
 
            },
 
            MatchPolymorphResult::Mismatch{defined_type, ident_position, num_specified} => {
 
                let type_identifier = heap[defined_type.ast_definition].identifier();
 
                let args_name = if defined_type.poly_vars.len() == 1 {
 
                    "argument"
 
                } else {
 
                    "arguments"
 
                };
 

	
 
                return Err(ParseError2::new_error(
 
                    module_source, ident_position,
 
                    &format!(
 
                        "expected {} polymorphic {} (or none, to infer them) for the type {}, but {} were specified",
 
                        defined_type.poly_vars.len(), args_name, 
 
                        &String::from_utf8_lossy(&type_identifier.value),
 
                        num_specified
 
                    )
 
                ))
 
            },
 
            MatchPolymorphResult::NoneExpected{defined_type, ident_position, ..} => {
 
                let type_identifier = heap[defined_type.ast_definition].identifier();
 
                return Err(ParseError2::new_error(
 
                    module_source, ident_position,
 
                    &format!(
 
                        "the type {} is not polymorphic",
 
                        &String::from_utf8_lossy(&type_identifier.value)
 
                    )
 
                ))
 
            }
 
        }
 
    }
 
}
 

	
 
/// Attempt to match the polymorphic arguments to the number of polymorphic
 
/// variables in the definition.
 
pub(crate) fn match_polymorphic_args_to_vars<'t>(
 
    defined_type: &'t DefinedType, poly_args: Option<&[ParserTypeId]>, ident_position: InputPosition
 
) -> MatchPolymorphResult<'t> {
 
    if defined_type.poly_vars.is_empty() {
 
        // No polymorphic variables on type
 
        if poly_args.is_some() {
 
            return MatchPolymorphResult::NoneExpected{
 
                defined_type,
 
                ident_position, 
 
                num_specified: poly_args.unwrap().len()};
 
        }
 
    } else {
 
        // Polymorphic variables on type
 
        let has_specified = poly_args.map_or(false, |a| a.len() != 0);
 
        if !has_specified {
 
            // Implicitly infer all of the polymorphic arguments
 
            return MatchPolymorphResult::InferAll(defined_type.poly_vars.len());
 
        }
 

	
 
        let num_specified = poly_args.unwrap().len();
 
        if num_specified != defined_type.poly_vars.len() {
 
            return MatchPolymorphResult::Mismatch{
 
                defined_type,
 
                ident_position,
 
                num_specified,
 
            };
 
        }
 
    }
 

	
 
    MatchPolymorphResult::Matching
 
}
 
\ No newline at end of file
src/protocol/parser/visitor_linker.rs
Show inline comments
 
@@ -1066,112 +1066,99 @@ impl ValidityAndLinkerVisitor {
 
                PTV::Symbolic(symbolic) => {
 
                    // Retrieve poly_vars from function/component definition to
 
                    // match against.
 
                    let (definition_id, poly_vars) = match self.def_type {
 
                        DefinitionType::None => unreachable!(),
 
                        DefinitionType::Primitive(id) => (id.upcast(), &ctx.heap[id].poly_vars),
 
                        DefinitionType::Composite(id) => (id.upcast(), &ctx.heap[id].poly_vars),
 
                        DefinitionType::Function(id) => (id.upcast(), &ctx.heap[id].poly_vars),
 
                    };
 

	
 
                    let mut symbolic_variant = None;
 
                    for (poly_var_idx, poly_var) in poly_vars.iter().enumerate() {
 
                        if symbolic.identifier == *poly_var {
 
                        if symbolic.identifier.matches_identifier(poly_var) {
 
                            // Type refers to a polymorphic variable.
 
                            // TODO: @hkt Maybe allow higher-kinded types?
 
                            if !symbolic.poly_args.is_empty() {
 
                            if symbolic.identifier.get_poly_args().is_some() {
 
                                return Err(ParseError2::new_error(
 
                                    &ctx.module.source, symbolic.identifier.position,
 
                                    "Polymorphic arguments to a polymorphic variable (higher-kinded types) are not allowed (yet)"
 
                                ));
 
                            }
 
                            symbolic_variant = Some(SymbolicParserTypeVariant::PolyArg(definition_id, poly_var_idx));
 
                        }
 
                    }
 

	
 
                    if let Some(symbolic_variant) = symbolic_variant {
 
                        // Identifier points to a symbolic type
 
                        // Identifier points to a polymorphic argument
 
                        (symbolic.identifier.position, symbolic_variant, 0)
 
                    } else {
 
                        // Must be a user-defined type, otherwise an error
 
                        let found_type = find_type_definition(
 
                        let (found_type, ident_iter) = find_type_definition(
 
                            &ctx.symbols, &ctx.types, ctx.module.root_id, &symbolic.identifier
 
                        ).as_parse_error(&ctx.module.source)?;
 

	
 
                        // TODO: @function_ptrs: Allow function pointers at some
 
                        //  point in the future
 
                        if found_type.definition.type_class().is_proc_type() {
 
                            return Err(ParseError2::new_error(
 
                                &ctx.module.source, symbolic.identifier.position,
 
                                &format!(
 
                                    "This identifier points to a {} type, expected a datatype",
 
                                    found_type.definition.type_class()
 
                                )
 
                            ));
 
                        }
 

	
 
                        // If the type is polymorphic then we have two cases: if
 
                        // the programmer did not specify the polyargs then we
 
                        // assume we're going to infer all of them. Otherwise we
 
                        // make sure that they match in count.
 
                        if !found_type.poly_args.is_empty() && symbolic.poly_args.is_empty() {
 
                            // All inferred
 
                            (
 
                                symbolic.identifier.position,
 
                                SymbolicParserTypeVariant::Definition(found_type.ast_definition),
 
                                found_type.poly_args.len()
 
                            )
 
                        } else if symbolic.poly_args.len() != found_type.poly_args.len() {
 
                            return Err(ParseError2::new_error(
 
                                &ctx.module.source, symbolic.identifier.position,
 
                                &format!(
 
                                    "Expected {} polymorphic arguments (or none, to infer them), but {} were specified",
 
                                    found_type.poly_args.len(), symbolic.poly_args.len()
 
                                )
 
                            ))
 
                        } else {
 
                            // If here then the type is not polymorphic, or all
 
                            // types are properly specified by the user.
 
                            for specified_poly_arg in &symbolic.poly_args {
 
                                self.parser_type_buffer.push(*specified_poly_arg);
 
                            }
 
                        let (_, poly_args) = ident_iter.prev().unwrap();
 
                        let num_to_infer = match_polymorphic_args_to_vars(
 
                            found_type, poly_args, symbolic.identifier.position
 
                        ).as_parse_error(&ctx.heap, &ctx.module.source)?;
 

	
 
                        (
 
                            symbolic.identifier.position,
 
                            SymbolicParserTypeVariant::Definition(found_type.ast_definition),
 
                                0
 
                            num_to_infer
 
                        )
 
                    }
 
                }
 
                }
 
            };
 

	
 
            // If here then type is symbolic, perform a mutable borrow to set
 
            // the target of the symbolic type.
 
            // If here then type is symbolic, perform a mutable borrow (and do
 
            // some rust shenanigans) to set the required information.
 
            for _ in 0..num_inferred_to_allocate {
 
                // TODO: @hack, not very user friendly to manually allocate
 
                //  `inferred` ParserTypes with the InputPosition of the
 
                //  symbolic type's identifier.
 
                // We reuse the `parser_type_buffer` to temporarily store these
 
                // and we'll take them out later
 
                self.parser_type_buffer.push(ctx.heap.alloc_parser_type(|this| ParserType{
 
                    this,
 
                    pos: symbolic_pos,
 
                    variant: ParserTypeVariant::Inferred,
 
                }));
 
            }
 

	
 
            if let PTV::Symbolic(symbolic) = &mut ctx.heap[parser_type_id].variant {
 
                if num_inferred_to_allocate != 0 {
 
                    symbolic.poly_args2.reserve(num_inferred_to_allocate);
 
                    for _ in 0..num_inferred_to_allocate {
 
                    symbolic.poly_args.push(self.parser_type_buffer.pop().unwrap());
 
                        symbolic.poly_args2.push(self.parser_type_buffer.pop().unwrap());
 
                    }
 
                } else if !symbolic.identifier.poly_args.is_empty() {
 
                    symbolic.poly_args2.extend(&symbolic.identifier.poly_args)
 
                }
 
                symbolic.variant = Some(symbolic_variant);
 
            } else {
 
                unreachable!();
 
            }
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Utilities
 
@@ -1243,60 +1230,55 @@ impl ValidityAndLinkerVisitor {
 
            local_relative_pos = ctx.heap[scope.to_block()].relative_pos_in_parent;
 
        }
 

	
 
        // No collisions at all
 
        let block = &mut ctx.heap[self.cur_scope.as_ref().unwrap().to_block()];
 
        block.locals.push(id);
 

	
 
        Ok(())
 
    }
 

	
 
    /// Finds a variable in the visitor's scope that must appear before the
 
    /// specified relative position within that block.
 
    fn find_variable(&self, ctx: &Ctx, mut relative_pos: u32, identifier: &NamespacedIdentifier) -> Result<VariableId, ParseError2> {
 
    fn find_variable(&self, ctx: &Ctx, mut relative_pos: u32, identifier: &NamespacedIdentifier2) -> Result<VariableId, ParseError2> {
 
        debug_assert!(self.cur_scope.is_some());
 
        debug_assert!(identifier.num_namespaces > 0);
 

	
 
        // TODO: Update once globals are possible as well
 
        if identifier.num_namespaces > 1 {
 
            todo!("Implement namespaced constant seeking")
 
        }
 
        debug_assert!(identifier.parts.len() == 1, "implement namespaced seeking of target associated with identifier");
 

	
 
        // TODO: May still refer to an alias of a global symbol using a single
 
        //  identifier in the namespace.
 
        // No need to use iterator over namespaces if here
 
        let mut scope = self.cur_scope.as_ref().unwrap();
 
        
 
        loop {
 
            debug_assert!(scope.is_block());
 
            let block = &ctx.heap[scope.to_block()];
 
            
 
            for local_id in &block.locals {
 
                let local = &ctx.heap[*local_id];
 
                
 
                if local.relative_pos_in_block < relative_pos && local.identifier == *identifier {
 
                if local.relative_pos_in_block < relative_pos && identifier.matches_identifier(&local.identifier) {
 
                    return Ok(local_id.upcast());
 
                }
 
            }
 

	
 
            debug_assert!(block.parent_scope.is_some());
 
            scope = block.parent_scope.as_ref().unwrap();
 
            if !scope.is_block() {
 
                // Definition scope, need to check arguments to definition
 
                match scope {
 
                    Scope::Definition(definition_id) => {
 
                        let definition = &ctx.heap[*definition_id];
 
                        for parameter_id in definition.parameters() {
 
                            let parameter = &ctx.heap[*parameter_id];
 
                            if parameter.identifier == *identifier {
 
                            if identifier.matches_identifier(&parameter.identifier) {
 
                                return Ok(parameter_id.upcast());
 
                            }
 
                        }
 
                    },
 
                    _ => unreachable!(),
 
                }
 

	
 
                // Variable could not be found
 
                return Err(ParseError2::new_error(
 
                    &ctx.module.source, identifier.position, "This variable is not declared"
 
                ));
 
            } else {
 
@@ -1382,28 +1364,28 @@ impl ValidityAndLinkerVisitor {
 
                return Err(ParseError2::new_error(&ctx.module.source, identifier.position, "Could not find this label"));
 
            }
 

	
 
        }
 
    }
 

	
 
    /// Finds a particular symbol in the symbol table which must correspond to
 
    /// a definition of a particular type.
 
    // Note: root_id, symbols and types passed in explicitly to prevent
 
    //  borrowing errors
 
    fn find_symbol_of_type<'a>(
 
        &self, source: &InputSource, root_id: RootId, symbols: &SymbolTable, types: &'a TypeTable,
 
        identifier: &NamespacedIdentifier, expected_type_class: TypeClass
 
        identifier: &NamespacedIdentifier2, expected_type_class: TypeClass
 
    ) -> Result<&'a DefinedType, ParseError2> {
 
        // Find symbol associated with identifier
 
        let find_result = find_type_definition(symbols, types, root_id, identifier)
 
        let (find_result, _) = find_type_definition(symbols, types, root_id, identifier)
 
            .as_parse_error(source)?;
 

	
 
        let definition_type_class = find_result.definition.type_class();
 
        if expected_type_class != definition_type_class {
 
            return Err(ParseError2::new_error(
 
                source, identifier.position,
 
                &format!(
 
                    "Expected to find a {}, this symbol points to a {}",
 
                    expected_type_class, definition_type_class
 
                )
 
            ))
 
        }
 
@@ -1488,41 +1470,52 @@ impl ValidityAndLinkerVisitor {
 
                    ParseError2::new_error(&ctx.module.source, position, "Break may not escape the surrounding synchronous block")
 
                        .with_postfixed_info(&ctx.module.source, target_while.position, "The break escapes out of this loop")
 
                        .with_postfixed_info(&ctx.module.source, sync_stmt.position, "And would therefore escape this synchronous block")
 
                );
 
            }
 
        }
 

	
 
        Ok(target)
 
    }
 

	
 
    // TODO: @cleanup, merge with function below
 
    fn visit_call_poly_args(&mut self, ctx: &mut Ctx, call_id: CallExpressionId) -> VisitorResult {
 
        // TODO: @token Revisit when tokenizer is implemented
 
        let call_expr = &mut ctx.heap[call_id];
 
        if let Method::Symbolic(symbolic) = &mut call_expr.method {
 
            if let Some(poly_args) = symbolic.identifier.get_poly_args() {
 
                call_expr.poly_args.extend(poly_args);
 
            }
 
        }
 

	
 
        let call_expr = &ctx.heap[call_id];
 

	
 
        // Determine the polyarg signature
 
        let num_expected_poly_args = match &call_expr.method {
 
            Method::Create => {
 
                0
 
            },
 
            Method::Fires => {
 
                1
 
            },
 
            Method::Get => {
 
                1
 
            },
 
            Method::Put => {
 
                1
 
            }
 
            Method::Symbolic(symbolic) => {
 
                // Retrieve type and make sure number of specified polymorphic 
 
                // arguments is correct
 

	
 
                let definition = &ctx.heap[symbolic.definition.unwrap()];
 
                match definition {
 
                    Definition::Function(definition) => definition.poly_vars.len(),
 
                    Definition::Component(definition) => definition.poly_vars.len(),
 
                    _ => {
 
                        debug_assert!(false, "expected function or component definition while visiting call poly args");
 
                        unreachable!();
 
                    }
 
                }
 
            }
 
        };
 

	
 
@@ -1562,80 +1555,71 @@ impl ValidityAndLinkerVisitor {
 
        } else {
 
            return Err(ParseError2::new_error(
 
                &ctx.module.source, call_expr.position,
 
                &format!(
 
                    "Expected {} polymorphic arguments (or none, to infer them), but {} were specified",
 
                    num_expected_poly_args, call_expr.poly_args.len()
 
                )
 
            ));
 
        }
 
    }
 

	
 
    fn visit_literal_poly_args(&mut self, ctx: &mut Ctx, lit_id: LiteralExpressionId) -> VisitorResult {
 
        // TODO: @token Revisit when tokenizer is implemented
 
        let literal_expr = &mut ctx.heap[lit_id];
 
        if let Literal::Struct(literal) = &mut literal_expr.value {
 
            literal.poly_args2.extend(&literal.identifier.poly_args);
 
        }
 

	
 
        let literal_expr = &ctx.heap[lit_id];
 
        let literal_pos = literal_expr.position;
 
        let (num_specified, num_expected) = match &literal_expr.value {
 
        let num_poly_args_to_infer = match &literal_expr.value {
 
            Literal::Null | Literal::False | Literal::True |
 
            Literal::Character(_) | Literal::Integer(_) => {
 
                // Not really an error, but a programmer error as we're likely
 
                // doing work twice
 
                debug_assert!(false, "called visit_literal_poly_args on a non-polymorphic literal");
 
                unreachable!();
 
            },
 
            Literal::Struct(literal) => {
 
                let definition = &ctx.heap[literal.definition.unwrap()];
 
                let num_expected = match definition {
 
                    Definition::Struct(definition) => definition.poly_vars.len(),
 
                    _ => {
 
                        debug_assert!(false, "expected struct literal while visiting literal poly args");
 
                        unreachable!();
 
                    }
 
                };
 
                let num_specified = literal.poly_args.len();
 

	
 
                // Visit all embedded parser types (they might not be of the
 
                // correct length, but we check this below)
 
                // Retrieve type and make sure number of specified polymorphic
 
                // arguments is correct.
 
                let defined_type = ctx.types.get_base_definition(literal.definition.as_ref().unwrap())
 
                    .unwrap();
 
                let maybe_poly_args = literal.identifier.get_poly_args();
 
                let num_to_infer = match_polymorphic_args_to_vars(
 
                    defined_type, maybe_poly_args, literal.identifier.position
 
                ).as_parse_error(&ctx.heap, &ctx.module.source)?;
 

	
 
                // Visit all specified parser types
 
                let old_num_types = self.parser_type_buffer.len();
 
                self.parser_type_buffer.extend(&literal.poly_args);
 
                self.parser_type_buffer.extend(&literal.poly_args2);
 
                while self.parser_type_buffer.len() > old_num_types {
 
                    let parser_type_id = self.parser_type_buffer.pop().unwrap();
 
                    self.visit_parser_type(ctx, parser_type_id)?;
 
                }
 
                self.parser_type_buffer.truncate(old_num_types);
 

	
 
                (num_specified, num_expected)
 
                num_to_infer
 
            }
 
        };
 

	
 
        if num_specified == 0 {
 
            // None are specified
 
            if num_expected != 0 {
 
                // So assumed to all be inferred
 
                for _ in 0..num_expected {
 
        if num_poly_args_to_infer != 0 {
 
            for _ in 0..num_poly_args_to_infer {
 
                self.parser_type_buffer.push(ctx.heap.alloc_parser_type(|this| ParserType{
 
                    this, pos: literal_pos, variant: ParserTypeVariant::Inferred
 
                }));
 
            }
 

	
 
            let literal = match &mut ctx.heap[lit_id].value {
 
                Literal::Struct(literal) => literal,
 
                _ => unreachable!(),
 
            };
 
                literal.poly_args.reserve(num_expected);
 
                for _ in 0..num_expected {
 
                    literal.poly_args.push(self.parser_type_buffer.pop().unwrap());
 
            literal.poly_args2.reserve(num_poly_args_to_infer);
 
            for _ in 0..num_poly_args_to_infer {
 
                literal.poly_args2.push(self.parser_type_buffer.pop().unwrap());
 
            }
 
        }
 
        } else if num_specified != num_expected {
 
            // Incorrect specification of poly args
 
            return Err(ParseError2::new_error(
 
                &ctx.module.source, literal_pos,
 
                &format!(
 
                    "Expected {} polymorphic arguments (or none, to infer them), but {} were specified",
 
                    num_expected, num_specified
 
                )
 
            ))
 
        }
 

	
 
        Ok(())
 
    }
 
}
 
\ No newline at end of file
src/protocol/tests/utils.rs
Show inline comments
 
@@ -666,27 +666,27 @@ fn serialize_parser_type(buffer: &mut String, heap: &Heap, id: ParserTypeId) {
 
        PTV::Input(sub_id) => {
 
            buffer.push_str("in<");
 
            serialize_parser_type(buffer, heap, *sub_id);
 
            buffer.push('>');
 
        },
 
        PTV::Output(sub_id) => {
 
            buffer.push_str("out<");
 
            serialize_parser_type(buffer, heap, *sub_id);
 
            buffer.push('>');
 
        },
 
        PTV::Symbolic(symbolic) => {
 
            buffer.push_str(&String::from_utf8_lossy(&symbolic.identifier.value));
 
            if symbolic.poly_args.len() > 0 {
 
            if symbolic.poly_args2.len() > 0 {
 
                buffer.push('<');
 
                for (poly_idx, poly_arg) in symbolic.poly_args.iter().enumerate() {
 
                for (poly_idx, poly_arg) in symbolic.poly_args2.iter().enumerate() {
 
                    if poly_idx != 0 { buffer.push(','); }
 
                    serialize_parser_type(buffer, heap, *poly_arg);
 
                }
 
                buffer.push('>');
 
            }
 
        }
 
    }
 
}
 

	
 
fn serialize_concrete_type(buffer: &mut String, heap: &Heap, def: DefinitionId, concrete: &ConcreteType) {
 
    // Retrieve polymorphic variables, if present (since we're dealing with a 
 
    // concrete type we only expect procedure types)
0 comments (0 inline, 0 general)