Changeset - 28df9835906f
[Not reviewed]
0 10 0
MH - 4 years ago 2021-04-02 14:05:27
contact@maxhenger.nl
Reimplement namespaced identifier to support polymorphic args

This is somewhat of a temporary hack, as a namespaced identifier should
not really refer to types or polymorphic arguments. But we need a
tokenizer and a prepass to properly distinguish identifiers from types.
So it works, but error messages may be cryptic.
7 files changed:
0 comments (0 inline, 0 general)
src/protocol/ast.rs
Show inline comments
 
@@ -486,842 +486,936 @@ impl Index<ChannelStatementId> for Heap {
 
    fn index(&self, index: ChannelStatementId) -> &Self::Output {
 
        &self.statements[index.0.0].as_channel()
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct Root {
 
    pub this: RootId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub pragmas: Vec<PragmaId>,
 
    pub imports: Vec<ImportId>,
 
    pub definitions: Vec<DefinitionId>,
 
}
 

	
 
impl Root {
 
    pub fn get_definition_ident(&self, h: &Heap, id: &[u8]) -> Option<DefinitionId> {
 
        for &def in self.definitions.iter() {
 
            if h[def].identifier().value == id {
 
                return Some(def);
 
            }
 
        }
 
        None
 
    }
 
}
 

	
 
impl SyntaxElement for Root {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum Pragma {
 
    Version(PragmaVersion),
 
    Module(PragmaModule)
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct PragmaVersion {
 
    pub this: PragmaId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub version: u64,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct PragmaModule {
 
    pub this: PragmaId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub value: Vec<u8>,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct PragmaOld {
 
    pub this: PragmaId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub value: Vec<u8>,
 
}
 

	
 
impl SyntaxElement for PragmaOld {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum Import {
 
    Module(ImportModule),
 
    Symbols(ImportSymbols)
 
}
 

	
 
impl Import {
 
    pub(crate) fn as_module(&self) -> &ImportModule {
 
        match self {
 
            Import::Module(m) => m,
 
            _ => panic!("Unable to cast 'Import' to 'ImportModule'")
 
        }
 
    }
 
    pub(crate) fn as_symbols(&self) -> &ImportSymbols {
 
        match self {
 
            Import::Symbols(m) => m,
 
            _ => panic!("Unable to cast 'Import' to 'ImportSymbols'")
 
        }
 
    }
 
}
 

	
 
impl SyntaxElement for Import {
 
    fn position(&self) -> InputPosition {
 
        match self {
 
            Import::Module(m) => m.position,
 
            Import::Symbols(m) => m.position
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct ImportModule {
 
    pub this: ImportId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub module_name: Vec<u8>,
 
    pub alias: Identifier,
 
    // Phase 2: module resolving
 
    pub module_id: Option<RootId>,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct AliasedSymbol {
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub name: Identifier,
 
    pub alias: Identifier,
 
    // Phase 2: symbol resolving
 
    pub definition_id: Option<DefinitionId>,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct ImportSymbols {
 
    pub this: ImportId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub module_name: Vec<u8>,
 
    // Phase 2: module resolving
 
    pub module_id: Option<RootId>,
 
    // Phase 1&2
 
    // if symbols is empty, then we implicitly import all symbols without any
 
    // aliases for them. If it is not empty, then symbols are explicitly
 
    // specified, and optionally given an alias.
 
    pub symbols: Vec<AliasedSymbol>,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct Identifier {
 
    pub position: InputPosition,
 
    pub value: Vec<u8>
 
}
 

	
 
impl PartialEq for Identifier {
 
    fn eq(&self, other: &Self) -> bool {
 
        return self.value == other.value
 
    }
 
}
 

	
 
impl PartialEq<NamespacedIdentifier> for Identifier {
 
    fn eq(&self, other: &NamespacedIdentifier) -> bool {
 
        return self.value == other.value
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum NamespacedIdentifierPart {
 
    // Regular identifier
 
    Identifier{start: u16, end: u16},
 
    // Polyargs associated with a preceding identifier
 
    PolyArgs{start: u16, end: u16},
 
}
 

	
 
impl NamespacedIdentifierPart {
 
    pub(crate) fn is_identifier(&self) -> bool {
 
        match self {
 
            NamespacedIdentifierPart::Identifier{..} => true,
 
            NamespacedIdentifierPart::PolyArgs{..} => false,
 
        }
 
    }
 

	
 
    pub(crate) fn as_identifier(&self) -> (u16, u16) {
 
        match self {
 
            NamespacedIdentifierPart::Identifier{start, end} => (*start, *end),
 
            NamespacedIdentifierPart::PolyArgs{..} => {
 
                unreachable!("Tried to obtain {:?} as Identifier", self);
 
            }
 
        }
 
    }
 

	
 
    pub(crate) fn as_poly_args(&self) -> (u16, u16) {
 
        match self {
 
            NamespacedIdentifierPart::PolyArgs{start, end} => (*start, *end),
 
            NamespacedIdentifierPart::Identifier{..} => {
 
                unreachable!("Tried to obtain {:?} as PolyArgs", self)
 
            }
 
        }
 
    }
 
}
 

	
 
/// An identifier with optional namespaces and polymorphic variables. Note that 
 
/// we allow each identifier to be followed by polymorphic arguments during the 
 
/// parsing phase (e.g. Foo<A,B>::Bar<C,D>::Qux). But in our current language 
 
/// implementation we can only have valid namespaced identifier that contain one
 
/// set of polymorphic arguments at the appropriate position.
 
/// TODO: @tokens Reimplement/rename once we have a tokenizer
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct NamespacedIdentifier2 {
 
    pub position: InputPosition,
 
    pub value: Vec<u8>, // Full name as it resides in the input source
 
    pub poly_args: Vec<ParserTypeId>, // All poly args littered throughout the namespaced identifier
 
    pub parts: Vec<NamespacedIdentifierPart>, // Indices into value/poly_args
 
}
 

	
 
impl NamespacedIdentifier2 {
 
    /// Returns the identifier value without any of the specific polymorphic
 
    /// arguments.
 
    pub fn strip_poly_args(&self) -> Vec<u8> {
 
        debug_assert!(!self.parts.is_empty() && self.parts[0].is_identifier());
 

	
 
        let mut result = Vec::with_capacity(self.value.len());
 
        let mut iter = self.iter();
 
        let (first_ident, _) = iter.next().unwrap();
 
        result.extend(first_ident);
 

	
 
        for (ident, _) in iter.next() {
 
            result.push(b':');
 
            result.push(b':');
 
            result.extend(ident);
 
        }
 

	
 
        result
 
    }
 

	
 
    /// Returns an iterator of the elements in the namespaced identifier
 
    pub fn iter(&self) -> NamespacedIdentifier2Iter {
 
        return NamespacedIdentifier2Iter{
 
            identifier: self,
 
            element_idx: 0
 
        }
 
    }
 

	
 
    pub fn has_poly_args(&self) -> bool {
 
        return !self.poly_args.is_empty();
 
    pub fn get_poly_args(&self) -> Option<&[ParserTypeId]> {
 
        let has_poly_args = self.parts.iter().any(|v| !v.is_identifier());
 
        if has_poly_args {
 
            Some(&self.poly_args)
 
        } else {
 
            None
 
        }
 
    }
 
}
 

	
 
impl PartialEq for NamespacedIdentifier2 {
 
    fn eq(&self, other: &Self) -> bool {
 
        return self.value == other.value
 
    // Check if two namespaced identifiers match eachother when not considering
 
    // the polymorphic arguments
 
    pub fn matches_namespaced_identifier(&self, other: &Self) -> bool {
 
        let mut iter_self = self.iter();
 
        let mut iter_other = other.iter();
 

	
 
        loop {
 
            let val_self = iter_self.next();
 
            let val_other = iter_other.next();
 
            if val_self.is_some() != val_other.is_some() {
 
                // One is longer than the other
 
                return false;
 
            }
 
            if val_self.is_none() {
 
                // Both are none
 
                return true;
 
            }
 

	
 
            // Both are something
 
            let (val_self, _) = val_self.unwrap();
 
            let (val_other, _) = val_other.unwrap();
 
            if val_self != val_other { return false; }
 
        }
 
    }
 
}
 

	
 
impl PartialEq<Identifier> for NamespacedIdentifier2 {
 
    fn eq(&self, other: &Identifier) -> bool {
 
        return self.value == other.value
 
    // Check if the namespaced identifier matches an identifier when not 
 
    // considering the polymorphic arguments
 
    pub fn matches_identifier(&self, other: &Identifier) -> bool {
 
        let mut iter = self.iter();
 
        let (first_ident, _) = iter.next().unwrap();
 
        if first_ident != other.value { 
 
            return false;
 
        }
 

	
 
        if iter.next().is_some() {
 
            return false;
 
        }
 

	
 
        return true;
 
    }
 
}
 

	
 
/// Iterator over elements of the namespaced identifier. The element index will
 
/// only ever be at the start of an identifier element.
 
#[derive(Debug)]
 
pub struct NamespacedIdentifier2Iter<'a> {
 
    identifier: &'a NamespacedIdentifier2,
 
    element_idx: usize,
 
}
 

	
 
impl<'a> Iterator for NamespacedIdentifier2Iter<'a> {
 
    type Item = (&'a [u8], Option<&'a [ParserTypeId]>);
 
    fn next(&mut self) -> Option<Self::Item> {
 
        match self.get(self.element_idx) {
 
            Some(result) => {
 
            Some((ident, poly)) => {
 
                self.element_idx += 1;
 
                Some(result)
 
                if poly.is_some() {
 
                    self.element_idx += 1;
 
                }
 
                Some((ident, poly))
 
            },
 
            None => None
 
        }
 
    }
 
}
 

	
 
impl<'a> NamespacedIdentifier2Iter<'a> {
 
    /// Returns number of parts iterated over, may not correspond to number of
 
    /// times one called `next()` because returning an identifier with 
 
    /// polymorphic arguments increments the internal counter by 2.
 
    pub fn num_returned(&self) -> usize {
 
        return self.element_idx;
 
    }
 

	
 
    pub fn num_remaining(&self) -> usize {
 
        return self.identifier.parts.len() - self.element_idx;
 
    }
 

	
 
    pub fn returned_section(&self) -> &[u8] {
 
        if self.element_idx == 0 { return &self.identifier.value[0..0]; }
 

	
 
        let last_idx = match &self.identifier.parts[self.element_idx - 1] {
 
            NamespacedIdentifierPart::Identifier{end, ..} => *end,
 
            NamespacedIdentifierPart::PolyArgs{end, ..} => *end,
 
        };
 

	
 
        return &self.identifier.value[..last_idx as usize];
 
    }
 

	
 
    /// Returns a specific element from the namespaced identifier
 
    pub fn get(&self, idx: usize) -> Option<<Self as Iterator>::Item> {
 
        if idx >= self.identifier.parts.len() { 
 
            return None 
 
        }
 

	
 
        let cur_part = &self.identifier.parts[idx];
 
        let next_part = self.identifier.parts.get(idx);
 
        let next_part = self.identifier.parts.get(idx + 1);
 

	
 
        let (ident_start, ident_end) = cur_part.as_identifier();
 
        let poly_slice = match next_part {
 
            Some(part) => match part {
 
                NamespacedIdentifierPart::Identifier{..} => None,
 
                NamespacedIdentifierPart::PolyArgs{start, end} => Some(
 
                    &self.identifier.poly_args[*start as usize..*end as usize]
 
                ),
 
            },
 
            None => None
 
        };
 

	
 
        Some((
 
            &self.identifier.value[ident_start as usize..ident_end as usize],
 
            poly_slice
 
        ))
 
    }
 

	
 
    pub fn prev(&self) -> Option<<Self as Iterator>::Item> {
 
        if self.element_idx == 0 {
 
    /// Returns the previously returend index into the parts array of the 
 
    /// identifier.
 
    pub fn prev_idx(&self) -> Option<usize> {
 
        if self.element_idx == 0 { 
 
            return None;
 
        };
 
        
 
        if self.identifier.parts[self.element_idx - 1].is_identifier() { 
 
            return Some(self.element_idx - 1);
 
        }
 

	
 
        self.get(self.element_idx - 1)
 
        // Previous part had polymorphic arguments, so the one before that must
 
        // be an identifier (if well formed)
 
        debug_assert!(self.element_idx >= 2 && self.identifier.parts[self.element_idx - 2].is_identifier());
 
        return Some(self.element_idx - 2)
 
    }
 

	
 
    /// Returns the previously returned result from `next()`
 
    pub fn prev(&self) -> Option<<Self as Iterator>::Item> {
 
        match self.prev_idx() {
 
            None => None,
 
            Some(idx) => self.get(idx)
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct NamespacedIdentifier {
 
    pub position: InputPosition,
 
    pub num_namespaces: u8,
 
    pub value: Vec<u8>,
 
}
 

	
 
impl NamespacedIdentifier {
 
    pub(crate) fn iter(&self) -> NamespacedIdentifierIter {
 
        NamespacedIdentifierIter{
 
            value: &self.value,
 
            cur_offset: 0,
 
            num_returned: 0,
 
            num_total: self.num_namespaces
 
        }
 
    }
 
}
 

	
 
impl PartialEq for NamespacedIdentifier {
 
    fn eq(&self, other: &Self) -> bool {
 
        return self.value == other.value
 
    }
 
}
 

	
 
impl PartialEq<Identifier> for NamespacedIdentifier {
 
    fn eq(&self, other: &Identifier) -> bool {
 
        return self.value == other.value;
 
    }
 
}
 

	
 
// TODO: Just keep ref to NamespacedIdentifier
 
pub(crate) struct NamespacedIdentifierIter<'a> {
 
    value: &'a Vec<u8>,
 
    cur_offset: usize,
 
    num_returned: u8,
 
    num_total: u8,
 
}
 

	
 
impl<'a> NamespacedIdentifierIter<'a> {
 
    pub(crate) fn num_returned(&self) -> u8 {
 
        return self.num_returned;
 
    }
 
    pub(crate) fn num_remaining(&self) -> u8 {
 
        return self.num_total - self.num_returned
 
    }
 
    pub(crate) fn returned_section(&self) -> &[u8] {
 
        // Offset always includes the two trailing ':' characters
 
        let end = if self.cur_offset >= 2 { self.cur_offset - 2 } else { self.cur_offset };
 
        return &self.value[..end]
 
    }
 
}
 

	
 
impl<'a> Iterator for NamespacedIdentifierIter<'a> {
 
    type Item = &'a [u8];
 
    fn next(&mut self) -> Option<Self::Item> {
 
        if self.cur_offset >= self.value.len() {
 
            debug_assert_eq!(self.num_returned, self.num_total);
 
            None
 
        } else {
 
            debug_assert!(self.num_returned < self.num_total);
 
            let start = self.cur_offset;
 
            let mut end = start;
 
            while end < self.value.len() - 1 {
 
                if self.value[end] == b':' && self.value[end + 1] == b':' {
 
                    self.cur_offset = end + 2;
 
                    self.num_returned += 1;
 
                    return Some(&self.value[start..end]);
 
                }
 
                end += 1;
 
            }
 

	
 
            // If NamespacedIdentifier is constructed properly, then we cannot
 
            // end with "::" in the value, so
 
            debug_assert!(end == 0 || (self.value[end - 1] != b':' && self.value[end] != b':'));
 
            debug_assert_eq!(self.num_returned + 1, self.num_total);
 
            self.cur_offset = self.value.len();
 
            self.num_returned += 1;
 
            return Some(&self.value[start..]);
 
        }
 
    }
 
}
 

	
 
impl Display for Identifier {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        // A source identifier is in ASCII range.
 
        write!(f, "{}", String::from_utf8_lossy(&self.value))
 
    }
 
}
 

	
 
/// TODO: @types Remove the Message -> Byte hack at some point...
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum ParserTypeVariant {
 
    // Basic builtin
 
    Message,
 
    Bool,
 
    Byte,
 
    Short,
 
    Int,
 
    Long,
 
    String,
 
    // Literals (need to get concrete builtin type during typechecking)
 
    IntegerLiteral,
 
    Inferred,
 
    // Complex builtins
 
    Array(ParserTypeId), // array of a type
 
    Input(ParserTypeId), // typed input endpoint of a channel
 
    Output(ParserTypeId), // typed output endpoint of a channel
 
    Symbolic(SymbolicParserType), // symbolic type (definition or polyarg)
 
}
 

	
 
impl ParserTypeVariant {
 
    pub(crate) fn supports_polymorphic_args(&self) -> bool {
 
        use ParserTypeVariant::*;
 
        match self {
 
            Message | Bool | Byte | Short | Int | Long | String | IntegerLiteral | Inferred => false,
 
            _ => true
 
        }
 
    }
 
}
 

	
 
/// ParserType is a specification of a type during the parsing phase and initial
 
/// linker/validator phase of the compilation process. These types may be
 
/// (partially) inferred or represent literals (e.g. a integer whose bytesize is
 
/// not yet determined).
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct ParserType {
 
    pub this: ParserTypeId,
 
    pub pos: InputPosition,
 
    pub variant: ParserTypeVariant,
 
}
 

	
 
/// SymbolicParserType is the specification of a symbolic type. During the
 
/// parsing phase we will only store the identifier of the type. During the
 
/// validation phase we will determine whether it refers to a user-defined type,
 
/// or a polymorphic argument. After the validation phase it may still be the
 
/// case that the resulting `variant` will not pass the typechecker.
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct SymbolicParserType {
 
    // Phase 1: parser
 
    pub identifier: NamespacedIdentifier2,
 
    // Phase 2: validation/linking (for types in function/component bodies) and
 
    //  type table construction (for embedded types of structs/unions)
 
    pub poly_args2: Vec<ParserTypeId>, // taken from identifier or inferred
 
    pub variant: Option<SymbolicParserTypeVariant>
 
}
 

	
 
/// Specifies whether the symbolic type points to an actual user-defined type,
 
/// or whether it points to a polymorphic argument within the definition (e.g.
 
/// a defined variable `T var` within a function `int func<T>()`
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum SymbolicParserTypeVariant {
 
    Definition(DefinitionId),
 
    // TODO: figure out if I need the DefinitionId here
 
    PolyArg(DefinitionId, usize), // index of polyarg in the definition
 
}
 

	
 
/// ConcreteType is the representation of a type after resolving symbolic types
 
/// and performing type inference
 
#[derive(Debug, Clone, Copy, Eq, PartialEq, serde::Serialize, serde::Deserialize)]
 
pub enum ConcreteTypePart {
 
    // Markers for the use of polymorphic types within a procedure's body that
 
    // refer to polymorphic variables on the procedure's definition. Different
 
    // from markers in the `InferenceType`, these will not contain nested types.
 
    Marker(usize),
 
    // Special types (cannot be explicitly constructed by the programmer)
 
    Void,
 
    // Builtin types without nested types
 
    Message,
 
    Bool,
 
    Byte,
 
    Short,
 
    Int,
 
    Long,
 
    String,
 
    // Builtin types with one nested type
 
    Array,
 
    Slice,
 
    Input,
 
    Output,
 
    // User defined type with any number of nested types
 
    Instance(DefinitionId, usize),
 
}
 

	
 
#[derive(Debug, Clone, Eq, PartialEq, serde::Serialize, serde::Deserialize)]
 
pub struct ConcreteType {
 
    pub(crate) parts: Vec<ConcreteTypePart>
 
}
 

	
 
impl Default for ConcreteType {
 
    fn default() -> Self {
 
        Self{ parts: Vec::new() }
 
    }
 
}
 

	
 
impl ConcreteType {
 
    pub(crate) fn has_marker(&self) -> bool {
 
        self.parts
 
            .iter()
 
            .any(|p| {
 
                if let ConcreteTypePart::Marker(_) = p { true } else { false }
 
            })
 
    }
 
}
 

	
 
// TODO: Remove at some point
 
#[derive(Debug, Clone, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
 
pub enum PrimitiveType {
 
    Unassigned,
 
    Input,
 
    Output,
 
    Message,
 
    Boolean,
 
    Byte,
 
    Short,
 
    Int,
 
    Long,
 
    Symbolic(PrimitiveSymbolic)
 
}
 

	
 
// TODO: @cleanup, remove PartialEq implementations
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct PrimitiveSymbolic {
 
    // Phase 1: parser
 
    pub(crate) identifier: NamespacedIdentifier, // TODO: @remove at some point, also remove NSIdent itself
 
    // Phase 2: typing
 
    pub(crate) definition: Option<DefinitionId>
 
}
 

	
 
impl PartialEq for PrimitiveSymbolic {
 
    fn eq(&self, other: &Self) -> bool {
 
        self.identifier == other.identifier
 
    }
 
}
 
impl Eq for PrimitiveSymbolic{}
 

	
 
#[derive(Debug, Clone, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
 
pub struct Type {
 
    pub primitive: PrimitiveType,
 
    pub array: bool,
 
}
 

	
 
#[allow(dead_code)]
 
impl Type {
 
    pub const UNASSIGNED: Type = Type { primitive: PrimitiveType::Unassigned, array: false };
 

	
 
    pub const INPUT: Type = Type { primitive: PrimitiveType::Input, array: false };
 
    pub const OUTPUT: Type = Type { primitive: PrimitiveType::Output, array: false };
 
    pub const MESSAGE: Type = Type { primitive: PrimitiveType::Message, array: false };
 
    pub const BOOLEAN: Type = Type { primitive: PrimitiveType::Boolean, array: false };
 
    pub const BYTE: Type = Type { primitive: PrimitiveType::Byte, array: false };
 
    pub const SHORT: Type = Type { primitive: PrimitiveType::Short, array: false };
 
    pub const INT: Type = Type { primitive: PrimitiveType::Int, array: false };
 
    pub const LONG: Type = Type { primitive: PrimitiveType::Long, array: false };
 

	
 
    pub const INPUT_ARRAY: Type = Type { primitive: PrimitiveType::Input, array: true };
 
    pub const OUTPUT_ARRAY: Type = Type { primitive: PrimitiveType::Output, array: true };
 
    pub const MESSAGE_ARRAY: Type = Type { primitive: PrimitiveType::Message, array: true };
 
    pub const BOOLEAN_ARRAY: Type = Type { primitive: PrimitiveType::Boolean, array: true };
 
    pub const BYTE_ARRAY: Type = Type { primitive: PrimitiveType::Byte, array: true };
 
    pub const SHORT_ARRAY: Type = Type { primitive: PrimitiveType::Short, array: true };
 
    pub const INT_ARRAY: Type = Type { primitive: PrimitiveType::Int, array: true };
 
    pub const LONG_ARRAY: Type = Type { primitive: PrimitiveType::Long, array: true };
 
}
 

	
 
impl Display for Type {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        match &self.primitive {
 
            PrimitiveType::Unassigned => {
 
                write!(f, "unassigned")?;
 
            }
 
            PrimitiveType::Input => {
 
                write!(f, "in")?;
 
            }
 
            PrimitiveType::Output => {
 
                write!(f, "out")?;
 
            }
 
            PrimitiveType::Message => {
 
                write!(f, "msg")?;
 
            }
 
            PrimitiveType::Boolean => {
 
                write!(f, "boolean")?;
 
            }
 
            PrimitiveType::Byte => {
 
                write!(f, "byte")?;
 
            }
 
            PrimitiveType::Short => {
 
                write!(f, "short")?;
 
            }
 
            PrimitiveType::Int => {
 
                write!(f, "int")?;
 
            }
 
            PrimitiveType::Long => {
 
                write!(f, "long")?;
 
            }
 
            PrimitiveType::Symbolic(data) => {
 
                // Type data is in ASCII range.
 
                if let Some(id) = &data.definition {
 
                    write!(
 
                        f, "Symbolic({}, id: {})", 
 
                        String::from_utf8_lossy(&data.identifier.value),
 
                        id.index
 
                    )?;
 
                } else {
 
                    write!(
 
                        f, "Symbolic({}, id: Unresolved)",
 
                        String::from_utf8_lossy(&data.identifier.value)
 
                    )?;
 
                }
 
            }
 
        }
 
        if self.array {
 
            write!(f, "[]")
 
        } else {
 
            Ok(())
 
        }
 
    }
 
}
 

	
 
type LiteralCharacter = Vec<u8>;
 
type LiteralInteger = i64; // TODO: @int_literal
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum Literal {
 
    Null, // message
 
    True,
 
    False,
 
    Character(LiteralCharacter),
 
    Integer(LiteralInteger),
 
    Struct(LiteralStruct),
 
}
 

	
 
impl Literal {
 
    pub(crate) fn as_struct(&self) -> &LiteralStruct {
 
        if let Literal::Struct(literal) = self{
 
            literal
 
        } else {
 
            unreachable!("Attempted to obtain {:?} as Literal::Struct", self)
 
        }
 
    }
 

	
 
    pub(crate) fn as_struct_mut(&mut self) -> &mut LiteralStruct {
 
        if let Literal::Struct(literal) = self{
 
            literal
 
        } else {
 
            unreachable!("Attempted to obtain {:?} as Literal::Struct", self)
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct LiteralStructField {
 
    // Phase 1: parser
 
    pub(crate) identifier: Identifier,
 
    pub(crate) value: ExpressionId,
 
    // Phase 2: linker
 
    pub(crate) field_idx: usize, // in struct definition
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct LiteralStruct {
 
    // Phase 1: parser
 
    pub(crate) identifier: NamespacedIdentifier2,
 
    pub(crate) fields: Vec<LiteralStructField>,
 
    // Phase 2: linker
 
    pub(crate) poly_args2: Vec<ParserTypeId>, // taken from identifier
 
    pub(crate) definition: Option<DefinitionId>
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct LiteralEnum {
 
    // Phase 1: parser
 
    pub(crate) identifier: NamespacedIdentifier2,
 
    pub(crate) poly_args: Vec<ParserTypeId>,
 
    // Phase 2: linker
 
    pub(crate) definition: Option<DefinitionId>,
 
    pub(crate) variant_idx: usize,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum Method {
 
    Get,
 
    Put,
 
    Fires,
 
    Create,
 
    Symbolic(MethodSymbolic)
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct MethodSymbolic {
 
    pub(crate) identifier: NamespacedIdentifier2,
 
    pub(crate) definition: Option<DefinitionId>
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum Field {
 
    Length,
 
    Symbolic(FieldSymbolic),
 
}
 
impl Field {
 
    pub fn is_length(&self) -> bool {
 
        match self {
 
            Field::Length => true,
 
            _ => false,
 
        }
 
    }
 

	
 
    pub fn as_symbolic(&self) -> &FieldSymbolic {
 
        match self {
 
            Field::Symbolic(v) => v,
 
            _ => unreachable!("attempted to get Field::Symbolic from {:?}", self)
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct FieldSymbolic {
 
    // Phase 1: Parser
 
    pub(crate) identifier: Identifier,
 
    // Phase 3: Typing
 
    pub(crate) definition: Option<DefinitionId>,
 
    pub(crate) field_idx: usize,
 
}
 

	
 
#[derive(Debug, Clone, Copy, serde::Serialize, serde::Deserialize)]
 
pub enum Scope {
 
    Definition(DefinitionId),
 
    Regular(BlockStatementId),
 
    Synchronous((SynchronousStatementId, BlockStatementId)),
 
}
 

	
 
impl Scope {
 
    pub fn is_block(&self) -> bool {
 
        match &self {
 
            Scope::Definition(_) => false,
 
            Scope::Regular(_) => true,
 
            Scope::Synchronous(_) => true,
 
        }
 
    }
 
    pub fn to_block(&self) -> BlockStatementId {
 
        match &self {
 
            Scope::Regular(id) => *id,
 
            Scope::Synchronous((_, id)) => *id,
 
            _ => panic!("unable to get BlockStatement from Scope")
 
        }
 
    }
 
}
 

	
 
pub trait VariableScope {
 
    fn parent_scope(&self, h: &Heap) -> Option<Scope>;
 
    fn get_variable(&self, h: &Heap, id: &Identifier) -> Option<VariableId>;
 
}
 

	
 
impl VariableScope for Scope {
 
    fn parent_scope(&self, h: &Heap) -> Option<Scope> {
 
        match self {
 
            Scope::Definition(def) => h[*def].parent_scope(h),
 
            Scope::Regular(stmt) => h[*stmt].parent_scope(h),
 
            Scope::Synchronous((stmt, _)) => h[*stmt].parent_scope(h),
 
        }
 
    }
 
    fn get_variable(&self, h: &Heap, id: &Identifier) -> Option<VariableId> {
 
        match self {
 
            Scope::Definition(def) => h[*def].get_variable(h, id),
 
            Scope::Regular(stmt) => h[*stmt].get_variable(h, id),
 
            Scope::Synchronous((stmt, _)) => h[*stmt].get_variable(h, id),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum Variable {
 
    Parameter(Parameter),
 
    Local(Local),
 
}
 

	
 
impl Variable {
 
    pub fn identifier(&self) -> &Identifier {
 
        match self {
 
            Variable::Parameter(var) => &var.identifier,
 
            Variable::Local(var) => &var.identifier,
 
        }
 
    }
 
    pub fn is_parameter(&self) -> bool {
 
        match self {
 
            Variable::Parameter(_) => true,
 
            _ => false,
 
        }
 
    }
 
    pub fn as_parameter(&self) -> &Parameter {
 
        match self {
 
            Variable::Parameter(result) => result,
 
            _ => panic!("Unable to cast `Variable` to `Parameter`"),
 
        }
 
    }
 
    pub fn as_local(&self) -> &Local {
 
        match self {
 
            Variable::Local(result) => result,
 
            _ => panic!("Unable to cast `Variable` to `Local`"),
 
        }
 
    }
 
    pub fn as_local_mut(&mut self) -> &mut Local {
 
        match self {
 
            Variable::Local(result) => result,
 
            _ => panic!("Unable to cast 'Variable' to 'Local'"),
 
        }
 
    }
 
}
 

	
 
impl SyntaxElement for Variable {
 
    fn position(&self) -> InputPosition {
 
        match self {
 
            Variable::Parameter(decl) => decl.position(),
 
            Variable::Local(decl) => decl.position(),
 
        }
 
    }
 
}
 

	
 
/// TODO: Remove distinction between parameter/local and add an enum to indicate
 
///     the distinction between the two
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct Parameter {
 
    pub this: ParameterId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub parser_type: ParserTypeId,
 
    pub identifier: Identifier,
 
}
 

	
 
impl SyntaxElement for Parameter {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct Local {
 
    pub this: LocalId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub parser_type: ParserTypeId,
 
    pub identifier: Identifier,
 
    // Phase 2: linker
 
    pub relative_pos_in_block: u32,
 
}
 
impl SyntaxElement for Local {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum Definition {
 
    Struct(StructDefinition),
 
    Enum(EnumDefinition),
 
    Component(Component),
 
    Function(Function),
 
}
src/protocol/ast_printer.rs
Show inline comments
 
@@ -48,820 +48,820 @@ const PREFIX_SLICING_EXPR_ID: &'static str = "ESli";
 
const PREFIX_SELECT_EXPR_ID: &'static str = "ESel";
 
const PREFIX_ARRAY_EXPR_ID: &'static str = "EArr";
 
const PREFIX_CONST_EXPR_ID: &'static str = "ECns";
 
const PREFIX_CALL_EXPR_ID: &'static str = "ECll";
 
const PREFIX_VARIABLE_EXPR_ID: &'static str = "EVar";
 

	
 
struct KV<'a> {
 
    buffer: &'a mut String,
 
    prefix: Option<(&'static str, u32)>,
 
    indent: usize,
 
    temp_key: &'a mut String,
 
    temp_val: &'a mut String,
 
}
 

	
 
impl<'a> KV<'a> {
 
    fn new(buffer: &'a mut String, temp_key: &'a mut String, temp_val: &'a mut String, indent: usize) -> Self {
 
        temp_key.clear();
 
        temp_val.clear();
 
        KV{
 
            buffer,
 
            prefix: None,
 
            indent,
 
            temp_key,
 
            temp_val
 
        }
 
    }
 

	
 
    fn with_id(mut self, prefix: &'static str, id: u32) -> Self {
 
        self.prefix = Some((prefix, id));
 
        self
 
    }
 

	
 
    fn with_s_key(self, key: &str) -> Self {
 
        self.temp_key.push_str(key);
 
        self
 
    }
 

	
 
    fn with_d_key<D: Display>(self, key: &D) -> Self {
 
        self.temp_key.push_str(&key.to_string());
 
        self
 
    }
 

	
 
    fn with_s_val(self, val: &str) -> Self {
 
        self.temp_val.push_str(val);
 
        self
 
    }
 

	
 
    fn with_disp_val<D: Display>(self, val: &D) -> Self {
 
        self.temp_val.push_str(&format!("{}", val));
 
        self
 
    }
 

	
 
    fn with_debug_val<D: Debug>(self, val: &D) -> Self {
 
        self.temp_val.push_str(&format!("{:?}", val));
 
        self
 
    }
 

	
 
    fn with_ascii_val(self, val: &[u8]) -> Self {
 
        self.temp_val.push_str(&*String::from_utf8_lossy(val));
 
        self
 
    }
 

	
 
    fn with_opt_disp_val<D: Display>(self, val: Option<&D>) -> Self {
 
        match val {
 
            Some(v) => { self.temp_val.push_str(&format!("Some({})", v)); },
 
            None => { self.temp_val.push_str("None"); }
 
        }
 
        self
 
    }
 

	
 
    fn with_opt_ascii_val(self, val: Option<&[u8]>) -> Self {
 
        match val {
 
            Some(v) => {
 
                self.temp_val.push_str("Some(");
 
                self.temp_val.push_str(&*String::from_utf8_lossy(v));
 
                self.temp_val.push(')');
 
            },
 
            None => {
 
                self.temp_val.push_str("None");
 
            }
 
        }
 
        self
 
    }
 

	
 
    fn with_custom_val<F: Fn(&mut String)>(mut self, val_fn: F) -> Self {
 
        val_fn(&mut self.temp_val);
 
        self
 
    }
 
}
 

	
 
impl<'a> Drop for KV<'a> {
 
    fn drop(&mut self) {
 
        // Prefix and indent
 
        if let Some((prefix, id)) = &self.prefix {
 
            self.buffer.push_str(&format!("{}[{:04}]", prefix, id));
 
        } else {
 
            self.buffer.push_str("           ");
 
        }
 

	
 
        for _ in 0..self.indent * INDENT {
 
            self.buffer.push(' ');
 
        }
 

	
 
        // Leading dash
 
        self.buffer.push_str("- ");
 

	
 
        // Key and value
 
        self.buffer.push_str(self.temp_key);
 
        if self.temp_val.is_empty() {
 
            self.buffer.push(':');
 
        } else {
 
            self.buffer.push_str(": ");
 
            self.buffer.push_str(&self.temp_val);
 
        }
 
        self.buffer.push('\n');
 
    }
 
}
 

	
 
pub(crate) struct ASTWriter {
 
    cur_definition: Option<DefinitionId>,
 
    buffer: String,
 
    temp1: String,
 
    temp2: String,
 
}
 

	
 
impl ASTWriter {
 
    pub(crate) fn new() -> Self {
 
        Self{
 
            cur_definition: None,
 
            buffer: String::with_capacity(4096),
 
            temp1: String::with_capacity(256),
 
            temp2: String::with_capacity(256),
 
        }
 
    }
 
    pub(crate) fn write_ast<W: IOWrite>(&mut self, w: &mut W, heap: &Heap) {
 
        for root_id in heap.protocol_descriptions.iter().map(|v| v.this) {
 
            self.write_module(heap, root_id);
 
            w.write_all(self.buffer.as_bytes()).expect("flush buffer");
 
            self.buffer.clear();
 
        }
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Top-level module writing
 
    //--------------------------------------------------------------------------
 

	
 
    fn write_module(&mut self, heap: &Heap, root_id: RootId) {
 
        self.kv(0).with_id(PREFIX_ROOT_ID, root_id.index)
 
            .with_s_key("Module");
 

	
 
        let root = &heap[root_id];
 
        self.kv(1).with_s_key("Pragmas");
 
        for pragma_id in &root.pragmas {
 
            self.write_pragma(heap, *pragma_id, 2);
 
        }
 

	
 
        self.kv(1).with_s_key("Imports");
 
        for import_id in &root.imports {
 
            self.write_import(heap, *import_id, 2);
 
        }
 

	
 
        self.kv(1).with_s_key("Definitions");
 
        for def_id in &root.definitions {
 
            self.write_definition(heap, *def_id, 2);
 
        }
 
    }
 

	
 
    fn write_pragma(&mut self, heap: &Heap, pragma_id: PragmaId, indent: usize) {
 
        match &heap[pragma_id] {
 
            Pragma::Version(pragma) => {
 
                self.kv(indent).with_id(PREFIX_PRAGMA_ID, pragma.this.index)
 
                    .with_s_key("PragmaVersion")
 
                    .with_disp_val(&pragma.version);
 
            },
 
            Pragma::Module(pragma) => {
 
                self.kv(indent).with_id(PREFIX_PRAGMA_ID, pragma.this.index)
 
                    .with_s_key("PragmaModule")
 
                    .with_ascii_val(&pragma.value);
 
            }
 
        }
 
    }
 

	
 
    fn write_import(&mut self, heap: &Heap, import_id: ImportId, indent: usize) {
 
        let import = &heap[import_id];
 
        let indent2 = indent + 1;
 

	
 
        match import {
 
            Import::Module(import) => {
 
                self.kv(indent).with_id(PREFIX_IMPORT_ID, import.this.index)
 
                    .with_s_key("ImportModule");
 

	
 
                self.kv(indent2).with_s_key("Name").with_ascii_val(&import.module_name);
 
                self.kv(indent2).with_s_key("Alias").with_ascii_val(&import.alias);
 
                self.kv(indent2).with_s_key("Alias").with_ascii_val(&import.alias.value);
 
                self.kv(indent2).with_s_key("Target")
 
                    .with_opt_disp_val(import.module_id.as_ref().map(|v| &v.index));
 
            },
 
            Import::Symbols(import) => {
 
                self.kv(indent).with_id(PREFIX_IMPORT_ID, import.this.index)
 
                    .with_s_key("ImportSymbol");
 

	
 
                self.kv(indent2).with_s_key("Name").with_ascii_val(&import.module_name);
 
                self.kv(indent2).with_s_key("Target")
 
                    .with_opt_disp_val(import.module_id.as_ref().map(|v| &v.index));
 

	
 
                self.kv(indent2).with_s_key("Symbols");
 

	
 
                let indent3 = indent2 + 1;
 
                let indent4 = indent3 + 1;
 
                for symbol in &import.symbols {
 
                    self.kv(indent3).with_s_key("AliasedSymbol");
 
                    self.kv(indent4).with_s_key("Name").with_ascii_val(&symbol.name);
 
                    self.kv(indent4).with_s_key("Alias").with_ascii_val(&symbol.alias);
 
                    self.kv(indent4).with_s_key("Name").with_ascii_val(&symbol.name.value);
 
                    self.kv(indent4).with_s_key("Alias").with_ascii_val(&symbol.alias.value);
 
                    self.kv(indent4).with_s_key("Definition")
 
                        .with_opt_disp_val(symbol.definition_id.as_ref().map(|v| &v.index));
 
                }
 
            }
 
        }
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Top-level definition writing
 
    //--------------------------------------------------------------------------
 

	
 
    fn write_definition(&mut self, heap: &Heap, def_id: DefinitionId, indent: usize) {
 
        self.cur_definition = Some(def_id);
 
        let indent2 = indent + 1;
 
        let indent3 = indent2 + 1;
 
        let indent4 = indent3 + 1;
 

	
 
        match &heap[def_id] {
 
            Definition::Struct(_) => todo!("implement Definition::Struct"),
 
            Definition::Enum(_) => todo!("implement Definition::Enum"),
 
            Definition::Function(def) => {
 
                self.kv(indent).with_id(PREFIX_FUNCTION_ID, def.this.0.index)
 
                    .with_s_key("DefinitionFunction");
 

	
 
                self.kv(indent2).with_s_key("Name").with_ascii_val(&def.identifier.value);
 
                for poly_var_id in &def.poly_vars {
 
                    self.kv(indent3).with_s_key("PolyVar");
 
                    self.kv(indent4).with_s_key("Name").with_ascii_val(&poly_var_id.value);
 
                }
 

	
 
                self.kv(indent2).with_s_key("ReturnParserType").with_custom_val(|s| write_parser_type(s, heap, &heap[def.return_type]));
 

	
 
                self.kv(indent2).with_s_key("Parameters");
 
                for param_id in &def.parameters {
 
                    self.write_parameter(heap, *param_id, indent3);
 
                }
 

	
 
                self.kv(indent2).with_s_key("Body");
 
                self.write_stmt(heap, def.body, indent3);
 
            },
 
            Definition::Component(def) => {
 
                self.kv(indent).with_id(PREFIX_COMPONENT_ID,def.this.0.index)
 
                    .with_s_key("DefinitionComponent");
 

	
 
                self.kv(indent2).with_s_key("Name").with_ascii_val(&def.identifier.value);
 
                self.kv(indent2).with_s_key("Variant").with_debug_val(&def.variant);
 

	
 
                self.kv(indent2).with_s_key("PolymorphicVariables");
 
                for poly_var_id in &def.poly_vars {
 
                    self.kv(indent3).with_s_key("PolyVar");
 
                    self.kv(indent4).with_s_key("Name").with_ascii_val(&poly_var_id.value);
 
                }
 

	
 
                self.kv(indent2).with_s_key("Parameters");
 
                for param_id in &def.parameters {
 
                    self.write_parameter(heap, *param_id, indent3)
 
                }
 

	
 
                self.kv(indent2).with_s_key("Body");
 
                self.write_stmt(heap, def.body, indent3);
 
            }
 
        }
 
    }
 

	
 
    fn write_parameter(&mut self, heap: &Heap, param_id: ParameterId, indent: usize) {
 
        let indent2 = indent + 1;
 
        let param = &heap[param_id];
 

	
 
        self.kv(indent).with_id(PREFIX_PARAMETER_ID, param_id.0.index)
 
            .with_s_key("Parameter");
 
        self.kv(indent2).with_s_key("Name").with_ascii_val(&param.identifier.value);
 
        self.kv(indent2).with_s_key("ParserType").with_custom_val(|w| write_parser_type(w, heap, &heap[param.parser_type]));
 
    }
 

	
 
    fn write_stmt(&mut self, heap: &Heap, stmt_id: StatementId, indent: usize) {
 
        let stmt = &heap[stmt_id];
 
        let indent2 = indent + 1;
 
        let indent3 = indent2 + 1;
 

	
 
        match stmt {
 
            Statement::Block(stmt) => {
 
                self.kv(indent).with_id(PREFIX_BLOCK_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Block");
 

	
 
                for stmt_id in &stmt.statements {
 
                    self.write_stmt(heap, *stmt_id, indent2);
 
                }
 
            },
 
            Statement::Local(stmt) => {
 
                match stmt {
 
                    LocalStatement::Channel(stmt) => {
 
                        self.kv(indent).with_id(PREFIX_CHANNEL_STMT_ID, stmt.this.0.0.index)
 
                            .with_s_key("LocalChannel");
 

	
 
                        self.kv(indent2).with_s_key("From");
 
                        self.write_local(heap, stmt.from, indent3);
 
                        self.kv(indent2).with_s_key("To");
 
                        self.write_local(heap, stmt.to, indent3);
 
                        self.kv(indent2).with_s_key("Next")
 
                            .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
                    },
 
                    LocalStatement::Memory(stmt) => {
 
                        self.kv(indent).with_id(PREFIX_MEM_STMT_ID, stmt.this.0.0.index)
 
                            .with_s_key("LocalMemory");
 

	
 
                        self.kv(indent2).with_s_key("Variable");
 
                        self.write_local(heap, stmt.variable, indent3);
 
                        self.kv(indent2).with_s_key("Next")
 
                            .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
                    }
 
                }
 
            },
 
            Statement::Skip(stmt) => {
 
                self.kv(indent).with_id(PREFIX_SKIP_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Skip");
 
                self.kv(indent2).with_s_key("Next")
 
                    .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
            },
 
            Statement::Labeled(stmt) => {
 
                self.kv(indent).with_id(PREFIX_LABELED_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Labeled");
 

	
 
                self.kv(indent2).with_s_key("Label").with_ascii_val(&stmt.label.value);
 
                self.kv(indent2).with_s_key("Statement");
 
                self.write_stmt(heap, stmt.body, indent3);
 
            },
 
            Statement::If(stmt) => {
 
                self.kv(indent).with_id(PREFIX_IF_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("If");
 

	
 
                self.kv(indent2).with_s_key("EndIf")
 
                    .with_opt_disp_val(stmt.end_if.as_ref().map(|v| &v.0.index));
 

	
 
                self.kv(indent2).with_s_key("Condition");
 
                self.write_expr(heap, stmt.test, indent3);
 

	
 
                self.kv(indent2).with_s_key("TrueBody");
 
                self.write_stmt(heap, stmt.true_body, indent3);
 

	
 
                self.kv(indent2).with_s_key("FalseBody");
 
                self.write_stmt(heap, stmt.false_body, indent3);
 
            },
 
            Statement::EndIf(stmt) => {
 
                self.kv(indent).with_id(PREFIX_ENDIF_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndIf");
 
                self.kv(indent2).with_s_key("StartIf").with_disp_val(&stmt.start_if.0.index);
 
                self.kv(indent2).with_s_key("Next")
 
                    .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
            },
 
            Statement::While(stmt) => {
 
                self.kv(indent).with_id(PREFIX_WHILE_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("While");
 

	
 
                self.kv(indent2).with_s_key("EndWhile")
 
                    .with_opt_disp_val(stmt.end_while.as_ref().map(|v| &v.0.index));
 
                self.kv(indent2).with_s_key("InSync")
 
                    .with_opt_disp_val(stmt.in_sync.as_ref().map(|v| &v.0.index));
 
                self.kv(indent2).with_s_key("Condition");
 
                self.write_expr(heap, stmt.test, indent3);
 
                self.kv(indent2).with_s_key("Body");
 
                self.write_stmt(heap, stmt.body, indent3);
 
            },
 
            Statement::EndWhile(stmt) => {
 
                self.kv(indent).with_id(PREFIX_ENDWHILE_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndWhile");
 
                self.kv(indent2).with_s_key("StartWhile").with_disp_val(&stmt.start_while.0.index);
 
                self.kv(indent2).with_s_key("Next")
 
                    .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
            },
 
            Statement::Break(stmt) => {
 
                self.kv(indent).with_id(PREFIX_BREAK_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Break");
 
                self.kv(indent2).with_s_key("Label")
 
                    .with_opt_ascii_val(stmt.label.as_ref().map(|v| v.value.as_slice()));
 
                self.kv(indent2).with_s_key("Target")
 
                    .with_opt_disp_val(stmt.target.as_ref().map(|v| &v.0.index));
 
            },
 
            Statement::Continue(stmt) => {
 
                self.kv(indent).with_id(PREFIX_CONTINUE_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Continue");
 
                self.kv(indent2).with_s_key("Label")
 
                    .with_opt_ascii_val(stmt.label.as_ref().map(|v| v.value.as_slice()));
 
                self.kv(indent2).with_s_key("Target")
 
                    .with_opt_disp_val(stmt.target.as_ref().map(|v| &v.0.index));
 
            },
 
            Statement::Synchronous(stmt) => {
 
                self.kv(indent).with_id(PREFIX_SYNC_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Synchronous");
 
                self.kv(indent2).with_s_key("EndSync")
 
                    .with_opt_disp_val(stmt.end_sync.as_ref().map(|v| &v.0.index));
 
                self.kv(indent2).with_s_key("Body");
 
                self.write_stmt(heap, stmt.body, indent3);
 
            },
 
            Statement::EndSynchronous(stmt) => {
 
                self.kv(indent).with_id(PREFIX_ENDSYNC_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndSynchronous");
 
                self.kv(indent2).with_s_key("StartSync").with_disp_val(&stmt.start_sync.0.index);
 
                self.kv(indent2).with_s_key("Next")
 
                    .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
            },
 
            Statement::Return(stmt) => {
 
                self.kv(indent).with_id(PREFIX_RETURN_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Return");
 
                self.kv(indent2).with_s_key("Expression");
 
                self.write_expr(heap, stmt.expression, indent3);
 
            },
 
            Statement::Assert(stmt) => {
 
                self.kv(indent).with_id(PREFIX_ASSERT_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Assert");
 
                self.kv(indent2).with_s_key("Expression");
 
                self.write_expr(heap, stmt.expression, indent3);
 
                self.kv(indent2).with_s_key("Next")
 
                    .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
            },
 
            Statement::Goto(stmt) => {
 
                self.kv(indent).with_id(PREFIX_GOTO_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Goto");
 
                self.kv(indent2).with_s_key("Label").with_ascii_val(&stmt.label.value);
 
                self.kv(indent2).with_s_key("Target")
 
                    .with_opt_disp_val(stmt.target.as_ref().map(|v| &v.0.index));
 
            },
 
            Statement::New(stmt) => {
 
                self.kv(indent).with_id(PREFIX_NEW_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("New");
 
                self.kv(indent2).with_s_key("Expression");
 
                self.write_expr(heap, stmt.expression.upcast(), indent3);
 
                self.kv(indent2).with_s_key("Next")
 
                    .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
            },
 
            Statement::Expression(stmt) => {
 
                self.kv(indent).with_id(PREFIX_EXPR_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("ExpressionStatement");
 
                self.write_expr(heap, stmt.expression, indent2);
 
                self.kv(indent2).with_s_key("Next")
 
                    .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
            }
 
        }
 
    }
 

	
 
    fn write_expr(&mut self, heap: &Heap, expr_id: ExpressionId, indent: usize) {
 
        let expr = &heap[expr_id];
 
        let indent2 = indent + 1;
 
        let indent3 = indent2 + 1;
 
        let def_id = self.cur_definition.unwrap();
 

	
 
        match expr {
 
            Expression::Assignment(expr) => {
 
                self.kv(indent).with_id(PREFIX_ASSIGNMENT_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("AssignmentExpr");
 
                self.kv(indent2).with_s_key("Operation").with_debug_val(&expr.operation);
 
                self.kv(indent2).with_s_key("Left");
 
                self.write_expr(heap, expr.left, indent3);
 
                self.kv(indent2).with_s_key("Right");
 
                self.write_expr(heap, expr.right, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
                self.kv(indent2).with_s_key("ConcreteType")
 
                    .with_custom_val(|v| write_concrete_type(v, heap, def_id, &expr.concrete_type));
 
            },
 
            Expression::Conditional(expr) => {
 
                self.kv(indent).with_id(PREFIX_CONDITIONAL_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("ConditionalExpr");
 
                self.kv(indent2).with_s_key("Condition");
 
                self.write_expr(heap, expr.test, indent3);
 
                self.kv(indent2).with_s_key("TrueExpression");
 
                self.write_expr(heap, expr.true_expression, indent3);
 
                self.kv(indent2).with_s_key("FalseExpression");
 
                self.write_expr(heap, expr.false_expression, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
                self.kv(indent2).with_s_key("ConcreteType")
 
                    .with_custom_val(|v| write_concrete_type(v, heap, def_id, &expr.concrete_type));
 
            },
 
            Expression::Binary(expr) => {
 
                self.kv(indent).with_id(PREFIX_BINARY_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("BinaryExpr");
 
                self.kv(indent2).with_s_key("Operation").with_debug_val(&expr.operation);
 
                self.kv(indent2).with_s_key("Left");
 
                self.write_expr(heap, expr.left, indent3);
 
                self.kv(indent2).with_s_key("Right");
 
                self.write_expr(heap, expr.right, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
                self.kv(indent2).with_s_key("ConcreteType")
 
                    .with_custom_val(|v| write_concrete_type(v, heap, def_id, &expr.concrete_type));
 
            },
 
            Expression::Unary(expr) => {
 
                self.kv(indent).with_id(PREFIX_UNARY_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("UnaryExpr");
 
                self.kv(indent2).with_s_key("Operation").with_debug_val(&expr.operation);
 
                self.kv(indent2).with_s_key("Argument");
 
                self.write_expr(heap, expr.expression, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
                self.kv(indent2).with_s_key("ConcreteType")
 
                    .with_custom_val(|v| write_concrete_type(v, heap, def_id, &expr.concrete_type));
 
            },
 
            Expression::Indexing(expr) => {
 
                self.kv(indent).with_id(PREFIX_INDEXING_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("IndexingExpr");
 
                self.kv(indent2).with_s_key("Subject");
 
                self.write_expr(heap, expr.subject, indent3);
 
                self.kv(indent2).with_s_key("Index");
 
                self.write_expr(heap, expr.index, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
                self.kv(indent2).with_s_key("ConcreteType")
 
                    .with_custom_val(|v| write_concrete_type(v, heap, def_id, &expr.concrete_type));
 
            },
 
            Expression::Slicing(expr) => {
 
                self.kv(indent).with_id(PREFIX_SLICING_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("SlicingExpr");
 
                self.kv(indent2).with_s_key("Subject");
 
                self.write_expr(heap, expr.subject, indent3);
 
                self.kv(indent2).with_s_key("FromIndex");
 
                self.write_expr(heap, expr.from_index, indent3);
 
                self.kv(indent2).with_s_key("ToIndex");
 
                self.write_expr(heap, expr.to_index, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
                self.kv(indent2).with_s_key("ConcreteType")
 
                    .with_custom_val(|v| write_concrete_type(v, heap, def_id, &expr.concrete_type));
 
            },
 
            Expression::Select(expr) => {
 
                self.kv(indent).with_id(PREFIX_SELECT_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("SelectExpr");
 
                self.kv(indent2).with_s_key("Subject");
 
                self.write_expr(heap, expr.subject, indent3);
 

	
 
                match &expr.field {
 
                    Field::Length => {
 
                        self.kv(indent2).with_s_key("Field").with_s_val("length");
 
                    },
 
                    Field::Symbolic(field) => {
 
                        self.kv(indent2).with_s_key("Field").with_ascii_val(&field.identifier.value);
 
                        self.kv(indent3).with_s_key("Definition").with_opt_disp_val(field.definition.as_ref().map(|v| &v.index));
 
                        self.kv(indent3).with_s_key("Index").with_disp_val(&field.field_idx);
 
                    }
 
                }
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
                self.kv(indent2).with_s_key("ConcreteType")
 
                    .with_custom_val(|v| write_concrete_type(v, heap, def_id, &expr.concrete_type));
 
            },
 
            Expression::Array(expr) => {
 
                self.kv(indent).with_id(PREFIX_ARRAY_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("ArrayExpr");
 
                self.kv(indent2).with_s_key("Elements");
 
                for expr_id in &expr.elements {
 
                    self.write_expr(heap, *expr_id, indent3);
 
                }
 

	
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
                self.kv(indent2).with_s_key("ConcreteType")
 
                    .with_custom_val(|v| write_concrete_type(v, heap, def_id, &expr.concrete_type));
 
            },
 
            Expression::Literal(expr) => {
 
                self.kv(indent).with_id(PREFIX_CONST_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("ConstantExpr");
 

	
 
                let val = self.kv(indent2).with_s_key("Value");
 
                match &expr.value {
 
                    Literal::Null => { val.with_s_val("null"); },
 
                    Literal::True => { val.with_s_val("true"); },
 
                    Literal::False => { val.with_s_val("false"); },
 
                    Literal::Character(data) => { val.with_ascii_val(data); },
 
                    Literal::Integer(data) => { val.with_disp_val(data); },
 
                    Literal::Struct(data) => {
 
                        val.with_s_val("Struct");
 
                        let indent4 = indent3 + 1;
 

	
 
                        // Polymorphic arguments
 
                        if !data.poly_args.is_empty() {
 
                        if !data.poly_args2.is_empty() {
 
                            self.kv(indent3).with_s_key("PolymorphicArguments");
 
                            for poly_arg in &data.poly_args {
 
                            for poly_arg in &data.poly_args2 {
 
                                self.kv(indent4).with_s_key("Argument")
 
                                    .with_custom_val(|v| write_parser_type(v, heap, &heap[*poly_arg]));
 
                            }
 
                        }
 

	
 
                        for field in &data.fields {
 
                            self.kv(indent3).with_s_key("Field");
 
                            self.kv(indent4).with_s_key("Name").with_ascii_val(&field.identifier.value);
 
                            self.kv(indent4).with_s_key("Index").with_disp_val(&field.field_idx);
 
                            self.kv(indent4).with_s_key("ParserType");
 
                            self.write_expr(heap, field.value, indent4 + 1);
 
                        }
 
                    }
 
                }
 

	
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
                self.kv(indent2).with_s_key("ConcreteType")
 
                    .with_custom_val(|v| write_concrete_type(v, heap, def_id, &expr.concrete_type));
 
            },
 
            Expression::Call(expr) => {
 
                self.kv(indent).with_id(PREFIX_CALL_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("CallExpr");
 

	
 
                // Method
 
                let method = self.kv(indent2).with_s_key("Method");
 
                match &expr.method {
 
                    Method::Get => { method.with_s_val("get"); },
 
                    Method::Put => { method.with_s_val("put"); },
 
                    Method::Fires => { method.with_s_val("fires"); },
 
                    Method::Create => { method.with_s_val("create"); },
 
                    Method::Symbolic(symbolic) => {
 
                        method.with_s_val("symbolic");
 
                        self.kv(indent3).with_s_key("Name").with_ascii_val(&symbolic.identifier.value);
 
                        self.kv(indent3).with_s_key("Definition")
 
                            .with_opt_disp_val(symbolic.definition.as_ref().map(|v| &v.index));
 
                    }
 
                }
 

	
 
                // Polymorphic arguments
 
                if !expr.poly_args.is_empty() {
 
                    self.kv(indent2).with_s_key("PolymorphicArguments");
 
                    for poly_arg in &expr.poly_args {
 
                        self.kv(indent3).with_s_key("Argument")
 
                            .with_custom_val(|v| write_parser_type(v, heap, &heap[*poly_arg]));
 
                    }
 
                }
 

	
 
                // Arguments
 
                self.kv(indent2).with_s_key("Arguments");
 
                for arg_id in &expr.arguments {
 
                    self.write_expr(heap, *arg_id, indent3);
 
                }
 

	
 
                // Parent
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
                self.kv(indent2).with_s_key("ConcreteType")
 
                    .with_custom_val(|v| write_concrete_type(v, heap, def_id, &expr.concrete_type));
 
            },
 
            Expression::Variable(expr) => {
 
                self.kv(indent).with_id(PREFIX_VARIABLE_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("VariableExpr");
 
                self.kv(indent2).with_s_key("Name").with_ascii_val(&expr.identifier.value);
 
                self.kv(indent2).with_s_key("Definition")
 
                    .with_opt_disp_val(expr.declaration.as_ref().map(|v| &v.index));
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
                self.kv(indent2).with_s_key("ConcreteType")
 
                    .with_custom_val(|v| write_concrete_type(v, heap, def_id, &expr.concrete_type));
 
            }
 
        }
 
    }
 

	
 
    fn write_local(&mut self, heap: &Heap, local_id: LocalId, indent: usize) {
 
        let local = &heap[local_id];
 
        let indent2 = indent + 1;
 

	
 
        self.kv(indent).with_id(PREFIX_LOCAL_ID, local_id.0.index)
 
            .with_s_key("Local");
 

	
 
        self.kv(indent2).with_s_key("Name").with_ascii_val(&local.identifier.value);
 
        self.kv(indent2).with_s_key("ParserType")
 
            .with_custom_val(|w| write_parser_type(w, heap, &heap[local.parser_type]));
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Printing Utilities
 
    //--------------------------------------------------------------------------
 

	
 
    fn kv(&mut self, indent: usize) -> KV {
 
        KV::new(&mut self.buffer, &mut self.temp1, &mut self.temp2, indent)
 
    }
 

	
 
    fn flush<W: IOWrite>(&mut self, w: &mut W) {
 
        w.write(self.buffer.as_bytes()).unwrap();
 
        self.buffer.clear()
 
    }
 
}
 

	
 
fn write_option<V: Display>(target: &mut String, value: Option<V>) {
 
    target.clear();
 
    match &value {
 
        Some(v) => target.push_str(&format!("Some({})", v)),
 
        None => target.push_str("None")
 
    };
 
}
 

	
 
fn write_parser_type(target: &mut String, heap: &Heap, t: &ParserType) {
 
    use ParserTypeVariant as PTV;
 

	
 
    let mut embedded = Vec::new();
 
    match &t.variant {
 
        PTV::Input(id) => { target.push_str("in"); embedded.push(*id); }
 
        PTV::Output(id) => { target.push_str("out"); embedded.push(*id) }
 
        PTV::Array(id) => { target.push_str("array"); embedded.push(*id) }
 
        PTV::Message => { target.push_str("msg"); }
 
        PTV::Bool => { target.push_str("bool"); }
 
        PTV::Byte => { target.push_str("byte"); }
 
        PTV::Short => { target.push_str("short"); }
 
        PTV::Int => { target.push_str("int"); }
 
        PTV::Long => { target.push_str("long"); }
 
        PTV::String => { target.push_str("str"); }
 
        PTV::IntegerLiteral => { target.push_str("int_lit"); }
 
        PTV::Inferred => { target.push_str("auto"); }
 
        PTV::Symbolic(symbolic) => {
 
            target.push_str(&String::from_utf8_lossy(&symbolic.identifier.value));
 
            match symbolic.variant {
 
                Some(SymbolicParserTypeVariant::PolyArg(def_id, idx)) => {
 
                    target.push_str(&format!("{{def: {}, idx: {}}}", def_id.index, idx));
 
                },
 
                Some(SymbolicParserTypeVariant::Definition(def_id)) => {
 
                    target.push_str(&format!("{{def: {}}}", def_id.index));
 
                },
 
                None => {
 
                    target.push_str("{None}");
 
                }
 
            }
 
            embedded.extend(&symbolic.poly_args);
 
            embedded.extend(&symbolic.poly_args2);
 
        }
 
    };
 

	
 
    if !embedded.is_empty() {
 
        target.push_str("<");
 
        for (idx, embedded_id) in embedded.into_iter().enumerate() {
 
            if idx != 0 { target.push_str(", "); }
 
            write_parser_type(target, heap, &heap[embedded_id]);
 
        }
 
        target.push_str(">");
 
    }
 
}
 

	
 
fn write_concrete_type(target: &mut String, heap: &Heap, def_id: DefinitionId, t: &ConcreteType) {
 
    use ConcreteTypePart as CTP;
 

	
 
    fn write_concrete_part(target: &mut String, heap: &Heap, def_id: DefinitionId, t: &ConcreteType, mut idx: usize) -> usize {
 
        if idx >= t.parts.len() {
 
            return idx;
 
        }
 

	
 
        match &t.parts[idx] {
 
            CTP::Marker(marker) => {
 
                // Marker points to polymorphic variable index
 
                let definition = &heap[def_id];
 
                let poly_var_ident = match definition {
 
                    Definition::Struct(_) | Definition::Enum(_) => unreachable!(),
 
                    Definition::Function(definition) => &definition.poly_vars[*marker].value,
 
                    Definition::Component(definition) => &definition.poly_vars[*marker].value,
 
                };
 
                target.push_str(&String::from_utf8_lossy(&poly_var_ident));
 
                idx = write_concrete_part(target, heap, def_id, t, idx + 1);
 
            },
 
            CTP::Void => target.push_str("void"),
 
            CTP::Message => target.push_str("msg"),
 
            CTP::Bool => target.push_str("bool"),
 
            CTP::Byte => target.push_str("byte"),
 
            CTP::Short => target.push_str("short"),
 
            CTP::Int => target.push_str("int"),
 
            CTP::Long => target.push_str("long"),
 
            CTP::String => target.push_str("string"),
 
            CTP::Array => {
 
                idx = write_concrete_part(target, heap, def_id, t, idx + 1);
 
                target.push_str("[]");
 
            },
 
            CTP::Slice => {
 
                idx = write_concrete_part(target, heap, def_id, t, idx + 1);
 
                target.push_str("[..]");
 
            }
 
            CTP::Input => {
 
                target.push_str("in<");
 
                idx = write_concrete_part(target, heap, def_id, t, idx + 1);
 
                target.push('>');
 
            },
 
            CTP::Output => {
 
                target.push_str("out<");
 
                idx = write_concrete_part(target, heap, def_id, t, idx + 1);
 
                target.push('>')
 
            },
 
            CTP::Instance(definition_id, num_embedded) => {
 
                let identifier = heap[*definition_id].identifier();
 
                target.push_str(&String::from_utf8_lossy(&identifier.value));
 
                target.push('<');
 
                for idx_embedded in 0..*num_embedded {
 
                    if idx_embedded != 0 {
 
                        target.push_str(", ");
 
                    }
 
                    idx = write_concrete_part(target, heap, def_id, t, idx + 1);
 
                }
 
                target.push('>');
 
            }
 
        }
 

	
 
        idx + 1
 
    }
 

	
 
    write_concrete_part(target, heap, def_id, t, 0);
 
}
 

	
 
fn write_expression_parent(target: &mut String, parent: &ExpressionParent) {
 
    use ExpressionParent as EP;
 

	
 
    *target = match parent {
 
        EP::None => String::from("None"),
 
        EP::If(id) => format!("IfStmt({})", id.0.index),
 
        EP::While(id) => format!("WhileStmt({})", id.0.index),
 
        EP::Return(id) => format!("ReturnStmt({})", id.0.index),
 
        EP::Assert(id) => format!("AssertStmt({})", id.0.index),
 
        EP::New(id) => format!("NewStmt({})", id.0.index),
 
        EP::ExpressionStmt(id) => format!("ExprStmt({})", id.0.index),
 
        EP::Expression(id, idx) => format!("Expr({}, {})", id.index, idx)
 
    };
 
}
 
\ No newline at end of file
src/protocol/lexer.rs
Show inline comments
 
use crate::protocol::ast::*;
 
use crate::protocol::inputsource::*;
 

	
 
const MAX_LEVEL: usize = 128;
 
const MAX_NAMESPACES: u8 = 8; // only three levels are supported at the moment
 

	
 
macro_rules! debug_log {
 
    ($format:literal) => {
 
        enabled_debug_print!(false, "lexer", $format);
 
        enabled_debug_print!(true, "lexer", $format);
 
    };
 
    ($format:literal, $($args:expr),*) => {
 
        enabled_debug_print!(false, "lexer", $format, $($args),*);
 
        enabled_debug_print!(true, "lexer", $format, $($args),*);
 
    };
 
}
 

	
 
macro_rules! debug_line {
 
    ($source:expr) => {
 
        {
 
            let mut buffer = String::with_capacity(128);
 
            for idx in 0..buffer.capacity() {
 
                let next = $source.lookahead(idx);
 
                if next.is_none() || Some(b'\n') == next { break; }
 
                buffer.push(next.unwrap() as char);
 
            }
 
            buffer
 
        }
 
    };
 
}
 
fn is_vchar(x: Option<u8>) -> bool {
 
    if let Some(c) = x {
 
        c >= 0x21 && c <= 0x7E
 
    } else {
 
        false
 
    }
 
}
 

	
 
fn is_wsp(x: Option<u8>) -> bool {
 
    if let Some(c) = x {
 
        c == b' ' || c == b'\t'
 
    } else {
 
        false
 
    }
 
}
 

	
 
fn is_ident_start(x: Option<u8>) -> bool {
 
    if let Some(c) = x {
 
        c >= b'A' && c <= b'Z' || c >= b'a' && c <= b'z'
 
    } else {
 
        false
 
    }
 
}
 

	
 
fn is_ident_rest(x: Option<u8>) -> bool {
 
    if let Some(c) = x {
 
        c >= b'A' && c <= b'Z' || c >= b'a' && c <= b'z' || c >= b'0' && c <= b'9' || c == b'_'
 
    } else {
 
        false
 
    }
 
}
 

	
 
fn is_constant(x: Option<u8>) -> bool {
 
    if let Some(c) = x {
 
        c >= b'0' && c <= b'9' || c == b'\''
 
    } else {
 
        false
 
    }
 
}
 

	
 
fn is_integer_start(x: Option<u8>) -> bool {
 
    if let Some(c) = x {
 
        c >= b'0' && c <= b'9'
 
    } else {
 
        false
 
    }
 
}
 

	
 
fn is_integer_rest(x: Option<u8>) -> bool {
 
    if let Some(c) = x {
 
        c >= b'0' && c <= b'9'
 
            || c >= b'a' && c <= b'f'
 
            || c >= b'A' && c <= b'F'
 
            || c == b'x'
 
            || c == b'o'
 
    } else {
 
        false
 
    }
 
}
 

	
 
fn lowercase(x: u8) -> u8 {
 
    if x >= b'A' && x <= b'Z' {
 
        x - b'A' + b'a'
 
    } else {
 
        x
 
    }
 
}
 

	
 
fn identifier_as_namespaced(identifier: Identifier) -> NamespacedIdentifier2 {
 
    let identifier_len = identifier.value.len();
 
    debug_assert!(identifier_len < u16::max_value() as usize);
 
    NamespacedIdentifier2{
 
        position: identifier.position,
 
        value: identifier.value,
 
        poly_args: Vec::new(),
 
        parts: vec![
 
            NamespacedIdentifierPart::Identifier{start: 0, end: identifier_len as u16}
 
        ],
 
    }
 
}
 

	
 
pub struct Lexer<'a> {
 
    source: &'a mut InputSource,
 
    level: usize,
 
}
 

	
 
impl Lexer<'_> {
 
    pub fn new(source: &mut InputSource) -> Lexer {
 
        Lexer { source, level: 0 }
 
    }
 
    fn error_at_pos(&self, msg: &str) -> ParseError2 {
 
        ParseError2::new_error(self.source, self.source.pos(), msg)
 
    }
 
    fn consume_line(&mut self) -> Result<Vec<u8>, ParseError2> {
 
        let mut result: Vec<u8> = Vec::new();
 
        let mut next = self.source.next();
 
        while next.is_some() && next != Some(b'\n') && next != Some(b'\r') {
 
            if !(is_vchar(next) || is_wsp(next)) {
 
                return Err(self.error_at_pos("Expected visible character or whitespace"));
 
            }
 
            result.push(next.unwrap());
 
            self.source.consume();
 
            next = self.source.next();
 
        }
 
        if next.is_some() {
 
            self.source.consume();
 
        }
 
        if next == Some(b'\r') && self.source.next() == Some(b'\n') {
 
            self.source.consume();
 
        }
 
        Ok(result)
 
    }
 
    fn consume_whitespace(&mut self, expected: bool) -> Result<(), ParseError2> {
 
        let mut found = false;
 
        let mut next = self.source.next();
 
        while next.is_some() {
 
            if next == Some(b' ')
 
                || next == Some(b'\t')
 
                || next == Some(b'\r')
 
                || next == Some(b'\n')
 
            {
 
                self.source.consume();
 
                next = self.source.next();
 
                found = true;
 
                continue;
 
            }
 
            if next == Some(b'/') {
 
                next = self.source.lookahead(1);
 
                if next == Some(b'/') {
 
                    self.source.consume(); // slash
 
                    self.source.consume(); // slash
 
                    self.consume_line()?;
 
                    next = self.source.next();
 
                    found = true;
 
                    continue;
 
                }
 
                if next == Some(b'*') {
 
                    self.source.consume(); // slash
 
                    self.source.consume(); // star
 
                    next = self.source.next();
 
                    while next.is_some() {
 
                        if next == Some(b'*') {
 
                            next = self.source.lookahead(1);
 
                            if next == Some(b'/') {
 
                                self.source.consume(); // star
 
                                self.source.consume(); // slash
 
                                break;
 
                            }
 
                        }
 
                        self.source.consume();
 
                        next = self.source.next();
 
                    }
 
                    next = self.source.next();
 
                    found = true;
 
                    continue;
 
                }
 
            }
 
            break;
 
        }
 
        if expected && !found {
 
            Err(self.error_at_pos("Expected whitespace"))
 
        } else {
 
            Ok(())
 
        }
 
    }
 
    fn consume_any_chars(&mut self) {
 
        if !is_ident_start(self.source.next()) { return }
 
        self.source.consume();
 
        while is_ident_rest(self.source.next()) {
 
            self.source.consume()
 
        }
 
    }
 
    fn has_keyword(&self, keyword: &[u8]) -> bool {
 
        if !self.source.has(keyword) {
 
            return false;
 
        }
 

	
 
        // Word boundary
 
        let next = self.source.lookahead(keyword.len());
 
        if next.is_none() { return true; }
 
        return !is_ident_rest(next);
 
    }
 
    fn consume_keyword(&mut self, keyword: &[u8]) -> Result<(), ParseError2> {
 
        let len = keyword.len();
 
        for i in 0..len {
 
            let expected = Some(lowercase(keyword[i]));
 
            let next = self.source.next();
 
            if next != expected {
 
                return Err(self.error_at_pos(&format!("Expected keyword '{}'", String::from_utf8_lossy(keyword))));
 
            }
 
            self.source.consume();
 
        }
 
        if let Some(next) = self.source.next() {
 
            if next >= b'A' && next <= b'Z' || next >= b'a' && next <= b'z' || next >= b'0' && next <= b'9' {
 
                return Err(self.error_at_pos(&format!("Expected word boundary after '{}'", String::from_utf8_lossy(keyword))));
 
            }
 
        }
 
        Ok(())
 
    }
 
    fn has_string(&self, string: &[u8]) -> bool {
 
        self.source.has(string)
 
    }
 
    fn consume_string(&mut self, string: &[u8]) -> Result<(), ParseError2> {
 
        let len = string.len();
 
        for i in 0..len {
 
            let expected = Some(string[i]);
 
            let next = self.source.next();
 
            if next != expected {
 
                return Err(self.error_at_pos(&format!("Expected {}", String::from_utf8_lossy(string))));
 
            }
 
            self.source.consume();
 
        }
 
        Ok(())
 
    }
 
    /// Generic comma-separated consumer. If opening delimiter is not found then
 
    /// `Ok(None)` will be returned. Otherwise will consume the comma separated
 
    /// values, allowing a trailing comma. If no comma is found and the closing
 
    /// delimiter is not found, then a parse error with `expected_end_msg` is
 
    /// returned.
 
    fn consume_comma_separated<T, F>(
 
        &mut self, h: &mut Heap, open: u8, close: u8, expected_end_msg: &str, func: F
 
    ) -> Result<Option<Vec<T>>, ParseError2>
 
        where F: Fn(&mut Lexer, &mut Heap) -> Result<T, ParseError2>
 
    {
 
        if Some(open) != self.source.next() {
 
            return Ok(None)
 
        }
 

	
 
        self.source.consume();
 
        self.consume_whitespace(false)?;
 
        let mut elements = Vec::new();
 
        let mut had_comma = true;
 

	
 
        loop {
 
            if Some(close) == self.source.next() {
 
                self.source.consume();
 
                break;
 
            } else if !had_comma {
 
                return Err(ParseError2::new_error(
 
                    &self.source, self.source.pos(), expected_end_msg
 
                ));
 
            }
 

	
 
            elements.push(func(self, h)?);
 
            self.consume_whitespace(false)?;
 

	
 
            had_comma = self.source.next() == Some(b',');
 
            if had_comma {
 
                self.source.consume();
 
                self.consume_whitespace(false)?;
 
            }
 
        }
 

	
 
        Ok(Some(elements))
 
    }
 
    /// Essentially the same as `consume_comma_separated`, but will not allocate
 
    /// memory. Will return `Ok(true)` and leave the input position at the end
 
    /// the comma-separated list if well formed and `Ok(false)` if the list is
 
    /// not present. Otherwise returns `Err(())` and leaves the input position 
 
    /// at a "random" position.
 
    fn consume_comma_separated_spilled_without_pos_recovery<F: Fn(&mut Lexer) -> bool>(
 
        &mut self, open: u8, close: u8, func: F
 
    ) -> Result<bool, ()> {
 
        if Some(open) != self.source.next() {
 
            return Ok(false);
 
        }
 

	
 
        self.source.consume();
 
        if self.consume_whitespace(false).is_err() { return Err(()) };
 
        let mut had_comma = true;
 
        loop {
 
            if Some(close) == self.source.next() {
 
                self.source.consume();
 
                return Ok(true);
 
            } else if !had_comma {
 
                return Err(());
 
            }
 

	
 
            if !func(self) { return Err(()); }
 
            if self.consume_whitespace(false).is_err() { return Err(()) };
 

	
 
            had_comma = self.source.next() == Some(b',');
 
            if had_comma {
 
                self.source.consume();
 
                if self.consume_whitespace(false).is_err() { return Err(()); }
 
            }
 
        }
 
    }
 
    fn consume_ident(&mut self) -> Result<Vec<u8>, ParseError2> {
 
        if !self.has_identifier() {
 
            return Err(self.error_at_pos("Expected identifier"));
 
        }
 
        let mut result = Vec::new();
 
        let mut next = self.source.next();
 
        result.push(next.unwrap());
 
        self.source.consume();
 
        next = self.source.next();
 
        while is_ident_rest(next) {
 
            result.push(next.unwrap());
 
            self.source.consume();
 
            next = self.source.next();
 
        }
 
        Ok(result)
 
    }
 
    fn has_integer(&mut self) -> bool {
 
        is_integer_start(self.source.next())
 
    }
 
    fn consume_integer(&mut self) -> Result<i64, ParseError2> {
 
        let position = self.source.pos();
 
        let mut data = Vec::new();
 
        let mut next = self.source.next();
 
        while is_integer_rest(next) {
 
            data.push(next.unwrap());
 
            self.source.consume();
 
            next = self.source.next();
 
        }
 

	
 
        let data_len = data.len();
 
        debug_assert_ne!(data_len, 0);
 
        if data_len == 1 {
 
            debug_assert!(data[0] >= b'0' && data[0] <= b'9');
 
            return Ok((data[0] - b'0') as i64);
 
        } else {
 
            // TODO: Fix, u64 should be supported as well
 
            let parsed = if data[1] == b'b' {
 
                let data = String::from_utf8_lossy(&data[2..]);
 
                i64::from_str_radix(&data, 2)
 
            } else if data[1] == b'o' {
 
                let data = String::from_utf8_lossy(&data[2..]);
 
                i64::from_str_radix(&data, 8)
 
            } else if data[1] == b'x' {
 
                let data = String::from_utf8_lossy(&data[2..]);
 
                i64::from_str_radix(&data, 16)
 
            } else {
 
                // Assume decimal
 
                let data = String::from_utf8_lossy(&data);
 
                i64::from_str_radix(&data, 10)
 
            };
 

	
 
            if let Err(_err) = parsed {
 
                return Err(ParseError2::new_error(&self.source, position, "Invalid integer constant"));
 
            }
 

	
 
            Ok(parsed.unwrap())
 
        }
 
    }
 

	
 
    // Statement keywords
 
    // TODO: Clean up these functions
 
    fn has_statement_keyword(&self) -> bool {
 
        self.has_keyword(b"channel")
 
            || self.has_keyword(b"skip")
 
            || self.has_keyword(b"if")
 
            || self.has_keyword(b"while")
 
            || self.has_keyword(b"break")
 
            || self.has_keyword(b"continue")
 
            || self.has_keyword(b"synchronous")
 
            || self.has_keyword(b"return")
 
            || self.has_keyword(b"assert")
 
            || self.has_keyword(b"goto")
 
            || self.has_keyword(b"new")
 
    }
 
    fn has_type_keyword(&self) -> bool {
 
        self.has_keyword(b"in")
 
            || self.has_keyword(b"out")
 
            || self.has_keyword(b"msg")
 
            || self.has_keyword(b"boolean")
 
            || self.has_keyword(b"byte")
 
            || self.has_keyword(b"short")
 
            || self.has_keyword(b"int")
 
            || self.has_keyword(b"long")
 
            || self.has_keyword(b"auto")
 
    }
 
    fn has_builtin_keyword(&self) -> bool {
 
        self.has_keyword(b"get")
 
            || self.has_keyword(b"fires")
 
            || self.has_keyword(b"create")
 
            || self.has_keyword(b"length")
 
    }
 
    fn has_reserved(&self) -> bool {
 
        self.has_statement_keyword()
 
            || self.has_type_keyword()
 
            || self.has_builtin_keyword()
 
            || self.has_keyword(b"let")
 
            || self.has_keyword(b"struct")
 
            || self.has_keyword(b"enum")
 
            || self.has_keyword(b"true")
 
            || self.has_keyword(b"false")
 
            || self.has_keyword(b"null")
 
    }
 

	
 
    // Identifiers
 

	
 
    fn has_identifier(&self) -> bool {
 
        if self.has_statement_keyword() || self.has_type_keyword() || self.has_builtin_keyword() {
 
            return false;
 
        }
 
        let next = self.source.next();
 
        is_ident_start(next)
 
    }
 
    fn consume_identifier(&mut self) -> Result<Identifier, ParseError2> {
 
        if self.has_statement_keyword() || self.has_type_keyword() || self.has_builtin_keyword() {
 
            return Err(self.error_at_pos("Expected identifier"));
 
        }
 
        let position = self.source.pos();
 
        let value = self.consume_ident()?;
 
        Ok(Identifier{ position, value })
 
    }
 
    fn consume_identifier_spilled(&mut self) -> Result<(), ParseError2> {
 
        if self.has_statement_keyword() || self.has_type_keyword() || self.has_builtin_keyword() {
 
            return Err(self.error_at_pos("Expected identifier"));
 
        }
 
        self.consume_ident()?;
 
        Ok(())
 
    }
 
    fn has_namespaced_identifier(&self) -> bool { 
 
        self.has_identifier() 
 
    }
 
    fn consume_namespaced_identifier(&mut self) -> Result<NamespacedIdentifier, ParseError2> {
 
        if self.has_reserved() {
 
            return Err(self.error_at_pos("Encountered reserved keyword"));
 
        }
 

	
 
        let position = self.source.pos();
 
        let mut ns_ident = self.consume_ident()?;
 
        let mut num_namespaces = 1;
 
        while self.has_string(b"::") {
 
            self.consume_string(b"::")?;
 
            if num_namespaces >= MAX_NAMESPACES {
 
                return Err(self.error_at_pos("Too many namespaces in identifier"));
 
            }
 
            let new_ident = self.consume_ident()?;
 
            ns_ident.extend(b"::");
 
            ns_ident.extend(new_ident);
 
            num_namespaces += 1;
 
        }
 

	
 
        Ok(NamespacedIdentifier{
 
            position,
 
            value: ns_ident,
 
            num_namespaces,
 
        })
 
    }
 
    fn consume_namespaced_identifier_spilled(&mut self) -> Result<(), ParseError2> {
 
        // TODO: @performance
 
        if self.has_reserved() {
 
            return Err(self.error_at_pos("Encountered reserved keyword"));
 
        }
 

	
 
        self.consume_ident()?;
 
        while self.has_string(b"::") {
 
            self.consume_string(b"::")?;
 
            self.consume_ident()?;
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn consume_namespaced_identifier2(&mut self, h: &mut Heap) -> Result<NamespacedIdentifier2, ParseError2> {
 
        if self.has_reserved() {
 
            return Err(self.error_at_pos("Encountered reserved keyword"));
 
        }
 

	
 
        // Consumes a part of the namespaced identifier, returns a boolean
 
        // indicating whether polymorphic arguments were specified.
 
        // TODO: Continue here: if we fail to properly parse the polymorphic
 
        //  arguments, assume we have reached the end of the namespaced 
 
        //  identifier and are instead dealing with a less-than operator. Ugly?
 
        //  Yes. Needs tokenizer? Yes. 
 
        fn consume_part(
 
            l: &mut Lexer, h: &mut Heap, ident: &mut NamespacedIdentifier2,
 
            backup_pos: &mut InputPosition
 
        ) -> Result<(), ParseError2> {
 
            // Consume identifier
 
            let ident_start = ident.value.len();
 
            ident.value.extend(l.consume_ident()?);
 
            ident.parts.push(NamespacedIdentifierPart::Identifier{
 
                start: ident_start as u16,
 
                end: ident.value.len() as u16
 
            });
 

	
 
            // Maybe consume polymorphic args.
 
            *backup_pos = l.source.pos();
 
            l.consume_whitespace(false)?;
 
            let had_poly_args = match l.consume_polymorphic_args(h, true)? {
 
                Some(args) => {
 
                    let poly_start = ident.poly_args.len();
 
                    ident.poly_args.extend(args);
 

	
 
                    ident.parts.push(NamespacedIdentifierPart::PolyArgs{
 
                        start: poly_start as u16,
 
                        end: ident.poly_args.len() as u16,
 
                    });
 

	
 
                    *backup_pos = l.source.pos();
 
                },
 
                None => {}
 
            };
 

	
 
            Ok(had_poly_args)
 
        }
 

	
 
        let mut ident = NamespacedIdentifier2{
 
            position: self.source.pos(),
 
            value: Vec::new(),
 
            poly_args: Vec::new(),
 
            parts: Vec::new(),
 
        };
 

	
 
        // Keep consume parts separted by "::". We don't consume the trailing
 
        // whitespace, hence we keep a backup position at the end of the last
 
        // valid part of the namespaced identifier (i.e. the last ident, or the
 
        // last encountered polymorphic arguments).
 
        let mut backup_pos = self.source.pos();
 
        consume_part(self, h, &mut ident, &mut backup_pos)?;
 
        self.consume_whitespace(false)?;
 
        while self.has_string(b"::") {
 
            self.consume_string(b"::")?;
 
            self.consume_whitespace(false)?;
 
            consume_part(self, h, &mut ident, &mut backup_pos)?;
 
            self.consume_whitespace(false)?;
 
        }
 

	
 
        self.source.seek(backup_pos);
 
        Ok(ident)
 
    }
 

	
 
    // Types and type annotations
 

	
 
    /// Consumes a type definition. When called the input position should be at
 
    /// the type specification. When done the input position will be at the end
 
    /// of the type specifications (hence may be at whitespace).
 
    fn consume_type2(&mut self, h: &mut Heap, allow_inference: bool) -> Result<ParserTypeId, ParseError2> {
 
        // Small helper function to convert in/out polymorphic arguments. Not
 
        // pretty, but return boolean is true if the error is due to inference
 
        // not being allowed
 
        let reduce_port_poly_args = |
 
            heap: &mut Heap,
 
            port_pos: &InputPosition,
 
            args: Vec<ParserTypeId>,
 
        | -> Result<ParserTypeId, bool> {
 
            match args.len() {
 
                0 => if allow_inference {  
 
                    Ok(heap.alloc_parser_type(|this| ParserType{
 
                        this,
 
                        pos: port_pos.clone(),
 
                        variant: ParserTypeVariant::Inferred
 
                    }))
 
                } else {
 
                    Err(true)
 
                },
 
                1 => Ok(args[0]),
 
                _ => Err(false)
 
            }
 
        };
 

	
 
        // Consume the type
 
        debug_log!("consume_type2: {}", debug_line!(self.source));
 
        let pos = self.source.pos();
 
        let parser_type_variant = if self.has_keyword(b"msg") {
 
            self.consume_keyword(b"msg")?;
 
            ParserTypeVariant::Message
 
        } else if self.has_keyword(b"boolean") {
 
            self.consume_keyword(b"boolean")?;
 
            ParserTypeVariant::Bool
 
        } else if self.has_keyword(b"byte") {
 
            self.consume_keyword(b"byte")?;
 
            ParserTypeVariant::Byte
 
        } else if self.has_keyword(b"short") {
 
            self.consume_keyword(b"short")?;
 
            ParserTypeVariant::Short
 
        } else if self.has_keyword(b"int") {
 
            self.consume_keyword(b"int")?;
 
            ParserTypeVariant::Int
 
        } else if self.has_keyword(b"long") {
 
            self.consume_keyword(b"long")?;
 
            ParserTypeVariant::Long
 
        } else if self.has_keyword(b"str") {
 
            self.consume_keyword(b"str")?;
 
            ParserTypeVariant::String
 
        } else if self.has_keyword(b"auto") {
 
            if !allow_inference {
 
                return Err(ParseError2::new_error(
 
                        &self.source, pos,
 
                        "Type inference is not allowed here"
 
                ));
 
            }
 

	
 
            self.consume_keyword(b"auto")?;
 
            ParserTypeVariant::Inferred
 
        } else if self.has_keyword(b"in") {
 
            // TODO: @cleanup: not particularly neat to have this special case
 
            //  where we enforce polyargs in the parser-phase
 
            self.consume_keyword(b"in")?;
 
            let poly_args = self.consume_polymorphic_args(h, allow_inference)?.unwrap_or_default();
 
            let poly_arg = reduce_port_poly_args(h, &pos, poly_args)
 
                .map_err(|infer_error|  {
 
                    let msg = if infer_error {
 
                        "Type inference is not allowed here"
 
                    } else {
 
                        "Type 'in' only allows for 1 polymorphic argument"
 
                    };
 
                    ParseError2::new_error(&self.source, pos, msg)
 
                })?;
 
            ParserTypeVariant::Input(poly_arg)
 
        } else if self.has_keyword(b"out") {
 
            self.consume_keyword(b"out")?;
 
            let poly_args = self.consume_polymorphic_args(h, allow_inference)?.unwrap_or_default();
 
            let poly_arg = reduce_port_poly_args(h, &pos, poly_args)
 
                .map_err(|infer_error| {
 
                    let msg = if infer_error {
 
                        "Type inference is not allowed here"
 
                    } else {
 
                        "Type 'out' only allows for 1 polymorphic argument, but {} were specified"
 
                    };
 
                    ParseError2::new_error(&self.source, pos, msg)
 
                })?;
 
            ParserTypeVariant::Output(poly_arg)
 
        } else {
 
            // Must be a symbolic type
 
            let identifier = self.consume_namespaced_identifier2(h)?;
 
            ParserTypeVariant::Symbolic(SymbolicParserType{identifier, variant: None})
 
            ParserTypeVariant::Symbolic(SymbolicParserType{identifier, variant: None, poly_args2: Vec::new()})
 
        };
 

	
 
        // If the type was a basic type (not supporting polymorphic type
 
        // arguments), then we make sure the user did not specify any of them.
 
        let mut backup_pos = self.source.pos();
 
        if !parser_type_variant.supports_polymorphic_args() {
 
            self.consume_whitespace(false)?;
 
            if let Some(b'<') = self.source.next() {
 
                return Err(ParseError2::new_error(
 
                    &self.source, self.source.pos(),
 
                    "This type does not allow polymorphic arguments"
 
                ));
 
            }
 

	
 
            self.source.seek(backup_pos);
 
        }
 

	
 
        let mut parser_type_id = h.alloc_parser_type(|this| ParserType{
 
            this, pos, variant: parser_type_variant
 
        });
 

	
 
        // If we're dealing with arrays, then we need to wrap the currently
 
        // parsed type in array types
 
        self.consume_whitespace(false)?;
 
        while let Some(b'[') = self.source.next() {
 
            let pos = self.source.pos();
 
            self.source.consume();
 
            self.consume_whitespace(false)?;
 
            if let Some(b']') = self.source.next() {
 
                // Type is wrapped in an array
 
                self.source.consume();
 
                parser_type_id = h.alloc_parser_type(|this| ParserType{
 
                    this, pos, variant: ParserTypeVariant::Array(parser_type_id)
 
                });
 
                backup_pos = self.source.pos();
 

	
 
                // In case we're dealing with another array
 
                self.consume_whitespace(false)?;
 
            } else {
 
                return Err(ParseError2::new_error(
 
                    &self.source, pos,
 
                    "Expected a closing ']'"
 
                ));
 
            }
 
        }
 

	
 
        self.source.seek(backup_pos);
 
        Ok(parser_type_id)
 
    }
 

	
 
    /// Attempts to consume a type without returning it. If it doesn't encounter
 
    /// a well-formed type, then the input position is left at a "random"
 
    /// position.
 
    fn maybe_consume_type_spilled_without_pos_recovery(&mut self) -> bool {
 
        // Consume type identifier
 
        debug_log!("maybe_consume_type_spilled_...: {}", debug_line!(self.source));
 
        if self.has_type_keyword() {
 
            self.consume_any_chars();
 
        } else {
 
            let ident = self.consume_namespaced_identifier();
 
            if ident.is_err() { return false; }
 
        }
 

	
 
        // Consume any polymorphic arguments that follow the type identifier
 
        let mut backup_pos = self.source.pos();
 
        if self.consume_whitespace(false).is_err() { return false; }
 
        match self.maybe_consume_poly_args_spilled_without_pos_recovery() {
 
            Ok(true) => backup_pos = self.source.pos(),
 
            Ok(false) => {},
 
            Err(()) => return false
 
        }
 
        
 
        // Consume any array specifiers. Make sure we always leave the input
 
        // position at the end of the last array specifier if we do find a
 
        // valid type
 
        if self.consume_whitespace(false).is_err() { return false; }
 
        while let Some(b'[') = self.source.next() {
 
            self.source.consume();
 
            if self.consume_whitespace(false).is_err() { return false; }
 
            if self.source.next() != Some(b']') { return false; }
 
            self.source.consume();
 
            backup_pos = self.source.pos();
 
            if self.consume_whitespace(false).is_err() { return false; }
 
        }
 

	
 
        self.source.seek(backup_pos);
 
        return true;
 
    }
 

	
 
    fn maybe_consume_type_spilled(&mut self) -> bool {
 
        let backup_pos = self.source.pos();
 
        if !self.maybe_consume_type_spilled_without_pos_recovery() {
 
            self.source.seek(backup_pos);
 
            return false;
 
        }
 

	
 
        return true;
 
    }
 

	
 
    /// Attempts to consume polymorphic arguments without returning them. If it
 
    /// doesn't encounter well-formed polymorphic arguments, then the input
 
    /// position is left at a "random" position. Returns a boolean indicating if
 
    /// the poly_args list was present.
 
    fn maybe_consume_poly_args_spilled_without_pos_recovery(&mut self) -> Result<bool, ()> {
 
        debug_log!("maybe_consume_poly_args_spilled_...: {}", debug_line!(self.source));
 
        self.consume_comma_separated_spilled_without_pos_recovery(
 
            b'<', b'>', |lexer| {
 
                lexer.maybe_consume_type_spilled_without_pos_recovery()
 
            })
 
    }
 

	
 
    /// Consumes polymorphic arguments and its delimiters if specified. If
 
    /// polyargs are present then the args are consumed and the input position
 
    /// will be placed after the polyarg list. If polyargs are not present then
 
    /// the input position will remain unmodified and an empty vector will be
 
    /// returned.
 
    ///
 
    /// Polymorphic arguments represent the specification of the parametric
 
    /// types of a polymorphic type: they specify the value of the polymorphic
 
    /// type's polymorphic variables.
 
    fn consume_polymorphic_args(&mut self, h: &mut Heap, allow_inference: bool) -> Result<Option<Vec<ParserTypeId>>, ParseError2> {
 
        self.consume_comma_separated(
 
            h, b'<', b'>', "Expected the end of the polymorphic argument list",
 
            |lexer, heap| lexer.consume_type2(heap, allow_inference)
 
        )
 
    }
 

	
 
    /// Consumes polymorphic variables. These are identifiers that are used
 
    /// within polymorphic types. The input position may be at whitespace. If
 
    /// polymorphic variables are present then the whitespace, wrapping
 
    /// delimiters and the polymorphic variables are consumed. Otherwise the
 
    /// input position will stay where it is. If no polymorphic variables are
 
    /// present then an empty vector will be returned.
 
    fn consume_polymorphic_vars(&mut self, h: &mut Heap) -> Result<Vec<Identifier>, ParseError2> {
 
        let backup_pos = self.source.pos();
 
        match self.consume_comma_separated(
 
            h, b'<', b'>', "Expected the end of the polymorphic variable list",
 
            |lexer, _heap| lexer.consume_identifier()
 
        )? {
 
            Some(poly_vars) => Ok(poly_vars),
 
            None => {
 
                self.source.seek(backup_pos);
 
                Ok(vec!())
 
            }
 
        }
 
    }
 

	
 
    // Parameters
 

	
 
    fn consume_parameter(&mut self, h: &mut Heap) -> Result<ParameterId, ParseError2> {
 
        let parser_type = self.consume_type2(h, false)?;
 
        self.consume_whitespace(true)?;
 
        let position = self.source.pos();
 
        let identifier = self.consume_identifier()?;
 
        let id =
 
            h.alloc_parameter(|this| Parameter { this, position, parser_type, identifier });
 
        Ok(id)
 
    }
 
    fn consume_parameters(&mut self, h: &mut Heap) -> Result<Vec<ParameterId>, ParseError2> {
 
        match self.consume_comma_separated(
 
            h, b'(', b')', "Expected the end of the parameter list",
 
            |lexer, heap| lexer.consume_parameter(heap)
 
        )? {
 
            Some(params) => Ok(params),
 
            None => {
 
                Err(ParseError2::new_error(
 
                    &self.source, self.source.pos(),
 
                    "Expected a parameter list"
 
                ))
 
            }
 
        }
 
    }
 

	
 
    // ====================
 
    // Expressions
 
    // ====================
 

	
 
    fn consume_paren_expression(&mut self, h: &mut Heap) -> Result<ExpressionId, ParseError2> {
 
        self.consume_string(b"(")?;
 
        self.consume_whitespace(false)?;
 
        let result = self.consume_expression(h)?;
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b")")?;
 
        Ok(result)
 
    }
 
    fn consume_expression(&mut self, h: &mut Heap) -> Result<ExpressionId, ParseError2> {
 
        if self.level >= MAX_LEVEL {
 
            return Err(self.error_at_pos("Too deeply nested expression"));
 
        }
 
        self.level += 1;
 
        let result = self.consume_assignment_expression(h);
 
        self.level -= 1;
 
@@ -1368,743 +1385,750 @@ impl Lexer<'_> {
 
                            parent: ExpressionParent::None,
 
                            concrete_type: ConcreteType::default(),
 
                        })
 
                        .upcast();
 
                } else {
 
                    result = h
 
                        .alloc_indexing_expression(|this| IndexingExpression {
 
                            this,
 
                            position,
 
                            subject,
 
                            index,
 
                            parent: ExpressionParent::None,
 
                            concrete_type: ConcreteType::default(),
 
                        })
 
                        .upcast();
 
                }
 
                self.consume_string(b"]")?;
 
                self.consume_whitespace(false)?;
 
            } else {
 
                assert!(self.has_string(b"."));
 
                self.consume_string(b".")?;
 
                self.consume_whitespace(false)?;
 
                let subject = result;
 
                let field;
 
                if self.has_keyword(b"length") {
 
                    self.consume_keyword(b"length")?;
 
                    field = Field::Length;
 
                } else {
 
                    let identifier = self.consume_identifier()?;
 
                    field = Field::Symbolic(FieldSymbolic{
 
                        identifier,
 
                        definition: None,
 
                        field_idx: 0,
 
                    });
 
                }
 
                result = h
 
                    .alloc_select_expression(|this| SelectExpression {
 
                        this,
 
                        position,
 
                        subject,
 
                        field,
 
                        parent: ExpressionParent::None,
 
                        concrete_type: ConcreteType::default(),
 
                    })
 
                    .upcast();
 
            }
 
        }
 
        Ok(result)
 
    }
 
    fn consume_primary_expression(&mut self, h: &mut Heap) -> Result<ExpressionId, ParseError2> {
 
        if self.has_string(b"(") {
 
            return self.consume_paren_expression(h);
 
        }
 
        if self.has_string(b"{") {
 
            return Ok(self.consume_array_expression(h)?.upcast());
 
        }
 
        if self.has_builtin_literal() {
 
            return Ok(self.consume_builtin_literal_expression(h)?.upcast());
 
        }
 
        if self.has_struct_literal() {
 
            return Ok(self.consume_struct_literal_expression(h)?.upcast());
 
        }
 
        if self.has_call_expression() {
 
            return Ok(self.consume_call_expression(h)?.upcast());
 
        }
 
        Ok(self.consume_variable_expression(h)?.upcast())
 
    }
 
    fn consume_array_expression(&mut self, h: &mut Heap) -> Result<ArrayExpressionId, ParseError2> {
 
        let position = self.source.pos();
 
        let mut elements = Vec::new();
 
        self.consume_string(b"{")?;
 
        self.consume_whitespace(false)?;
 
        if !self.has_string(b"}") {
 
            while self.source.next().is_some() {
 
                elements.push(self.consume_expression(h)?);
 
                self.consume_whitespace(false)?;
 
                if self.has_string(b"}") {
 
                    break;
 
                }
 
                self.consume_string(b",")?;
 
                self.consume_whitespace(false)?;
 
            }
 
        }
 
        self.consume_string(b"}")?;
 
        Ok(h.alloc_array_expression(|this| ArrayExpression {
 
            this,
 
            position,
 
            elements,
 
            parent: ExpressionParent::None,
 
            concrete_type: ConcreteType::default(),
 
        }))
 
    }
 
    fn has_builtin_literal(&self) -> bool {
 
        is_constant(self.source.next())
 
            || self.has_keyword(b"null")
 
            || self.has_keyword(b"true")
 
            || self.has_keyword(b"false")
 
    }
 
    fn consume_builtin_literal_expression(
 
        &mut self,
 
        h: &mut Heap,
 
    ) -> Result<LiteralExpressionId, ParseError2> {
 
        let position = self.source.pos();
 
        let value;
 
        if self.has_keyword(b"null") {
 
            self.consume_keyword(b"null")?;
 
            value = Literal::Null;
 
        } else if self.has_keyword(b"true") {
 
            self.consume_keyword(b"true")?;
 
            value = Literal::True;
 
        } else if self.has_keyword(b"false") {
 
            self.consume_keyword(b"false")?;
 
            value = Literal::False;
 
        } else if self.source.next() == Some(b'\'') {
 
            self.source.consume();
 
            let mut data = Vec::new();
 
            let mut next = self.source.next();
 
            while next != Some(b'\'') && (is_vchar(next) || next == Some(b' ')) {
 
                data.push(next.unwrap());
 
                self.source.consume();
 
                next = self.source.next();
 
            }
 
            if next != Some(b'\'') || data.is_empty() {
 
                return Err(self.error_at_pos("Expected character constant"));
 
            }
 
            self.source.consume();
 
            value = Literal::Character(data);
 
        } else {
 
            if !self.has_integer() {
 
                return Err(self.error_at_pos("Expected integer constant"));
 
            }
 

	
 
            value = Literal::Integer(self.consume_integer()?);
 
        }
 
        Ok(h.alloc_literal_expression(|this| LiteralExpression {
 
            this,
 
            position,
 
            value,
 
            parent: ExpressionParent::None,
 
            concrete_type: ConcreteType::default(),
 
        }))
 
    }
 

	
 
    fn has_struct_literal(&mut self) -> bool {
 
        // A struct literal is written as:
 
        //      namespace::StructName<maybe_one_of_these, auto>{ field: expr }
 
        // We will parse up until the opening brace to see if we're dealing with
 
        // a struct literal.
 
        let backup_pos = self.source.pos();
 
        let result = self.consume_namespaced_identifier_spilled().is_ok() &&
 
            self.consume_whitespace(false).is_ok() &&
 
            self.maybe_consume_poly_args_spilled_without_pos_recovery().is_ok() &&
 
            self.consume_whitespace(false).is_ok() &&
 
            self.source.next() == Some(b'{');
 

	
 
        self.source.seek(backup_pos);
 
        return result;
 
    }
 

	
 
    fn consume_struct_literal_expression(&mut self, h: &mut Heap) -> Result<LiteralExpressionId, ParseError2> {
 
        // Consume identifier and polymorphic arguments
 
        debug_log!("consume_struct_literal_expression: {}", debug_line!(self.source));
 
        let position = self.source.pos();
 
        let identifier = self.consume_namespaced_identifier2(h)?;
 
        self.consume_whitespace(false)?;
 

	
 
        // Consume fields
 
        let fields = match self.consume_comma_separated(
 
            h, b'{', b'}', "Expected the end of the list of struct fields",
 
            |lexer, heap| {
 
                let identifier = lexer.consume_identifier()?;
 
                lexer.consume_whitespace(false)?;
 
                lexer.consume_string(b":")?;
 
                lexer.consume_whitespace(false)?;
 
                let value = lexer.consume_expression(heap)?;
 

	
 
                Ok(LiteralStructField{ identifier, value, field_idx: 0 })
 
            }
 
        )? {
 
            Some(fields) => fields,
 
            None => return Err(ParseError2::new_error(
 
                self.source, self.source.pos(),
 
                "A struct literal must be followed by its field values"
 
            ))
 
        };
 

	
 
        Ok(h.alloc_literal_expression(|this| LiteralExpression{
 
            this,
 
            position,
 
            value: Literal::Struct(LiteralStruct{
 
                identifier,
 
                fields,
 
                poly_args2: Vec::new(),
 
                definition: None,
 
            }),
 
            parent: ExpressionParent::None,
 
            concrete_type: Default::default()
 
        }))
 
    }
 

	
 
    fn has_call_expression(&mut self) -> bool {
 
        // We need to prevent ambiguity with various operators (because we may
 
        // be specifying polymorphic variables) and variables.
 
        if self.has_builtin_keyword() {
 
            return true;
 
        }
 

	
 
        let backup_pos = self.source.pos();
 
        let mut result = false;
 

	
 
        if self.consume_namespaced_identifier_spilled().is_ok() &&
 
            self.consume_whitespace(false).is_ok() &&
 
            self.maybe_consume_poly_args_spilled_without_pos_recovery().is_ok() &&
 
            self.consume_whitespace(false).is_ok() &&
 
            self.source.next() == Some(b'(') {
 
            // Seems like we have a function call or an enum literal
 
            result = true;
 
        }
 

	
 
        self.source.seek(backup_pos);
 
        return result;
 
    }
 
    fn consume_call_expression(&mut self, h: &mut Heap) -> Result<CallExpressionId, ParseError2> {
 
        let position = self.source.pos();
 

	
 
        // Consume method identifier
 
        // TODO: @token Replace this conditional polymorphic arg parsing once we have a tokenizer.
 
        debug_log!("consume_call_expression: {}", debug_line!(self.source));
 
        let method;
 
        let mut consume_poly_args_explicitly = true;
 
        if self.has_keyword(b"get") {
 
            self.consume_keyword(b"get")?;
 
            method = Method::Get;
 
        } else if self.has_keyword(b"put") {
 
            self.consume_keyword(b"put")?;
 
            method = Method::Put;
 
        } else if self.has_keyword(b"fires") {
 
            self.consume_keyword(b"fires")?;
 
            method = Method::Fires;
 
        } else if self.has_keyword(b"create") {
 
            self.consume_keyword(b"create")?;
 
            method = Method::Create;
 
        } else {
 
            let identifier = self.consume_namespaced_identifier2(h)?;
 
            method = Method::Symbolic(MethodSymbolic{
 
                identifier,
 
                definition: None
 
            })
 
        }
 
            });
 
            consume_poly_args_explicitly = false;
 
        };
 

	
 
        // Consume polymorphic arguments
 
        self.consume_whitespace(false)?;
 
        let poly_args = self.consume_polymorphic_args(h, true)?.unwrap_or_default();
 
        let poly_args = if consume_poly_args_explicitly {
 
            self.consume_whitespace(false)?;
 
            self.consume_polymorphic_args(h, true)?.unwrap_or_default()
 
        } else {
 
            Vec::new()
 
        };
 

	
 
        // Consume arguments to call
 
        self.consume_whitespace(false)?;
 
        let mut arguments = Vec::new();
 
        self.consume_string(b"(")?;
 
        self.consume_whitespace(false)?;
 
        if !self.has_string(b")") {
 
            // TODO: allow trailing comma
 
            while self.source.next().is_some() {
 
                arguments.push(self.consume_expression(h)?);
 
                self.consume_whitespace(false)?;
 
                if self.has_string(b")") {
 
                    break;
 
                }
 
                self.consume_string(b",")?;
 
                self.consume_whitespace(false)?
 
            }
 
        }
 
        self.consume_string(b")")?;
 
        Ok(h.alloc_call_expression(|this| CallExpression {
 
            this,
 
            position,
 
            method,
 
            arguments,
 
            poly_args,
 
            parent: ExpressionParent::None,
 
            concrete_type: ConcreteType::default(),
 
        }))
 
    }
 
    fn consume_variable_expression(
 
        &mut self,
 
        h: &mut Heap,
 
    ) -> Result<VariableExpressionId, ParseError2> {
 
        let position = self.source.pos();
 
        debug_log!("consume_variable_expression: {}", debug_line!(self.source));
 
        let identifier = self.consume_namespaced_identifier()?;
 

	
 
        // TODO: @token Reimplement when tokenizer is implemented, prevent ambiguities
 
        let identifier = identifier_as_namespaced(self.consume_identifier()?);
 

	
 
        Ok(h.alloc_variable_expression(|this| VariableExpression {
 
            this,
 
            position,
 
            identifier,
 
            declaration: None,
 
            parent: ExpressionParent::None,
 
            concrete_type: ConcreteType::default(),
 
        }))
 
    }
 

	
 
    // ====================
 
    // Statements
 
    // ====================
 

	
 
    /// Consumes any kind of statement from the source and will error if it
 
    /// did not encounter a statement. Will also return an error if the
 
    /// statement is nested too deeply.
 
    ///
 
    /// `wrap_in_block` may be set to true to ensure that the parsed statement
 
    /// will be wrapped in a block statement if it is not already a block
 
    /// statement. This is used to ensure that all `if`, `while` and `sync`
 
    /// statements have a block statement as body.
 
    fn consume_statement(&mut self, h: &mut Heap, wrap_in_block: bool) -> Result<StatementId, ParseError2> {
 
        if self.level >= MAX_LEVEL {
 
            return Err(self.error_at_pos("Too deeply nested statement"));
 
        }
 
        self.level += 1;
 
        let result = self.consume_statement_impl(h, wrap_in_block);
 
        self.level -= 1;
 
        result
 
    }
 
    fn has_label(&mut self) -> bool {
 
        // To prevent ambiguity with expression statements consisting only of an
 
        // identifier or a namespaced identifier, we look ahead and match on the
 
        // *single* colon that signals a labeled statement.
 
        let backup_pos = self.source.pos();
 
        let mut result = false;
 
        if self.consume_identifier_spilled().is_ok() {
 
            // next character is ':', second character is NOT ':'
 
            result = Some(b':') == self.source.next() && Some(b':') != self.source.lookahead(1)
 
        }
 
        self.source.seek(backup_pos);
 
        return result;
 
    }
 
    fn consume_statement_impl(&mut self, h: &mut Heap, wrap_in_block: bool) -> Result<StatementId, ParseError2> {
 
        // Parse and allocate statement
 
        let mut must_wrap = true;
 
        let mut stmt_id = if self.has_string(b"{") {
 
            must_wrap = false;
 
            self.consume_block_statement(h)?
 
        } else if self.has_keyword(b"skip") {
 
            must_wrap = false;
 
            self.consume_skip_statement(h)?.upcast()
 
        } else if self.has_keyword(b"if") {
 
            self.consume_if_statement(h)?.upcast()
 
        } else if self.has_keyword(b"while") {
 
            self.consume_while_statement(h)?.upcast()
 
        } else if self.has_keyword(b"break") {
 
            self.consume_break_statement(h)?.upcast()
 
        } else if self.has_keyword(b"continue") {
 
            self.consume_continue_statement(h)?.upcast()
 
        } else if self.has_keyword(b"synchronous") {
 
            self.consume_synchronous_statement(h)?.upcast()
 
        } else if self.has_keyword(b"return") {
 
            self.consume_return_statement(h)?.upcast()
 
        } else if self.has_keyword(b"assert") {
 
            self.consume_assert_statement(h)?.upcast()
 
        } else if self.has_keyword(b"goto") {
 
            self.consume_goto_statement(h)?.upcast()
 
        } else if self.has_keyword(b"new") {
 
            self.consume_new_statement(h)?.upcast()
 
        } else if self.has_label() {
 
            self.consume_labeled_statement(h)?.upcast()
 
        } else {
 
            self.consume_expression_statement(h)?.upcast()
 
        };
 

	
 
        // Wrap if desired and if needed
 
        if must_wrap && wrap_in_block {
 
            let position = h[stmt_id].position();
 
            let block_wrapper = h.alloc_block_statement(|this| BlockStatement{
 
                this,
 
                position,
 
                statements: vec![stmt_id],
 
                parent_scope: None,
 
                relative_pos_in_parent: 0,
 
                locals: Vec::new(),
 
                labels: Vec::new()
 
            });
 

	
 
            stmt_id = block_wrapper.upcast();
 
        }
 

	
 
        Ok(stmt_id)
 
    }
 
    fn has_local_statement(&mut self) -> bool {
 
        /* To avoid ambiguity, we look ahead to find either the
 
        channel keyword that signals a variable declaration, or
 
        a type annotation followed by another identifier.
 
        Example:
 
          my_type[] x = {5}; // memory statement
 
          my_var[5] = x; // assignment expression, expression statement
 
        Note how both the local and the assignment
 
        start with arbitrary identifier followed by [. */
 
        if self.has_keyword(b"channel") {
 
            return true;
 
        }
 
        if self.has_statement_keyword() {
 
            return false;
 
        }
 
        let backup_pos = self.source.pos();
 
        let mut result = false;
 
        if self.maybe_consume_type_spilled_without_pos_recovery() {
 
            // We seem to have a valid type, do we now have an identifier?
 
            if self.consume_whitespace(true).is_ok() {
 
                result = self.has_identifier();
 
            }
 
        }
 

	
 
        self.source.seek(backup_pos);
 
        return result;
 
    }
 
    fn consume_block_statement(&mut self, h: &mut Heap) -> Result<StatementId, ParseError2> {
 
        let position = self.source.pos();
 
        let mut statements = Vec::new();
 
        self.consume_string(b"{")?;
 
        self.consume_whitespace(false)?;
 
        while self.has_local_statement() {
 
            let (local_id, stmt_id) = self.consume_local_statement(h)?;
 
            statements.push(local_id.upcast());
 
            if let Some(stmt_id) = stmt_id {
 
                statements.push(stmt_id.upcast());
 
            }
 
            self.consume_whitespace(false)?;
 
        }
 
        while !self.has_string(b"}") {
 
            statements.push(self.consume_statement(h, false)?);
 
            self.consume_whitespace(false)?;
 
        }
 
        self.consume_string(b"}")?;
 
        if statements.is_empty() {
 
            Ok(h.alloc_skip_statement(|this| SkipStatement { this, position, next: None }).upcast())
 
        } else {
 
            Ok(h.alloc_block_statement(|this| BlockStatement {
 
                this,
 
                position,
 
                statements,
 
                parent_scope: None,
 
                relative_pos_in_parent: 0,
 
                locals: Vec::new(),
 
                labels: Vec::new(),
 
            })
 
            .upcast())
 
        }
 
    }
 
    fn consume_local_statement(&mut self, h: &mut Heap) -> Result<(LocalStatementId, Option<ExpressionStatementId>), ParseError2> {
 
        if self.has_keyword(b"channel") {
 
            let local_id = self.consume_channel_statement(h)?.upcast();
 
            Ok((local_id, None))
 
        } else {
 
            let (memory_id, stmt_id) = self.consume_memory_statement(h)?;
 
            Ok((memory_id.upcast(), Some(stmt_id)))
 
        }
 
    }
 
    fn consume_channel_statement(
 
        &mut self,
 
        h: &mut Heap,
 
    ) -> Result<ChannelStatementId, ParseError2> {
 
        // Consume channel statement and polymorphic argument if specified.
 
        // Needs a tiny bit of special parsing to ensure the right amount of
 
        // whitespace is present.
 
        let position = self.source.pos();
 
        self.consume_keyword(b"channel")?;
 

	
 
        let expect_whitespace = self.source.next() != Some(b'<');
 
        self.consume_whitespace(expect_whitespace)?;
 
        let poly_args = self.consume_polymorphic_args(h, true)?.unwrap_or_default();
 
        let poly_arg_id = match poly_args.len() {
 
            0 => h.alloc_parser_type(|this| ParserType{
 
                this, pos: position.clone(), variant: ParserTypeVariant::Inferred,
 
            }),
 
            1 => poly_args[0],
 
            _ => return Err(ParseError2::new_error(
 
                &self.source, self.source.pos(),
 
                "port construction using 'channel' accepts up to 1 polymorphic argument"
 
            ))
 
        };
 
        self.consume_whitespace(false)?;
 

	
 
        // Consume the output port
 
        let out_parser_type = h.alloc_parser_type(|this| ParserType{
 
            this, pos: position.clone(), variant: ParserTypeVariant::Output(poly_arg_id)
 
        });
 
        let out_identifier = self.consume_identifier()?;
 

	
 
        // Consume the "->" syntax
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b"->")?;
 
        self.consume_whitespace(false)?;
 

	
 
        // Consume the input port
 
        let in_parser_type = h.alloc_parser_type(|this| ParserType{
 
            this, pos: position.clone(), variant: ParserTypeVariant::Input(poly_arg_id)
 
        });
 
        let in_identifier = self.consume_identifier()?;
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b";")?;
 
        let out_port = h.alloc_local(|this| Local {
 
            this,
 
            position,
 
            parser_type: out_parser_type,
 
            identifier: out_identifier,
 
            relative_pos_in_block: 0
 
        });
 
        let in_port = h.alloc_local(|this| Local {
 
            this,
 
            position,
 
            parser_type: in_parser_type,
 
            identifier: in_identifier,
 
            relative_pos_in_block: 0
 
        });
 
        Ok(h.alloc_channel_statement(|this| ChannelStatement {
 
            this,
 
            position,
 
            from: out_port,
 
            to: in_port,
 
            relative_pos_in_block: 0,
 
            next: None,
 
        }))
 
    }
 
    fn consume_memory_statement(&mut self, h: &mut Heap) -> Result<(MemoryStatementId, ExpressionStatementId), ParseError2> {
 
        let position = self.source.pos();
 
        let parser_type = self.consume_type2(h, true)?;
 
        self.consume_whitespace(true)?;
 
        let identifier = self.consume_identifier()?;
 
        self.consume_whitespace(false)?;
 
        let assignment_position = self.source.pos();
 
        self.consume_string(b"=")?;
 
        self.consume_whitespace(false)?;
 
        let initial = self.consume_expression(h)?;
 
        let variable = h.alloc_local(|this| Local {
 
            this,
 
            position,
 
            parser_type,
 
            identifier: identifier.clone(),
 
            relative_pos_in_block: 0
 
        });
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b";")?;
 

	
 
        // Transform into the variable declaration, followed by an assignment
 
        let memory_stmt_id = h.alloc_memory_statement(|this| MemoryStatement {
 
            this,
 
            position,
 
            variable,
 
            next: None,
 
        });
 
        let variable_expr_id = h.alloc_variable_expression(|this| VariableExpression{
 
            this,
 
            position: identifier.position.clone(),
 
            identifier: NamespacedIdentifier {
 
                position: identifier.position.clone(),
 
                num_namespaces: 1,
 
                value: identifier.value.clone(),
 
            },
 
            identifier: identifier_as_namespaced(identifier),
 
            declaration: None,
 
            parent: ExpressionParent::None,
 
            concrete_type: Default::default()
 
        });
 
        let assignment_expr_id = h.alloc_assignment_expression(|this| AssignmentExpression{
 
            this,
 
            position: assignment_position,
 
            left: variable_expr_id.upcast(),
 
            operation: AssignmentOperator::Set,
 
            right: initial,
 
            parent: ExpressionParent::None,
 
            concrete_type: Default::default()
 
        });
 
        let assignment_stmt_id = h.alloc_expression_statement(|this| ExpressionStatement{
 
            this,
 
            position,
 
            expression: assignment_expr_id.upcast(),
 
            next: None
 
        });
 
        Ok((memory_stmt_id, assignment_stmt_id))
 
    }
 
    fn consume_labeled_statement(
 
        &mut self,
 
        h: &mut Heap,
 
    ) -> Result<LabeledStatementId, ParseError2> {
 
        let position = self.source.pos();
 
        let label = self.consume_identifier()?;
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b":")?;
 
        self.consume_whitespace(false)?;
 
        let body = self.consume_statement(h, false)?;
 
        Ok(h.alloc_labeled_statement(|this| LabeledStatement {
 
            this,
 
            position,
 
            label,
 
            body,
 
            relative_pos_in_block: 0,
 
            in_sync: None,
 
        }))
 
    }
 
    fn consume_skip_statement(&mut self, h: &mut Heap) -> Result<SkipStatementId, ParseError2> {
 
        let position = self.source.pos();
 
        self.consume_keyword(b"skip")?;
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b";")?;
 
        Ok(h.alloc_skip_statement(|this| SkipStatement { this, position, next: None }))
 
    }
 
    fn consume_if_statement(&mut self, h: &mut Heap) -> Result<IfStatementId, ParseError2> {
 
        let position = self.source.pos();
 
        self.consume_keyword(b"if")?;
 
        self.consume_whitespace(false)?;
 
        let test = self.consume_paren_expression(h)?;
 
        self.consume_whitespace(false)?;
 
        let true_body = self.consume_statement(h, true)?;
 
        self.consume_whitespace(false)?;
 
        let false_body = if self.has_keyword(b"else") {
 
            self.consume_keyword(b"else")?;
 
            self.consume_whitespace(false)?;
 
            self.consume_statement(h, true)?
 
        } else {
 
            h.alloc_skip_statement(|this| SkipStatement { this, position, next: None }).upcast()
 
        };
 
        Ok(h.alloc_if_statement(|this| IfStatement { this, position, test, true_body, false_body, end_if: None }))
 
    }
 
    fn consume_while_statement(&mut self, h: &mut Heap) -> Result<WhileStatementId, ParseError2> {
 
        let position = self.source.pos();
 
        self.consume_keyword(b"while")?;
 
        self.consume_whitespace(false)?;
 
        let test = self.consume_paren_expression(h)?;
 
        self.consume_whitespace(false)?;
 
        let body = self.consume_statement(h, true)?;
 
        Ok(h.alloc_while_statement(|this| WhileStatement {
 
            this,
 
            position,
 
            test,
 
            body,
 
            end_while: None,
 
            in_sync: None,
 
        }))
 
    }
 
    fn consume_break_statement(&mut self, h: &mut Heap) -> Result<BreakStatementId, ParseError2> {
 
        let position = self.source.pos();
 
        self.consume_keyword(b"break")?;
 
        self.consume_whitespace(false)?;
 
        let label;
 
        if self.has_identifier() {
 
            label = Some(self.consume_identifier()?);
 
            self.consume_whitespace(false)?;
 
        } else {
 
            label = None;
 
        }
 
        self.consume_string(b";")?;
 
        Ok(h.alloc_break_statement(|this| BreakStatement { this, position, label, target: None }))
 
    }
 
    fn consume_continue_statement(
 
        &mut self,
 
        h: &mut Heap,
 
    ) -> Result<ContinueStatementId, ParseError2> {
 
        let position = self.source.pos();
 
        self.consume_keyword(b"continue")?;
 
        self.consume_whitespace(false)?;
 
        let label;
 
        if self.has_identifier() {
 
            label = Some(self.consume_identifier()?);
 
            self.consume_whitespace(false)?;
 
        } else {
 
            label = None;
 
        }
 
        self.consume_string(b";")?;
 
        Ok(h.alloc_continue_statement(|this| ContinueStatement {
 
            this,
 
            position,
 
            label,
 
            target: None,
 
        }))
 
    }
 
    fn consume_synchronous_statement(
 
        &mut self,
 
        h: &mut Heap,
 
    ) -> Result<SynchronousStatementId, ParseError2> {
 
        let position = self.source.pos();
 
        self.consume_keyword(b"synchronous")?;
 
        self.consume_whitespace(false)?;
 
        // TODO: What was the purpose of this? Seems superfluous and confusing?
 
        // let mut parameters = Vec::new();
 
        // if self.has_string(b"(") {
 
        //     self.consume_parameters(h, &mut parameters)?;
 
        //     self.consume_whitespace(false)?;
 
        // } else if !self.has_keyword(b"skip") && !self.has_string(b"{") {
 
        //     return Err(self.error_at_pos("Expected block statement"));
 
        // }
 
        let body = self.consume_statement(h, true)?;
 
        Ok(h.alloc_synchronous_statement(|this| SynchronousStatement {
 
            this,
 
            position,
 
            body,
 
            end_sync: None,
 
            parent_scope: None,
 
        }))
 
    }
 
    fn consume_return_statement(&mut self, h: &mut Heap) -> Result<ReturnStatementId, ParseError2> {
 
        let position = self.source.pos();
 
        self.consume_keyword(b"return")?;
 
        self.consume_whitespace(false)?;
 
        let expression = if self.has_string(b"(") {
 
            self.consume_paren_expression(h)
 
        } else {
 
            self.consume_expression(h)
 
        }?;
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b";")?;
 
        Ok(h.alloc_return_statement(|this| ReturnStatement { this, position, expression }))
 
    }
 
    fn consume_assert_statement(&mut self, h: &mut Heap) -> Result<AssertStatementId, ParseError2> {
 
        let position = self.source.pos();
 
        self.consume_keyword(b"assert")?;
 
        self.consume_whitespace(false)?;
 
        let expression = if self.has_string(b"(") {
 
            self.consume_paren_expression(h)
 
        } else {
 
            self.consume_expression(h)
 
        }?;
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b";")?;
 
        Ok(h.alloc_assert_statement(|this| AssertStatement {
 
            this,
 
            position,
 
            expression,
 
            next: None,
 
        }))
 
    }
 
    fn consume_goto_statement(&mut self, h: &mut Heap) -> Result<GotoStatementId, ParseError2> {
 
        let position = self.source.pos();
 
        self.consume_keyword(b"goto")?;
 
        self.consume_whitespace(false)?;
 
        let label = self.consume_identifier()?;
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b";")?;
 
        Ok(h.alloc_goto_statement(|this| GotoStatement { this, position, label, target: None }))
 
    }
 
    fn consume_new_statement(&mut self, h: &mut Heap) -> Result<NewStatementId, ParseError2> {
 
        let position = self.source.pos();
 
        self.consume_keyword(b"new")?;
 
        self.consume_whitespace(false)?;
 
        let expression = self.consume_call_expression(h)?;
 
        self.consume_whitespace(false)?;
 
        self.consume_string(b";")?;
 
        Ok(h.alloc_new_statement(|this| NewStatement { this, position, expression, next: None }))
 
    }
 
    fn consume_expression_statement(
 
        &mut self,
 
        h: &mut Heap,
src/protocol/parser/mod.rs
Show inline comments
 
mod depth_visitor;
 
pub(crate) mod symbol_table;
 
pub(crate) mod type_table;
 
mod type_resolver;
 
mod visitor;
 
mod visitor_linker;
 
mod utils;
 

	
 
use depth_visitor::*;
 
use symbol_table::SymbolTable;
 
use visitor::Visitor2;
 
use visitor_linker::ValidityAndLinkerVisitor;
 
use type_resolver::{TypeResolvingVisitor, ResolveQueue};
 
use type_table::{TypeTable, TypeCtx};
 

	
 
use crate::protocol::ast::*;
 
use crate::protocol::inputsource::*;
 
use crate::protocol::lexer::*;
 

	
 
use std::collections::HashMap;
 
use crate::protocol::ast_printer::ASTWriter;
 

	
 
// TODO: @fixme, pub qualifier
 
pub(crate) struct LexedModule {
 
    pub(crate) source: InputSource,
 
    module_name: Vec<u8>,
 
    version: Option<u64>,
 
    pub(crate) root_id: RootId,
 
}
 

	
 
pub struct Parser {
 
    pub(crate) heap: Heap,
 
    pub(crate) modules: Vec<LexedModule>,
 
    pub(crate) module_lookup: HashMap<Vec<u8>, usize>, // from (optional) module name to `modules` idx
 
    pub(crate) symbol_table: SymbolTable,
 
    pub(crate) type_table: TypeTable,
 
}
 

	
 
impl Parser {
 
    pub fn new() -> Self {
 
        Parser{
 
            heap: Heap::new(),
 
            modules: Vec::new(),
 
            module_lookup: HashMap::new(),
 
            symbol_table: SymbolTable::new(),
 
            type_table: TypeTable::new(),
 
        }
 
    }
 

	
 
    pub fn feed(&mut self, mut source: InputSource) -> Result<RootId, ParseError2> {
 
        // Lex the input source
 
        let mut lex = Lexer::new(&mut source);
 
        let pd = lex.consume_protocol_description(&mut self.heap)?;
 

	
 
        // Seek the module name and version
 
        let root = &self.heap[pd];
 
        let mut module_name_pos = InputPosition::default();
 
        let mut module_name = Vec::new();
 
        let mut module_version_pos = InputPosition::default();
 
        let mut module_version = None;
 

	
 
        for pragma in &root.pragmas {
 
            match &self.heap[*pragma] {
 
                Pragma::Module(module) => {
 
                    if !module_name.is_empty() {
 
                        return Err(
 
                            ParseError2::new_error(&source, module.position, "Double definition of module name in the same file")
 
                                .with_postfixed_info(&source, module_name_pos, "Previous definition was here")
 
                        )
 
                    }
 

	
 
                    module_name_pos = module.position.clone();
 
                    module_name = module.value.clone();
 
                },
 
                Pragma::Version(version) => {
 
                    if module_version.is_some() {
 
                        return Err(
 
                            ParseError2::new_error(&source, version.position, "Double definition of module version")
 
                                .with_postfixed_info(&source, module_version_pos, "Previous definition was here")
 
                        )
 
                    }
 

	
 
                    module_version_pos = version.position.clone();
 
                    module_version = Some(version.version);
 
                },
 
            }
 
        }
 

	
 
        // Add module to list of modules and prevent naming conflicts
 
        let cur_module_idx = self.modules.len();
 
        if let Some(prev_module_idx) = self.module_lookup.get(&module_name) {
 
            // Find `#module` statement in other module again
 
            let prev_module = &self.modules[*prev_module_idx];
 
            let prev_module_pos = self.heap[prev_module.root_id].pragmas
 
                .iter()
 
                .find_map(|p| {
 
                    match &self.heap[*p] {
 
                        Pragma::Module(module) => Some(module.position.clone()),
 
                        _ => None
 
                    }
 
                })
 
                .unwrap_or(InputPosition::default());
 

	
 
            let module_name_msg = if module_name.is_empty() {
 
                format!("a nameless module")
 
            } else {
 
                format!("module '{}'", String::from_utf8_lossy(&module_name))
 
            };
 

	
 
            return Err(
 
                ParseError2::new_error(&source, module_name_pos, &format!("Double definition of {} across files", module_name_msg))
 
                    .with_postfixed_info(&prev_module.source, prev_module_pos, "Other definition was here")
 
            );
 
        }
 

	
 
        self.modules.push(LexedModule{
 
            source,
 
            module_name: module_name.clone(),
 
            version: module_version,
 
            root_id: pd
 
        });
 
        self.module_lookup.insert(module_name, cur_module_idx);
 
        Ok(pd)
 
    }
 

	
 
    fn resolve_symbols_and_types(&mut self) -> Result<(), ParseError2> {
 
        // Construct the symbol table to resolve any imports and/or definitions,
 
        // then use the symbol table to actually annotate all of the imports.
 
        // If the type table is constructed correctly then all imports MUST be
 
        // resolvable.
 
        self.symbol_table.build(&self.heap, &self.modules)?;
 

	
 
        // Not pretty, but we need to work around rust's borrowing rules, it is
 
        // totally safe to mutate the contents of an AST element that we are
 
        // not borrowing anywhere else.
 
        let mut module_index = 0;
 
        let mut import_index = 0;
 
        loop {
 
            if module_index >= self.modules.len() {
 
                break;
 
            }
 

	
 
            let module_root_id = self.modules[module_index].root_id;
 
            let import_id = {
 
                let root = &self.heap[module_root_id];
 
                if import_index >= root.imports.len() {
 
                    module_index += 1;
 
                    import_index = 0;
 
                    continue
 
                }
 
                root.imports[import_index]
 
            };
 

	
 
            let import = &mut self.heap[import_id];
 
            match import {
 
                Import::Module(import) => {
 
                    debug_assert!(import.module_id.is_none(), "module import already resolved");
 
                    let target_module_id = self.symbol_table.resolve_module(&import.module_name)
 
                        .expect("module import is resolved by symbol table");
 
                    import.module_id = Some(target_module_id)
 
                },
 
                Import::Symbols(import) => {
 
                    debug_assert!(import.module_id.is_none(), "module of symbol import already resolved");
 
                    let target_module_id = self.symbol_table.resolve_module(&import.module_name)
 
                        .expect("symbol import's module is resolved by symbol table");
 
                    import.module_id = Some(target_module_id);
 

	
 
                    for symbol in &mut import.symbols {
 
                        debug_assert!(symbol.definition_id.is_none(), "symbol import already resolved");
 
                        let (_, target_definition_id) = self.symbol_table.resolve_symbol(module_root_id, &symbol.alias)
 
                        let (_, target_definition_id) = self.symbol_table.resolve_identifier(module_root_id, &symbol.alias)
 
                            .expect("symbol import is resolved by symbol table")
 
                            .as_definition()
 
                            .expect("symbol import does not resolve to namespace symbol");
 
                        symbol.definition_id = Some(target_definition_id);
 
                    }
 
                }
 
            }
 

	
 
            import_index += 1;
 
        }
 

	
 
        // All imports in the AST are now annotated. We now use the symbol table
 
        // to construct the type table.
 
        let mut type_ctx = TypeCtx::new(&self.symbol_table, &mut self.heap, &self.modules);
 
        self.type_table.build_base_types(&mut type_ctx)?;
 

	
 
        Ok(())
 
    }
 

	
 
    pub fn parse(&mut self) -> Result<(), ParseError2> {
 
        self.resolve_symbols_and_types()?;
 

	
 
        // Validate and link all modules
 
        let mut visit = ValidityAndLinkerVisitor::new();
 
        for module in &self.modules {
 
            let mut ctx = visitor::Ctx{
 
                heap: &mut self.heap,
 
                module,
 
                symbols: &mut self.symbol_table,
 
                types: &mut self.type_table,
 
            };
 
            visit.visit_module(&mut ctx)?;
 
        }
 

	
 
        // Perform typechecking on all modules
 
        let mut visit = TypeResolvingVisitor::new();
 
        let mut queue = ResolveQueue::new();
 
        for module in &self.modules {
 
            let ctx = visitor::Ctx{
 
                heap: &mut self.heap,
 
                module,
 
                symbols: &mut self.symbol_table,
 
                types: &mut self.type_table,
 
            };
 
            TypeResolvingVisitor::queue_module_definitions(&ctx, &mut queue);   
 
        };
 
        while !queue.is_empty() {
 
            let top = queue.pop().unwrap();
 
            let mut ctx = visitor::Ctx{
 
                heap: &mut self.heap,
 
                module: &self.modules[top.root_id.index as usize],
 
                symbols: &mut self.symbol_table,
 
                types: &mut self.type_table,
 
            };
 
            visit.handle_module_definition(&mut ctx, &mut queue, top)?;
 
        }
 

	
 
        // Perform remaining steps
 
        // TODO: Phase out at some point
 
        for module in &self.modules {
 
            let root_id = module.root_id;
 
            if let Err((position, message)) = Self::parse_inner(&mut self.heap, root_id) {
 
                return Err(ParseError2::new_error(&self.modules[0].source, position, &message))
 
            }
 
        }
 

	
 
        // let mut writer = ASTWriter::new();
 
        // let mut file = std::fs::File::create(std::path::Path::new("ast.txt")).unwrap();
 
        // writer.write_ast(&mut file, &self.heap);
 

	
 
        Ok(())
 
    }
 

	
 
    pub fn parse_inner(h: &mut Heap, pd: RootId) -> VisitorResult {
 
        // TODO: @cleanup, slowly phasing out old compiler
 
        // NestedSynchronousStatements::new().visit_protocol_description(h, pd)?;
 
        // ChannelStatementOccurrences::new().visit_protocol_description(h, pd)?;
 
        // FunctionStatementReturns::new().visit_protocol_description(h, pd)?;
 
        // ComponentStatementReturnNew::new().visit_protocol_description(h, pd)?;
 
        // CheckBuiltinOccurrences::new().visit_protocol_description(h, pd)?;
 
        // BuildSymbolDeclarations::new().visit_protocol_description(h, pd)?;
 
        // LinkCallExpressions::new().visit_protocol_description(h, pd)?;
 
        // BuildScope::new().visit_protocol_description(h, pd)?;
 
        // ResolveVariables::new().visit_protocol_description(h, pd)?;
 
        LinkStatements::new().visit_protocol_description(h, pd)?;
 
        // BuildLabels::new().visit_protocol_description(h, pd)?;
 
        // ResolveLabels::new().visit_protocol_description(h, pd)?;
 
        AssignableExpressions::new().visit_protocol_description(h, pd)?;
 
        IndexableExpressions::new().visit_protocol_description(h, pd)?;
 
        SelectableExpressions::new().visit_protocol_description(h, pd)?;
 

	
 
        Ok(())
 
    }
 
}
 
\ No newline at end of file
src/protocol/parser/symbol_table.rs
Show inline comments
 
// TODO: Maybe allow namespaced-aliased imports. It is currently not possible
 
//  to express the following:
 
//      import Module.Submodule as SubMod
 
//      import SubMod::{Symbol}
 
//  And it is especially not possible to express the following:
 
//      import SubMod::{Symbol}
 
//      import Module.Submodule as SubMod
 
use crate::protocol::ast::*;
 
use crate::protocol::inputsource::*;
 

	
 
use std::collections::{HashMap, hash_map::Entry};
 
use crate::protocol::parser::LexedModule;
 

	
 
#[derive(PartialEq, Eq, Hash)]
 
struct SymbolKey {
 
    module_id: RootId,
 
    symbol_name: Vec<u8>,
 
}
 

	
 
impl SymbolKey {
 
    fn from_identifier(module_id: RootId, symbol: &Identifier) -> Self {
 
        Self{ module_id, symbol_name: symbol.value.clone() }
 
    }
 

	
 
    fn from_namespaced_identifier(module_id: RootId, symbol: &NamespacedIdentifier2) -> Self {
 
        // Strip polymorpic arguments from the identifier
 
        let symbol_name = Vec::with_capacity(symbol.value.len());
 
        debug_assert!(symbol.parts.len() > 0 && symbol.parts[0].is_identifier());
 

	
 
        let mut iter = symbol.iter();
 
        let (first_ident, _) = iter.next().unwrap();
 
        symbol_name.extend(first_ident);
 

	
 
        for (ident, _) in iter {
 
            symbol_name.push(b':');
 
            symbol_name.extend(ident);
 
        }
 

	
 
        Self{ module_id, symbol_name }
 
        Self{ module_id, symbol_name: symbol.strip_poly_args() }
 
    }
 
}
 

	
 
pub(crate) enum Symbol {
 
    Namespace(RootId),
 
    Definition((RootId, DefinitionId)),
 
}
 

	
 
pub(crate) struct SymbolValue {
 
    // Position is the place where the symbol is introduced to a module (this
 
    // position always corresponds to the module whose RootId is stored in the
 
    // `SymbolKey` associated with this `SymbolValue`). For a definition this
 
    // is the position where the symbol is defined, for an import this is the
 
    // position of the import statement.
 
    pub(crate) position: InputPosition,
 
    pub(crate) symbol: Symbol,
 
}
 

	
 
impl SymbolValue {
 
    pub(crate) fn is_namespace(&self) -> bool {
 
        match &self.symbol {
 
            Symbol::Namespace(_) => true,
 
            _ => false
 
        }
 
    }
 
    pub(crate) fn as_namespace(&self) -> Option<RootId> {
 
        match &self.symbol {
 
            Symbol::Namespace(root_id) => Some(*root_id),
 
            _ => None,
 
        }
 
    }
 

	
 
    pub(crate) fn as_definition(&self) -> Option<(RootId, DefinitionId)> {
 
        match &self.symbol {
 
            Symbol::Definition((root_id, definition_id)) => Some((*root_id, *definition_id)),
 
            _ => None,
 
        }
 
    }
 
}
 
/// `SymbolTable` is responsible for two parts of the parsing process: firstly
 
/// it ensures that there are no clashing symbol definitions within each file,
 
/// and secondly it will resolve all symbols within a module to their
 
/// appropriate definitions (in case of enums, functions, etc.) and namespaces
 
/// (currently only external modules can act as namespaces). If a symbol clashes
 
/// or if a symbol cannot be resolved this will be an error.
 
///
 
/// Within the compilation process the symbol table is responsible for resolving
 
/// namespaced identifiers (e.g. Module::Enum::EnumVariant) to the appropriate
 
/// definition (i.e. not namespaces; as the language has no way to use
 
/// namespaces except for using them in namespaced identifiers).
 
pub(crate) struct SymbolTable {
 
    // Lookup from module name (not any aliases) to the root id
 
    module_lookup: HashMap<Vec<u8>, RootId>,
 
    // Lookup from within a module, to a particular imported (potentially
 
    // aliased) or defined symbol. Basically speaking: if the source code of a
 
    // module contains correctly imported/defined symbols, then this lookup
 
    // will always return the corresponding definition
 
    symbol_lookup: HashMap<SymbolKey, SymbolValue>,
 
}
 

	
 
impl SymbolTable {
 
    pub(crate) fn new() -> Self {
 
        Self{ module_lookup: HashMap::new(), symbol_lookup: HashMap::new() }
 
    }
 

	
 
    pub(crate) fn build(&mut self, heap: &Heap, modules: &[LexedModule]) -> Result<(), ParseError2> {
 
        // Sanity checks
 
        debug_assert!(self.module_lookup.is_empty());
 
        debug_assert!(self.symbol_lookup.is_empty());
 
        if cfg!(debug_assertions) {
 
            for (index, module) in modules.iter().enumerate() {
 
                debug_assert_eq!(
 
                    index, module.root_id.index as usize,
 
                    "module RootId does not correspond to LexedModule index"
 
                )
 
            }
 
        }
 

	
 
        // Preparation: create a lookup from module name to root id. This does
 
        // not take aliasing into account.
 
        self.module_lookup.reserve(modules.len());
 
        for module in modules {
 
            // TODO: Maybe put duplicate module name checking here?
 
            // TODO: @string
 
            self.module_lookup.insert(module.module_name.clone(), module.root_id);
 
        }
 

	
 
        // Preparation: determine total number of imports we will be inserting
 
        // into the lookup table. We could just iterate over the arena, but then
 
        // we don't know the source file the import belongs to.
 
        let mut lookup_reserve_size = 0;
 
        for module in modules {
 
            let module_root = &heap[module.root_id];
 
            for import_id in &module_root.imports {
 
                match &heap[*import_id] {
 
                    Import::Module(_) => lookup_reserve_size += 1,
 
                    Import::Symbols(import) => {
 
                        if import.symbols.is_empty() {
 
                            // Add all symbols from the other module
 
                            match self.module_lookup.get(&import.module_name) {
 
                                Some(target_module_id) => {
 
                                    lookup_reserve_size += heap[*target_module_id].definitions.len()
 
                                },
 
                                None => {
 
                                    return Err(
 
                                        ParseError2::new_error(&module.source, import.position, "Cannot resolve module")
 
                                    );
 
                                }
 
                            }
 
                        } else {
 
                            lookup_reserve_size += import.symbols.len();
 
                        }
 
                    }
 
                }
 
            }
 

	
 
            lookup_reserve_size += module_root.definitions.len();
 
        }
 

	
 
        self.symbol_lookup.reserve(lookup_reserve_size);
 

	
 
        // First pass: we go through all of the modules and add lookups to
 
        // symbols that are defined within that module. Cross-module imports are
 
        // not yet resolved
 
        for module in modules {
 
            let root = &heap[module.root_id];
 
            for definition_id in &root.definitions {
 
                let definition = &heap[*definition_id];
 
                let identifier = definition.identifier();
 
                if let Err(previous_position) = self.add_definition_symbol(
 
                    identifier.position, SymbolKey::from_identifier(module.root_id, &identifier),
 
                    module.root_id, *definition_id
 
                ) {
 
                    return Err(
 
                        ParseError2::new_error(&module.source, definition.position(), "Symbol is multiply defined")
 
                            .with_postfixed_info(&module.source, previous_position, "Previous definition was here")
 
                    )
 
                }
 
            }
 
        }
 

	
 
        // Second pass: now that we can find symbols in modules, we can resolve
 
        // all imports (if they're correct, that is)
 
        for module in modules {
 
            let root = &heap[module.root_id];
 
            for import_id in &root.imports {
 
                let import = &heap[*import_id];
 
                match import {
 
                    Import::Module(import) => {
 
                        // Find the module using its name
 
                        let target_root_id = self.resolve_module(&import.module_name);
 
                        if target_root_id.is_none() {
 
                            return Err(ParseError2::new_error(&module.source, import.position, "Could not resolve module"));
 
                        }
 
                        let target_root_id = target_root_id.unwrap();
 
                        if target_root_id == module.root_id {
 
                            return Err(ParseError2::new_error(&module.source, import.position, "Illegal import of self"));
 
                        }
 

	
 
                        // Add the target module under its alias
 
                        if let Err(previous_position) = self.add_namespace_symbol(
 
                            import.position, SymbolKey::from_identifier(module.root_id, &import.alias),
 
                            target_root_id
 
                        ) {
 
                            return Err(
 
                                ParseError2::new_error(&module.source, import.position, "Symbol is multiply defined")
 
                                    .with_postfixed_info(&module.source, previous_position, "Previous definition was here")
 
                            );
 
                        }
 
                    },
 
                    Import::Symbols(import) => {
 
                        // Find the target module using its name
 
                        let target_root_id = self.resolve_module(&import.module_name);
 
                        if target_root_id.is_none() {
 
                            return Err(ParseError2::new_error(&module.source, import.position, "Could not resolve module of symbol imports"));
 
                        }
 
                        let target_root_id = target_root_id.unwrap();
 
                        if target_root_id == module.root_id {
 
                            return Err(ParseError2::new_error(&module.source, import.position, "Illegal import of self"));
 
                        }
 

	
 
                        // Determine which symbols to import
 
                        if import.symbols.is_empty() {
 
                            // Import of all symbols, not using any aliases
 
                            for definition_id in &heap[target_root_id].definitions {
 
                                let definition = &heap[*definition_id];
 
                                let identifier = definition.identifier();
 
                                if let Err(previous_position) = self.add_definition_symbol(
 
                                    import.position, SymbolKey::from_identifier(module.root_id, identifier),
 
                                    target_root_id, *definition_id
 
                                ) {
 
                                    return Err(
 
                                        ParseError2::new_error(
 
                                            &module.source, import.position,
 
                                            &format!("Imported symbol '{}' is already defined", String::from_utf8_lossy(&identifier.value))
 
                                        )
 
                                        .with_postfixed_info(
 
                                            &modules[target_root_id.index as usize].source,
 
                                            definition.position(),
 
                                            "The imported symbol is defined here"
 
                                        )
 
                                        .with_postfixed_info(
 
                                            &module.source, previous_position, "And is previously defined here"
 
                                        )
 
                                    )
 
                                }
 
                            }
 
                        } else {
 
                            // Import of specific symbols, optionally using aliases
 
                            for symbol in &import.symbols {
 
                                // Because we have already added per-module definitions, we can use
 
                                // the table to lookup this particular symbol. Note: within a single
 
                                // module a namespace-import and a symbol-import may not collide.
 
                                // Hence per-module symbols are unique.
 
                                // However: if we import a symbol from another module, we don't want
 
                                // to "import a module's imported symbol". And so if we do find
 
                                // a symbol match, we need to make sure it is a definition from
 
                                // within that module by checking `source_root_id == target_root_id`
 
                                let key = SymbolKey::from_identifier(target_root_id, &symbol.name);
 
                                let target_symbol = self.symbol_lookup.get(&key);
 
                                let symbol_definition_id = match target_symbol {
 
                                    Some(target_symbol) => {
 
                                        match target_symbol.symbol {
 
                                            Symbol::Definition((symbol_root_id, symbol_definition_id)) => {
 
                                                if symbol_root_id == target_root_id {
 
                                                    Some(symbol_definition_id)
 
                                                } else {
 
                                                    // This is imported within the target module, and not
 
                                                    // defined within the target module
 
                                                    None
 
                                                }
 
                                            },
 
                                            Symbol::Namespace(_) => {
 
                                                // We don't import a module's "module import"
 
                                                None
 
                                            }
 
                                        }
 
                                    },
 
                                    None => None
 
                                };
 

	
 
                                if symbol_definition_id.is_none() {
 
                                    return Err(
 
                                        ParseError2::new_error(&module.source, symbol.position, "Could not resolve symbol")
 
                                    )
 
                                }
 
                                let symbol_definition_id = symbol_definition_id.unwrap();
 

	
 
                                if let Err(previous_position) = self.add_definition_symbol(
 
                                    symbol.position, SymbolKey::from_identifier(module.root_id, &symbol.alias),
 
                                    target_root_id, symbol_definition_id
 
                                ) {
 
                                    return Err(
 
                                        ParseError2::new_error(&module.source, symbol.position, "Symbol is multiply defined")
 
                                            .with_postfixed_info(&module.source, previous_position, "Previous definition was here")
 
                                    )
 
                                }
 
                            }
 
                        }
 
                    }
 
                }
 
            }
 
        }
 
        fn find_name(heap: &Heap, root_id: RootId) -> String {
 
            let root = &heap[root_id];
 
            for pragma_id in &root.pragmas {
 
                match &heap[*pragma_id] {
 
                    Pragma::Module(module) => {
 
                        return String::from_utf8_lossy(&module.value).to_string()
 
                    },
 
                    _ => {},
 
                }
 
            }
 

	
 
            return String::from("Unknown")
 
        }
 

	
 
        debug_assert_eq!(
 
            self.symbol_lookup.len(), lookup_reserve_size,
 
            "miscalculated reserved size for symbol lookup table"
 
        );
 
        Ok(())
 
    }
 

	
 
    /// Resolves a module by its defined name
 
    pub(crate) fn resolve_module(&self, identifier: &Vec<u8>) -> Option<RootId> {
 
        self.module_lookup.get(identifier).map(|v| *v)
 
    }
 

	
 
    pub(crate) fn resolve_symbol<'t>(
 
        &'t self, root_module_id: RootId, identifier: &[u8]
 
    ) -> Option<&'t SymbolValue> {
 
        let lookup_key = SymbolKey{ module_id: root_module_id, symbol_name: Vec::from(identifier) };
 
        self.symbol_lookup.get(&lookup_key)
 
    }
 

	
 
    pub(crate) fn resolve_identifier<'t>(
 
        &'t self, root_module_id: RootId, identifier: &Identifier
 
    ) -> Option<&'t SymbolValue> {
 
        let lookup_key = SymbolKey::from_identifier(root_module_id, identifier);
 
        self.symbol_lookup.get(&lookup_key)
 
    }
 

	
 
    /// Resolves a namespaced symbol. This method will go as far as possible in
 
    /// going to the right symbol. It will halt the search when:
 
    /// 1. Polymorphic arguments are encountered on the identifier.
 
    /// 2. A non-namespace symbol is encountered.
 
    /// 3. A part of the identifier couldn't be resolved to anything
 
    /// The returned iterator will always point to the next symbol (even if 
 
    /// nothing was found)
 
    pub(crate) fn resolve_namespaced_symbol<'t, 'i>(
 
    pub(crate) fn resolve_namespaced_identifier<'t, 'i>(
 
        &'t self, root_module_id: RootId, identifier: &'i NamespacedIdentifier2
 
    ) -> (Option<&'t SymbolValue>, NamespacedIdentifier2Iter<'i>) {
 
        let mut iter = identifier.iter();
 
        let mut symbol: Option<&SymbolValue> = None;
 
        let mut within_module_id = root_module_id;
 

	
 
        while let Some((partial, poly_args)) = iter.next() {
 
            // Lookup the symbol within the currently iterated upon module
 
            let lookup_key = SymbolKey{ module_id: within_module_id, symbol_name: Vec::from(partial) };
 
            let new_symbol = self.symbol_lookup.get(&lookup_key);
 
            
 
            match new_symbol {
 
                None => {
 
                    // Can't find anything
 
                    symbol = None;
 
                    break;
 
                },
 
                Some(new_symbol) => {
 
                    // Found something, but if we already moved to another
 
                    // module then we don't want to keep jumping across modules,
 
                    // we're only interested in symbols defined within that
 
                    // module.
 
                    match &new_symbol.symbol {
 
                        Symbol::Namespace(new_root_id) => {
 
                            if root_module_id != within_module_id {
 
                                // This new symbol is imported by a foreign
 
                                // module, so this is an error
 
                                debug_assert!(symbol.is_some());
 
                                debug_assert!(symbol.unwrap().is_namespace());
 
                                debug_assert!(iter.num_returned() > 1);
 
                                symbol = None;
 
                                break;
 
                            }
 
                            within_module_id = *new_root_id;
 
                            symbol = Some(new_symbol);
 
                        },
 
                        Symbol::Definition((definition_root_id, _)) => {
 
                            // Found a definition, but if we already jumped
 
                            // modules, then this must be defined within that
 
                            // module.
 
                            if root_module_id != within_module_id && within_module_id != *definition_root_id {
 
                                // This is an imported definition within the module
 
                                // So keep the old 
 
                                debug_assert!(symbol.is_some());
 
                                debug_assert!(symbol.unwrap().is_namespace());
 
                                debug_assert!(iter.num_returned() > 1);
 
                                symbol = None;
 
                                break;
 
                            }
 
                            symbol = Some(new_symbol);
 
                            break;
 
                        }
 
                    }
 
                }
 
            }
 

	
 
            if poly_args.is_some() {
 
                // Polymorphic argument specification should also be a fully 
 
                // resolved result.
 
                break;
 
            }
 
        }
 

	
 
        match symbol {
 
            None => (None, iter),
 
            Some(symbol) => (Some(symbol), iter)
 
        }
 
    }
 

	
 
    /// Attempts to add a namespace symbol. Returns `Ok` if the symbol was
 
    /// inserted. If the symbol already exists then `Err` will be returned
 
    /// together with the previous definition's source position (in the origin
 
    /// module's source file).
 
    // Note: I would love to return a reference to the value, but Rust is
 
    // preventing me from doing so... That, or I'm not smart enough...
 
    fn add_namespace_symbol(
 
        &mut self, origin_position: InputPosition, key: SymbolKey, target_module_id: RootId
 
    ) -> Result<(), InputPosition> {
 
        match self.symbol_lookup.entry(key) {
 
            Entry::Occupied(o) => Err(o.get().position),
 
            Entry::Vacant(v) => {
 
                v.insert(SymbolValue{
 
                    position: origin_position,
 
                    symbol: Symbol::Namespace(target_module_id)
 
                });
 
                Ok(())
 
            }
 
        }
 
    }
 

	
 
    /// Attempts to add a definition symbol. Returns `Ok` if the symbol was
 
    /// inserted. If the symbol already exists then `Err` will be returned
 
    /// together with the previous definition's source position (in the origin
 
    /// module's source file).
 
    fn add_definition_symbol(
 
        &mut self, origin_position: InputPosition, key: SymbolKey,
 
        target_module_id: RootId, target_definition_id: DefinitionId,
 
    ) -> Result<(), InputPosition> {
 
        match self.symbol_lookup.entry(key) {
 
            Entry::Occupied(o) => Err(o.get().position),
 
            Entry::Vacant(v) => {
 
                v.insert(SymbolValue {
 
                    position: origin_position,
 
                    symbol: Symbol::Definition((target_module_id, target_definition_id))
 
                });
 
                Ok(())
 
            }
 
        }
 
    }
 
}
 
\ No newline at end of file
src/protocol/parser/type_resolver.rs
Show inline comments
 
@@ -2578,585 +2578,585 @@ impl TypeResolvingVisitor {
 
            }
 

	
 
            if res.modified_lhs() {
 
                // We re-inferred something on the left hand side, so everything
 
                // up until now should be re-inferred.
 
                progress[lhs_arg_idx] = true;
 
                last_lhs_progressed = lhs_arg_idx;
 
            }
 
            progress[lhs_arg_idx + 1] = res.modified_rhs();
 

	
 
            last_arg_id = *next_arg_id;
 
            lhs_arg_idx += 1;
 
        }
 

	
 
        // Re-infer everything. Note that we do not need to re-infer the type
 
        // exactly at `last_lhs_progressed`, but only everything up to it.
 
        let last_type: *mut _ = self.expr_types.get_mut(args.last().unwrap()).unwrap();
 
        for arg_idx in 0..last_lhs_progressed {
 
            let arg_type: *mut _ = self.expr_types.get_mut(&args[arg_idx]).unwrap();
 
            unsafe{
 
                (*arg_type).replace_subtree(0, &(*last_type).parts);
 
            }
 
            progress[arg_idx] = true;
 
        }
 

	
 
        Ok(progress)
 
    }
 

	
 
    /// Determines the `InferenceType` for the expression based on the
 
    /// expression parent. Note that if the parent is another expression, we do
 
    /// not take special action, instead we let parent expressions fix the type
 
    /// of subexpressions before they have a chance to call this function.
 
    fn insert_initial_expr_inference_type(
 
        &mut self, ctx: &mut Ctx, expr_id: ExpressionId
 
    ) -> Result<(), ParseError2> {
 
        use ExpressionParent as EP;
 
        use InferenceTypePart as ITP;
 

	
 
        let expr = &ctx.heap[expr_id];
 
        let inference_type = match expr.parent() {
 
            EP::None =>
 
                // Should have been set by linker
 
                unreachable!(),
 
            EP::ExpressionStmt(_) | EP::Expression(_, _) =>
 
                // Determined during type inference
 
                InferenceType::new(false, false, vec![ITP::Unknown]),
 
            EP::If(_) | EP::While(_) | EP::Assert(_) =>
 
                // Must be a boolean
 
                InferenceType::new(false, true, vec![ITP::Bool]),
 
            EP::Return(_) =>
 
                // Must match the return type of the function
 
                if let DefinitionType::Function(func_id) = self.definition_type {
 
                    let return_parser_type_id = ctx.heap[func_id].return_type;
 
                    self.determine_inference_type_from_parser_type(ctx, return_parser_type_id, true)
 
                } else {
 
                    // Cannot happen: definition always set upon body traversal
 
                    // and "return" calls in components are illegal.
 
                    unreachable!();
 
                },
 
            EP::New(_) =>
 
                // Must be a component call, which we assign a "Void" return
 
                // type
 
                InferenceType::new(false, true, vec![ITP::Void]),
 
        };
 

	
 
        match self.expr_types.entry(expr_id) {
 
            Entry::Vacant(vacant) => {
 
                vacant.insert(inference_type);
 
            },
 
            Entry::Occupied(mut preexisting) => {
 
                // We already have an entry, this happens if our parent fixed
 
                // our type (e.g. we're used in a conditional expression's test)
 
                // but we have a different type.
 
                // TODO: Is this ever called? Seems like it can't
 
                debug_assert!(false, "I am actually called, my ID is {}", expr_id.index);
 
                let old_type = preexisting.get_mut();
 
                if let SingleInferenceResult::Incompatible = InferenceType::infer_subtree_for_single_type(
 
                    old_type, 0, &inference_type.parts, 0
 
                ) {
 
                    return Err(self.construct_expr_type_error(ctx, expr_id, expr_id))
 
                }
 
            }
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn insert_initial_call_polymorph_data(
 
        &mut self, ctx: &mut Ctx, call_id: CallExpressionId
 
    ) {
 
        use InferenceTypePart as ITP;
 

	
 
        // Note: the polymorph variables may be partially specified and may
 
        // contain references to the wrapping definition's (i.e. the proctype
 
        // we are currently visiting) polymorphic arguments.
 
        //
 
        // The arguments of the call may refer to polymorphic variables in the
 
        // definition of the function we're calling, not of the wrapping
 
        // definition. We insert markers in these inferred types to be able to
 
        // map them back and forth to the polymorphic arguments of the function
 
        // we are calling.
 
        let call = &ctx.heap[call_id];
 

	
 
        // Handle the polymorphic variables themselves
 
        let mut poly_vars = Vec::with_capacity(call.poly_args.len());
 
        for poly_arg_type_id in call.poly_args.clone() { // TODO: @performance
 
            poly_vars.push(self.determine_inference_type_from_parser_type(ctx, poly_arg_type_id, true));
 
        }
 

	
 
        // Handle the arguments
 
        // TODO: @cleanup: Maybe factor this out for reuse in the validator/linker, should also
 
        //  make the code slightly more robust.
 
        let (embedded_types, return_type) = match &call.method {
 
            Method::Create => {
 
                // Not polymorphic
 
                (
 
                    vec![InferenceType::new(false, true, vec![ITP::Int])],
 
                    InferenceType::new(false, true, vec![ITP::Message, ITP::Byte])
 
                )
 
            },
 
            Method::Fires => {
 
                // bool fires<T>(PortLike<T> arg)
 
                (
 
                    vec![InferenceType::new(true, false, vec![ITP::PortLike, ITP::MarkerBody(0), ITP::Unknown])],
 
                    InferenceType::new(false, true, vec![ITP::Bool])
 
                )
 
            },
 
            Method::Get => {
 
                // T get<T>(input<T> arg)
 
                (
 
                    vec![InferenceType::new(true, false, vec![ITP::Input, ITP::MarkerBody(0), ITP::Unknown])],
 
                    InferenceType::new(true, false, vec![ITP::MarkerBody(0), ITP::Unknown])
 
                )
 
            },
 
            Method::Put => {
 
                // void Put<T>(output<T> port, T msg)
 
                (
 
                    vec![
 
                        InferenceType::new(true, false, vec![ITP::Output, ITP::MarkerBody(0), ITP::Unknown]),
 
                        InferenceType::new(true, false, vec![ITP::MarkerBody(0), ITP::Unknown])
 
                    ],
 
                    InferenceType::new(false, true, vec![ITP::Void])
 
                )
 
            }
 
            Method::Symbolic(symbolic) => {
 
                let definition = &ctx.heap[symbolic.definition.unwrap()];
 

	
 
                match definition {
 
                    Definition::Component(definition) => {
 
                        debug_assert_eq!(poly_vars.len(), definition.poly_vars.len());
 
                        let mut parameter_types = Vec::with_capacity(definition.parameters.len());
 
                        for param_id in definition.parameters.clone() {
 
                            let param = &ctx.heap[param_id];
 
                            let param_parser_type_id = param.parser_type;
 
                            parameter_types.push(self.determine_inference_type_from_parser_type(ctx, param_parser_type_id, false));
 
                        }
 

	
 
                        (parameter_types, InferenceType::new(false, true, vec![InferenceTypePart::Void]))
 
                    },
 
                    Definition::Function(definition) => {
 
                        debug_assert_eq!(poly_vars.len(), definition.poly_vars.len());
 
                        let mut parameter_types = Vec::with_capacity(definition.parameters.len());
 
                        for param_id in definition.parameters.clone() {
 
                            let param = &ctx.heap[param_id];
 
                            let param_parser_type_id = param.parser_type;
 
                            parameter_types.push(self.determine_inference_type_from_parser_type(ctx, param_parser_type_id, false));
 
                        }
 

	
 
                        let return_type = self.determine_inference_type_from_parser_type(ctx, definition.return_type, false);
 
                        (parameter_types, return_type)
 
                    },
 
                    Definition::Struct(_) | Definition::Enum(_) => {
 
                        unreachable!("insert initial polymorph data for struct/enum");
 
                    }
 
                }
 
            }
 
        };
 

	
 
        self.extra_data.insert(call_id.upcast(), ExtraData {
 
            poly_vars,
 
            embedded: embedded_types,
 
            returned: return_type
 
        });
 
    }
 

	
 
    fn insert_initial_struct_polymorph_data(
 
        &mut self, ctx: &mut Ctx, lit_id: LiteralExpressionId,
 
    ) {
 
        use InferenceTypePart as ITP;
 
        let literal = ctx.heap[lit_id].value.as_struct();
 

	
 
        // Handle polymorphic arguments
 
        let mut poly_vars = Vec::with_capacity(literal.poly_args.len());
 
        let mut poly_vars = Vec::with_capacity(literal.poly_args2.len());
 
        let mut total_num_poly_parts = 0;
 
        for poly_arg_type_id in literal.poly_args.clone() { // TODO: @performance
 
        for poly_arg_type_id in literal.poly_args2.clone() { // TODO: @performance
 
            let inference_type = self.determine_inference_type_from_parser_type(
 
                ctx, poly_arg_type_id, true
 
            ); 
 
            total_num_poly_parts += inference_type.parts.len();
 
            poly_vars.push(inference_type);
 
        }
 

	
 
        // Handle parser types on struct definition
 
        let definition = &ctx.heap[literal.definition.unwrap()];
 
        let definition = match definition {
 
            Definition::Struct(definition) => {
 
                debug_assert_eq!(poly_vars.len(), definition.poly_vars.len());
 
                definition
 
            },
 
            _ => unreachable!("definition for struct literal does not point to struct definition")
 
        };
 

	
 
        // Note: programmer is capable of specifying fields in a struct literal
 
        // in a different order than on the definition. We take the programmer-
 
        // specified order to be leading.
 
        let mut embedded_types = Vec::with_capacity(definition.fields.len());
 
        for lit_field in literal.fields.iter() {
 
            let def_field = &definition.fields[lit_field.field_idx];
 
            let inference_type = self.determine_inference_type_from_parser_type(
 
                ctx, def_field.parser_type, false
 
            );
 
            embedded_types.push(inference_type);
 
        }
 

	
 
        // Return type is the struct type itself, with the appropriate 
 
        // polymorphic variables. So:
 
        // - 1 part for definition
 
        // - N_poly_arg marker parts for each polymorphic argument
 
        // - all the parts for the currently known polymorphic arguments 
 
        let parts_reserved = 1 + poly_vars.len() + total_num_poly_parts;
 
        let mut parts = Vec::with_capacity(parts_reserved);
 
        parts.push(ITP::Instance(definition.this.upcast(), poly_vars.len()));
 
        let mut return_type_done = true;
 
        for (poly_var_idx, poly_var) in poly_vars.iter().enumerate() {
 
            if !poly_var.is_done { return_type_done = false; }
 

	
 
            parts.push(ITP::MarkerBody(poly_var_idx));
 
            parts.extend(poly_var.parts.iter().cloned());
 
        }
 

	
 
        debug_assert_eq!(parts.len(), parts_reserved);
 
        let return_type = InferenceType::new(true, return_type_done, parts);
 

	
 
        self.extra_data.insert(lit_id.upcast(), ExtraData{
 
            poly_vars, 
 
            embedded: embedded_types,
 
            returned: return_type,
 
        });
 
    }
 

	
 
    /// Inserts the extra polymorphic data struct. Assumes that the select
 
    /// expression's referenced (definition_id, field_idx) has been resolved.
 
    fn insert_initial_select_polymorph_data(
 
        &mut self, ctx: &Ctx, select_id: SelectExpressionId
 
    ) {
 
        use InferenceTypePart as ITP;
 

	
 
        // Retrieve relevant data
 
        let expr = &ctx.heap[select_id];
 
        let field = expr.field.as_symbolic();
 

	
 
        let definition_id = field.definition.unwrap();
 
        let definition = ctx.heap[definition_id].as_struct();
 
        let field_idx = field.field_idx;
 

	
 
        // Generate initial polyvar types and struct type
 
        let num_poly_vars = definition.poly_vars.len();
 
        let mut poly_vars = Vec::with_capacity(num_poly_vars);
 
        let struct_parts_reserved = 1 + 2 * num_poly_vars;
 
        let mut struct_parts = Vec::with_capacity(struct_parts_reserved);
 
        struct_parts.push(ITP::Instance(definition_id, num_poly_vars));        
 

	
 
        for poly_idx in 0..num_poly_vars {
 
            poly_vars.push(InferenceType::new(true, false, vec![
 
                ITP::MarkerBody(poly_idx), ITP::Unknown,
 
            ]));
 
            struct_parts.push(ITP::MarkerBody(poly_idx));
 
            struct_parts.push(ITP::Unknown);
 
        }
 
        debug_assert_eq!(struct_parts.len(), struct_parts_reserved);
 

	
 
        // Generate initial field type
 
        let field_type = self.determine_inference_type_from_parser_type(
 
            ctx, definition.fields[field_idx].parser_type, false
 
        );
 

	
 
        self.extra_data.insert(select_id.upcast(), ExtraData{
 
            poly_vars,
 
            embedded: vec![InferenceType::new(true, false, struct_parts)],
 
            returned: field_type
 
        });
 
    }
 

	
 
    /// Determines the initial InferenceType from the provided ParserType. This
 
    /// may be called with two kinds of intentions:
 
    /// 1. To resolve a ParserType within the body of a function, or on
 
    ///     polymorphic arguments to calls/instantiations within that body. This
 
    ///     means that the polymorphic variables are known and can be replaced
 
    ///     with the monomorph we're instantiating.
 
    /// 2. To resolve a ParserType on a called function's definition or on
 
    ///     an instantiated datatype's members. This means that the polymorphic
 
    ///     arguments inside those ParserTypes refer to the polymorphic
 
    ///     variables in the called/instantiated type's definition.
 
    /// In the second case we place InferenceTypePart::Marker instances such
 
    /// that we can perform type inference on the polymorphic variables.
 
    fn determine_inference_type_from_parser_type(
 
        &mut self, ctx: &Ctx, parser_type_id: ParserTypeId,
 
        parser_type_in_body: bool
 
    ) -> InferenceType {
 
        use ParserTypeVariant as PTV;
 
        use InferenceTypePart as ITP;
 

	
 
        let mut to_consider = VecDeque::with_capacity(16);
 
        to_consider.push_back(parser_type_id);
 

	
 
        let mut infer_type = Vec::new();
 
        let mut has_inferred = false;
 
        let mut has_markers = false;
 

	
 
        while !to_consider.is_empty() {
 
            let parser_type_id = to_consider.pop_front().unwrap();
 
            let parser_type = &ctx.heap[parser_type_id];
 
            match &parser_type.variant {
 
                PTV::Message => {
 
                    // TODO: @types Remove the Message -> Byte hack at some point...
 
                    infer_type.push(ITP::Message);
 
                    infer_type.push(ITP::Byte);
 
                },
 
                PTV::Bool => { infer_type.push(ITP::Bool); },
 
                PTV::Byte => { infer_type.push(ITP::Byte); },
 
                PTV::Short => { infer_type.push(ITP::Short); },
 
                PTV::Int => { infer_type.push(ITP::Int); },
 
                PTV::Long => { infer_type.push(ITP::Long); },
 
                PTV::String => { infer_type.push(ITP::String); },
 
                PTV::IntegerLiteral => { unreachable!("integer literal type on variable type"); },
 
                PTV::Inferred => {
 
                    infer_type.push(ITP::Unknown);
 
                    has_inferred = true;
 
                },
 
                PTV::Array(subtype_id) => {
 
                    infer_type.push(ITP::Array);
 
                    to_consider.push_front(*subtype_id);
 
                },
 
                PTV::Input(subtype_id) => {
 
                    infer_type.push(ITP::Input);
 
                    to_consider.push_front(*subtype_id);
 
                },
 
                PTV::Output(subtype_id) => {
 
                    infer_type.push(ITP::Output);
 
                    to_consider.push_front(*subtype_id);
 
                },
 
                PTV::Symbolic(symbolic) => {
 
                    debug_assert!(symbolic.variant.is_some(), "symbolic variant not yet determined");
 
                    match symbolic.variant.as_ref().unwrap() {
 
                        SymbolicParserTypeVariant::PolyArg(_, arg_idx) => {
 
                            let arg_idx = *arg_idx;
 
                            debug_assert!(symbolic.poly_args.is_empty()); // TODO: @hkt
 
                            debug_assert!(symbolic.poly_args2.is_empty()); // TODO: @hkt
 

	
 
                            if parser_type_in_body {
 
                                // Polymorphic argument refers to definition's
 
                                // polymorphic variables
 
                                debug_assert!(arg_idx < self.poly_vars.len());
 
                                debug_assert!(!self.poly_vars[arg_idx].has_marker());
 
                                infer_type.push(ITP::MarkerDefinition(arg_idx));
 
                                for concrete_part in &self.poly_vars[arg_idx].parts {
 
                                    infer_type.push(ITP::from(*concrete_part));
 
                                }
 
                            } else {
 
                                // Polymorphic argument has to be inferred
 
                                has_markers = true;
 
                                has_inferred = true;
 
                                infer_type.push(ITP::MarkerBody(arg_idx));
 
                                infer_type.push(ITP::Unknown);
 
                            }
 
                        },
 
                        SymbolicParserTypeVariant::Definition(definition_id) => {
 
                            // TODO: @cleanup
 
                            if cfg!(debug_assertions) {
 
                                let definition = &ctx.heap[*definition_id];
 
                                debug_assert!(definition.is_struct() || definition.is_enum()); // TODO: @function_ptrs
 
                                let num_poly = match definition {
 
                                    Definition::Struct(v) => v.poly_vars.len(),
 
                                    Definition::Enum(v) => v.poly_vars.len(),
 
                                    _ => unreachable!(),
 
                                };
 
                                debug_assert_eq!(symbolic.poly_args.len(), num_poly);
 
                                debug_assert_eq!(symbolic.poly_args2.len(), num_poly);
 
                            }
 

	
 
                            infer_type.push(ITP::Instance(*definition_id, symbolic.poly_args.len()));
 
                            let mut poly_arg_idx = symbolic.poly_args.len();
 
                            infer_type.push(ITP::Instance(*definition_id, symbolic.poly_args2.len()));
 
                            let mut poly_arg_idx = symbolic.poly_args2.len();
 
                            while poly_arg_idx > 0 {
 
                                poly_arg_idx -= 1;
 
                                to_consider.push_front(symbolic.poly_args[poly_arg_idx]);
 
                                to_consider.push_front(symbolic.poly_args2[poly_arg_idx]);
 
                            }
 
                        }
 
                    }
 
                }
 
            }
 
        }
 

	
 
        InferenceType::new(has_markers, !has_inferred, infer_type)
 
    }
 

	
 
    /// Construct an error when an expression's type does not match. This
 
    /// happens if we infer the expression type from its arguments (e.g. the
 
    /// expression type of an addition operator is the type of the arguments)
 
    /// But the expression type was already set due to our parent (e.g. an
 
    /// "if statement" or a "logical not" always expecting a boolean)
 
    fn construct_expr_type_error(
 
        &self, ctx: &Ctx, expr_id: ExpressionId, arg_id: ExpressionId
 
    ) -> ParseError2 {
 
        // TODO: Expand and provide more meaningful information for humans
 
        let expr = &ctx.heap[expr_id];
 
        let arg_expr = &ctx.heap[arg_id];
 
        let expr_type = self.expr_types.get(&expr_id).unwrap();
 
        let arg_type = self.expr_types.get(&arg_id).unwrap();
 

	
 
        return ParseError2::new_error(
 
            &ctx.module.source, expr.position(),
 
            &format!(
 
                "Incompatible types: this expression expected a '{}'", 
 
                expr_type.display_name(&ctx.heap)
 
            )
 
        ).with_postfixed_info(
 
            &ctx.module.source, arg_expr.position(),
 
            &format!(
 
                "But this expression yields a '{}'",
 
                arg_type.display_name(&ctx.heap)
 
            )
 
        )
 
    }
 

	
 
    fn construct_arg_type_error(
 
        &self, ctx: &Ctx, expr_id: ExpressionId,
 
        arg1_id: ExpressionId, arg2_id: ExpressionId
 
    ) -> ParseError2 {
 
        let expr = &ctx.heap[expr_id];
 
        let arg1 = &ctx.heap[arg1_id];
 
        let arg2 = &ctx.heap[arg2_id];
 

	
 
        let arg1_type = self.expr_types.get(&arg1_id).unwrap();
 
        let arg2_type = self.expr_types.get(&arg2_id).unwrap();
 

	
 
        return ParseError2::new_error(
 
            &ctx.module.source, expr.position(),
 
            "Incompatible types: cannot apply this expression"
 
        ).with_postfixed_info(
 
            &ctx.module.source, arg1.position(),
 
            &format!(
 
                "Because this expression has type '{}'",
 
                arg1_type.display_name(&ctx.heap)
 
            )
 
        ).with_postfixed_info(
 
            &ctx.module.source, arg2.position(),
 
            &format!(
 
                "But this expression has type '{}'",
 
                arg2_type.display_name(&ctx.heap)
 
            )
 
        )
 
    }
 

	
 
    fn construct_template_type_error(
 
        &self, ctx: &Ctx, expr_id: ExpressionId, template: &[InferenceTypePart]
 
    ) -> ParseError2 {
 
        let expr = &ctx.heap[expr_id];
 
        let expr_type = self.expr_types.get(&expr_id).unwrap();
 

	
 
        return ParseError2::new_error(
 
            &ctx.module.source, expr.position(),
 
            &format!(
 
                "Incompatible types: got a '{}' but expected a '{}'",
 
                expr_type.display_name(&ctx.heap), 
 
                InferenceType::partial_display_name(&ctx.heap, template)
 
            )
 
        )
 
    }
 

	
 
    /// Constructs a human interpretable error in the case that type inference
 
    /// on a polymorphic variable to a function call or literal construction 
 
    /// failed. This may only be caused by a pair of inference types (which may 
 
    /// come from arguments or the return type) having two different inferred 
 
    /// values for that polymorphic variable.
 
    ///
 
    /// So we find this pair and construct the error using it.
 
    ///
 
    /// We assume that the expression is a function call or a struct literal,
 
    /// and that an actual error has occurred.
 
    fn construct_poly_arg_error(
 
        ctx: &Ctx, poly_data: &ExtraData, expr_id: ExpressionId
 
    ) -> ParseError2 {
 
        // Helper function to check for polymorph mismatch between two inference
 
        // types.
 
        fn has_poly_mismatch<'a>(type_a: &'a InferenceType, type_b: &'a InferenceType) -> Option<(usize, &'a [InferenceTypePart], &'a [InferenceTypePart])> {
 
            if !type_a.has_body_marker || !type_b.has_body_marker {
 
                return None
 
            }
 

	
 
            for (marker_a, section_a) in type_a.body_marker_iter() {
 
                for (marker_b, section_b) in type_b.body_marker_iter() {
 
                    if marker_a != marker_b {
 
                        // Not the same polymorphic variable
 
                        continue;
 
                    }
 

	
 
                    if !InferenceType::check_subtrees(section_a, 0, section_b, 0) {
 
                        // Not compatible
 
                        return Some((marker_a, section_a, section_b))
 
                    }
 
                }
 
            }
 

	
 
            None
 
        }
 

	
 
        // Helpers function to retrieve polyvar name and definition name
 
        fn get_poly_var_and_func_name(ctx: &Ctx, poly_var_idx: usize, expr: &CallExpression) -> (String, String) {
 
            match &expr.method {
 
                Method::Create => unreachable!(),
 
                Method::Fires => (String::from('T'), String::from("fires")),
 
                Method::Get => (String::from('T'), String::from("get")),
 
                Method::Put => (String::from('T'), String::from("put")),
 
                Method::Symbolic(symbolic) => {
 
                    let definition = &ctx.heap[symbolic.definition.unwrap()];
 
                    let poly_var = match definition {
 
                        Definition::Struct(_) | Definition::Enum(_) => unreachable!(),
 
                        Definition::Function(definition) => {
 
                            String::from_utf8_lossy(&definition.poly_vars[poly_var_idx].value).to_string()
 
                        },
 
                        Definition::Component(definition) => {
 
                            String::from_utf8_lossy(&definition.poly_vars[poly_var_idx].value).to_string()
 
                        }
 
                    };
 
                    let func_name = String::from_utf8_lossy(&symbolic.identifier.value).to_string();
 
                    (poly_var, func_name)
 
                }
 
            }
 
        }
 

	
 
        fn get_poly_var_and_type_name(ctx: &Ctx, poly_var_idx: usize, definition_id: DefinitionId) -> (String, String) {
 
            let definition = &ctx.heap[definition_id];
 
            match definition {
 
                Definition::Enum(_) | Definition::Function(_) | Definition::Component(_) =>
 
                    unreachable!("get_poly_var_and_type_name called on non-struct value"),
 
                Definition::Struct(definition) => (
 
                    String::from_utf8_lossy(&definition.poly_vars[poly_var_idx].value).to_string(),
 
                    String::from_utf8_lossy(&definition.identifier.value).to_string()
 
                ),
 
            }
 
        }
 

	
 
        // Helper function to construct initial error
 
        fn construct_main_error(ctx: &Ctx, poly_var_idx: usize, expr: &Expression) -> ParseError2 {
 
            match expr {
 
                Expression::Call(expr) => {
 
                    let (poly_var, func_name) = get_poly_var_and_func_name(ctx, poly_var_idx, expr);
 
                    return ParseError2::new_error(
 
                        &ctx.module.source, expr.position(),
 
                        &format!(
 
                            "Conflicting type for polymorphic variable '{}' of '{}'",
 
                            poly_var, func_name
 
                        )
 
                    )
 
                },
 
                Expression::Literal(expr) => {
 
                    let lit_struct = expr.value.as_struct();
 
                    let (poly_var, struct_name) = get_poly_var_and_type_name(ctx, poly_var_idx, lit_struct.definition.unwrap());
 
                    return ParseError2::new_error(
 
                        &ctx.module.source, expr.position(),
 
                        &format!(
 
                            "Conflicting type for polymorphic variable '{}' of instantiation of '{}'",
 
                            poly_var, struct_name
 
                        )
 
                    )
 
                },
 
                Expression::Select(expr) => {
 
                    let field = expr.field.as_symbolic();
 
                    let (poly_var, struct_name) = get_poly_var_and_type_name(ctx, poly_var_idx, field.definition.unwrap());
 
                    return ParseError2::new_error(
 
                        &ctx.module.source, expr.position(),
 
                        &format!(
 
                            "Conflicting type for polymorphic variable '{}' while accessing field '{}' of '{}'",
 
                            poly_var, &String::from_utf8_lossy(&field.identifier.value), struct_name
 
                        )
 
                    )
 
                }
src/protocol/parser/type_table.rs
Show inline comments
 
/**
 
TypeTable
 

	
 
Contains the type table: a datastructure that, when compilation succeeds,
 
contains a concrete type definition for each AST type definition. In general
 
terms the type table will go through the following phases during the compilation
 
process:
 

	
 
1. The base type definitions are resolved after the parser phase has
 
    finished. This implies that the AST is fully constructed, but not yet
 
    annotated.
 
2. With the base type definitions resolved, the validation/linker phase will
 
    use the type table (together with the symbol table) to disambiguate
 
    terms (e.g. does an expression refer to a variable, an enum, a constant,
 
    etc.)
 
3. During the type checking/inference phase the type table is used to ensure
 
    that the AST contains valid use of types in expressions and statements.
 
    At the same time type inference will find concrete instantiations of
 
    polymorphic types, these will be stored in the type table as monomorphed
 
    instantiations of a generic type.
 
4. After type checking and inference (and possibly when constructing byte
 
    code) the type table will construct a type graph and solidify each
 
    non-polymorphic type and monomorphed instantiations of polymorphic types
 
    into concrete types.
 

	
 
So a base type is defined by its (optionally polymorphic) representation in the
 
AST. A concrete type has concrete types for each of the polymorphic arguments. A
 
struct, enum or union may have polymorphic arguments but not actually be a
 
polymorphic type. This happens when the polymorphic arguments are not used in
 
the type definition itself. Similarly for functions/components: but here we just
 
check the arguments/return type of the signature.
 

	
 
Apart from base types and concrete types, we also use the term "embedded type"
 
for types that are embedded within another type, such as a type of a struct
 
struct field or of a union variant. Embedded types may themselves have
 
polymorphic arguments and therefore form an embedded type tree.
 

	
 
NOTE: for now a polymorphic definition of a function/component is illegal if the
 
    polymorphic arguments are not used in the arguments/return type. It should
 
    be legal, but we disallow it for now.
 

	
 
TODO: Allow potentially cyclic datatypes and reject truly cyclic datatypes.
 
TODO: Allow for the full potential of polymorphism
 
TODO: Detect "true" polymorphism: for datatypes like structs/enum/unions this
 
    is simple. For functions we need to check the entire body. Do it here? Or
 
    do it somewhere else?
 
TODO: Do we want to check fn argument collision here, or in validation phase?
 
TODO: Make type table an on-demand thing instead of constructing all base types.
 
TODO: Cleanup everything, feels like a lot can be written cleaner and with less
 
    assumptions on each function call.
 
// TODO: Review all comments
 
*/
 

	
 
use std::fmt::{Formatter, Result as FmtResult};
 
use std::collections::{HashMap, VecDeque};
 

	
 
use crate::protocol::ast::*;
 
use crate::protocol::parser::symbol_table::{SymbolTable, Symbol};
 
use crate::protocol::inputsource::*;
 
use crate::protocol::parser::*;
 

	
 
//------------------------------------------------------------------------------
 
// Defined Types
 
//------------------------------------------------------------------------------
 

	
 
#[derive(Copy, Clone, PartialEq, Eq)]
 
pub enum TypeClass {
 
    Enum,
 
    Union,
 
    Struct,
 
    Function,
 
    Component
 
}
 

	
 
impl TypeClass {
 
    pub(crate) fn display_name(&self) -> &'static str {
 
        match self {
 
            TypeClass::Enum => "enum",
 
            TypeClass::Union => "enum",
 
            TypeClass::Struct => "struct",
 
            TypeClass::Function => "function",
 
            TypeClass::Component => "component",
 
        }
 
    }
 

	
 
    pub(crate) fn is_data_type(&self) -> bool {
 
        *self == TypeClass::Enum || *self == TypeClass::Union || *self == TypeClass::Struct
 
    }
 

	
 
    pub(crate) fn is_proc_type(&self) -> bool {
 
        *self == TypeClass::Function || *self == TypeClass::Component
 
    }
 
}
 

	
 
impl std::fmt::Display for TypeClass {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
 
        write!(f, "{}", self.display_name())
 
    }
 
}
 

	
 
/// Struct wrapping around a potentially polymorphic type. If the type does not
 
/// have any polymorphic arguments then it will not have any monomorphs and
 
/// `is_polymorph` will be set to `false`. A type with polymorphic arguments
 
/// only has `is_polymorph` set to `true` if the polymorphic arguments actually
 
/// appear in the types associated types (function return argument, struct
 
/// field, enum variant, etc.). Otherwise the polymorphic argument is just a
 
/// marker and does not influence the bytesize of the type.
 
pub struct DefinedType {
 
    pub(crate) ast_root: RootId,
 
    pub(crate) ast_definition: DefinitionId,
 
    pub(crate) definition: DefinedTypeVariant,
 
    pub(crate) poly_args: Vec<PolyArg>,
 
    pub(crate) poly_vars: Vec<PolyVar>,
 
    pub(crate) is_polymorph: bool,
 
    pub(crate) is_pointerlike: bool,
 
    // TODO: @optimize
 
    pub(crate) monomorphs: Vec<Vec<ConcreteType>>,
 
}
 

	
 
impl DefinedType {
 
    fn add_monomorph(&mut self, types: Vec<ConcreteType>) {
 
        debug_assert!(!self.has_monomorph(&types), "monomorph already exists");
 
        self.monomorphs.push(types);
 
    }
 

	
 
    pub(crate) fn has_any_monomorph(&self) -> bool {
 
        !self.monomorphs.is_empty()
 
    }
 

	
 
    pub(crate) fn has_monomorph(&self, types: &Vec<ConcreteType>) -> bool {
 
        debug_assert_eq!(self.poly_args.len(), types.len(), "mismatch in number of polymorphic types");
 
        debug_assert_eq!(self.poly_vars.len(), types.len(), "mismatch in number of polymorphic types");
 
        for monomorph in &self.monomorphs {
 
            if monomorph == types { return true; }
 
        }
 

	
 
        return false;
 
    }
 
}
 

	
 
pub enum DefinedTypeVariant {
 
    Enum(EnumType),
 
    Union(UnionType),
 
    Struct(StructType),
 
    Function(FunctionType),
 
    Component(ComponentType)
 
}
 

	
 
pub struct PolyArg {
 
pub struct PolyVar {
 
    identifier: Identifier,
 
    /// Whether the polymorphic argument is used directly in the definition of
 
    /// Whether the polymorphic variables is used directly in the definition of
 
    /// the type (not including bodies of function/component types)
 
    is_in_use: bool,
 
}
 

	
 
impl DefinedTypeVariant {
 
    pub(crate) fn type_class(&self) -> TypeClass {
 
        match self {
 
            DefinedTypeVariant::Enum(_) => TypeClass::Enum,
 
            DefinedTypeVariant::Union(_) => TypeClass::Union,
 
            DefinedTypeVariant::Struct(_) => TypeClass::Struct,
 
            DefinedTypeVariant::Function(_) => TypeClass::Function,
 
            DefinedTypeVariant::Component(_) => TypeClass::Component
 
        }
 
    }
 

	
 
    pub(crate) fn as_struct(&self) -> &StructType {
 
        match self {
 
            DefinedTypeVariant::Struct(v) => v,
 
            _ => unreachable!("Cannot convert {} to struct variant", self.type_class())
 
        }
 
    }
 
}
 

	
 
/// `EnumType` is the classical C/C++ enum type. It has various variants with
 
/// an assigned integer value. The integer values may be user-defined,
 
/// compiler-defined, or a mix of the two. If a user assigns the same enum
 
/// value multiple times, we assume the user is an expert and we consider both
 
/// variants to be equal to one another.
 
pub struct EnumType {
 
    variants: Vec<EnumVariant>,
 
    representation: PrimitiveType,
 
}
 

	
 
// TODO: Also support maximum u64 value
 
pub struct EnumVariant {
 
    identifier: Identifier,
 
    value: i64,
 
}
 

	
 
/// `UnionType` is the algebraic datatype (or sum type, or discriminated union).
 
/// A value is an element of the union, identified by its tag, and may contain
 
/// a single subtype.
 
pub struct UnionType {
 
    variants: Vec<UnionVariant>,
 
    tag_representation: PrimitiveType
 
}
 

	
 
pub struct UnionVariant {
 
    identifier: Identifier,
 
    parser_type: Option<ParserTypeId>,
 
    tag_value: i64,
 
}
 

	
 
pub struct StructType {
 
    pub(crate) fields: Vec<StructField>,
 
}
 

	
 
pub struct StructField {
 
    pub(crate) identifier: Identifier,
 
    pub(crate) parser_type: ParserTypeId,
 
}
 

	
 
pub struct FunctionType {
 
    pub return_type: ParserTypeId,
 
    pub arguments: Vec<FunctionArgument>
 
}
 

	
 
pub struct ComponentType {
 
    pub variant: ComponentVariant,
 
    pub arguments: Vec<FunctionArgument>
 
}
 

	
 
pub struct FunctionArgument {
 
    identifier: Identifier,
 
    parser_type: ParserTypeId,
 
}
 

	
 
//------------------------------------------------------------------------------
 
// Type table
 
//------------------------------------------------------------------------------
 

	
 
// TODO: @cleanup Do I really need this, doesn't make the code that much cleaner
 
struct TypeIterator {
 
    breadcrumbs: Vec<(RootId, DefinitionId)>
 
}
 

	
 
impl TypeIterator {
 
    fn new() -> Self {
 
        Self{ breadcrumbs: Vec::with_capacity(32) }
 
    }
 

	
 
    fn reset(&mut self, root_id: RootId, definition_id: DefinitionId) {
 
        self.breadcrumbs.clear();
 
        self.breadcrumbs.push((root_id, definition_id))
 
    }
 

	
 
    fn push(&mut self, root_id: RootId, definition_id: DefinitionId) {
 
        self.breadcrumbs.push((root_id, definition_id));
 
    }
 

	
 
    fn contains(&self, root_id: RootId, definition_id: DefinitionId) -> bool {
 
        for (stored_root_id, stored_definition_id) in self.breadcrumbs.iter() {
 
            if *stored_root_id == root_id && *stored_definition_id == definition_id { return true; }
 
        }
 

	
 
        return false
 
    }
 

	
 
    fn top(&self) -> Option<(RootId, DefinitionId)> {
 
        self.breadcrumbs.last().map(|(r, d)| (*r, *d))
 
    }
 

	
 
    fn pop(&mut self) {
 
        debug_assert!(!self.breadcrumbs.is_empty());
 
        self.breadcrumbs.pop();
 
    }
 
}
 

	
 
/// Result from attempting to resolve a `ParserType` using the symbol table and
 
/// the type table.
 
enum ResolveResult {
 
    /// ParserType is a builtin type
 
    BuiltIn,
 
    /// ParserType points to a polymorphic argument, contains the index of the
 
    /// polymorphic argument in the outermost definition (e.g. we may have 
 
    /// structs nested three levels deep, but in the innermost struct we can 
 
    /// only use the polyargs that are specified in the type definition of the
 
    /// outermost struct).
 
    PolyArg(usize),
 
    /// ParserType points to a user-defined type that is already resolved in the
 
    /// type table.
 
    Resolved((RootId, DefinitionId)),
 
    /// ParserType points to a user-defined type that is not yet resolved into
 
    /// the type table.
 
    Unresolved((RootId, DefinitionId))
 
}
 

	
 
pub(crate) struct TypeTable {
 
    /// Lookup from AST DefinitionId to a defined type. Considering possible
 
    /// polymorphs is done inside the `DefinedType` struct.
 
    lookup: HashMap<DefinitionId, DefinedType>,
 
    /// Iterator over `(module, definition)` tuples used as workspace to make sure
 
    /// that each base definition of all a type's subtypes are resolved.
 
    iter: TypeIterator,
 
    /// Iterator over `parser type`s during the process where `parser types` are
 
    /// resolved into a `(module, definition)` tuple.
 
    parser_type_iter: VecDeque<ParserTypeId>,
 
}
 

	
 
pub(crate) struct TypeCtx<'a> {
 
    symbols: &'a SymbolTable,
 
    heap: &'a mut Heap,
 
    modules: &'a [LexedModule]
 
}
 

	
 
impl<'a> TypeCtx<'a> {
 
    pub(crate) fn new(symbols: &'a SymbolTable, heap: &'a mut Heap, modules: &'a [LexedModule]) -> Self {
 
        Self{ symbols, heap, modules }
 
    }
 
}
 

	
 
impl TypeTable {
 
    /// Construct a new type table without any resolved types.
 
    pub(crate) fn new() -> Self {
 
        Self{ 
 
            lookup: HashMap::new(), 
 
            iter: TypeIterator::new(), 
 
            parser_type_iter: VecDeque::with_capacity(64), 
 
        }
 
    }
 

	
 
    pub(crate) fn build_base_types(&mut self, ctx: &mut TypeCtx) -> Result<(), ParseError2> {
 
        // Make sure we're allowed to cast root_id to index into ctx.modules
 
        debug_assert!(self.lookup.is_empty());
 
        debug_assert!(self.iter.top().is_none());
 
        debug_assert!(self.parser_type_iter.is_empty());
 

	
 
        if cfg!(debug_assertions) {
 
            for (index, module) in ctx.modules.iter().enumerate() {
 
                debug_assert_eq!(index, module.root_id.index as usize);
 
            }
 
        }
 

	
 
        // Use context to guess hashmap size
 
        let reserve_size = ctx.heap.definitions.len();
 
        self.lookup.reserve(reserve_size);
 

	
 
        // TODO: @cleanup Rework this hack
 
        for root_idx in 0..ctx.modules.len() {
 
            let last_definition_idx = ctx.heap[ctx.modules[root_idx].root_id].definitions.len();
 
            for definition_idx in 0..last_definition_idx {
 
                let definition_id = ctx.heap[ctx.modules[root_idx].root_id].definitions[definition_idx];
 
                self.resolve_base_definition(ctx, definition_id)?;
 
            }
 
        }
 

	
 
        debug_assert_eq!(self.lookup.len(), reserve_size, "mismatch in reserved size of type table");
 

	
 
        Ok(())
 
    }
 

	
 
    /// Retrieves base definition from type table. We must be able to retrieve
 
    /// it as we resolve all base types upon type table construction (for now).
 
    /// However, in the future we might do on-demand type resolving, so return
 
    /// an option anyway
 
    pub(crate) fn get_base_definition(&self, definition_id: &DefinitionId) -> Option<&DefinedType> {
 
        self.lookup.get(&definition_id)
 
    }
 

	
 
    /// Instantiates a monomorph for a given base definition.
 
    pub(crate) fn add_monomorph(&mut self, definition_id: &DefinitionId, types: Vec<ConcreteType>) {
 
        debug_assert!(
 
            self.lookup.contains_key(definition_id),
 
            "attempting to instantiate monomorph of definition unknown to type table"
 
        );
 

	
 
        let definition = self.lookup.get_mut(definition_id).unwrap();
 
        definition.add_monomorph(types);
 
    }
 

	
 
    /// Checks if a given definition already has a specific monomorph
 
    pub(crate) fn has_monomorph(&mut self, definition_id: &DefinitionId, types: &Vec<ConcreteType>) -> bool {
 
        debug_assert!(
 
            self.lookup.contains_key(definition_id),
 
            "attempting to check monomorph existence of definition unknown to type table"
 
        );
 

	
 
        let definition = self.lookup.get(definition_id).unwrap();
 
        definition.has_monomorph(types)
 
    }
 

	
 
    /// This function will resolve just the basic definition of the type, it
 
    /// will not handle any of the monomorphized instances of the type.
 
    fn resolve_base_definition<'a>(&'a mut self, ctx: &mut TypeCtx, definition_id: DefinitionId) -> Result<(), ParseError2> {
 
        // Check if we have already resolved the base definition
 
        if self.lookup.contains_key(&definition_id) { return Ok(()); }
 

	
 
        let root_id = Self::find_root_id(ctx, definition_id);
 
        self.iter.reset(root_id, definition_id);
 

	
 
        while let Some((root_id, definition_id)) = self.iter.top() {
 
            // We have a type to resolve
 
            let definition = &ctx.heap[definition_id];
 

	
 
            let can_pop_breadcrumb = match definition {
 
                // TODO: @cleanup Borrow rules hax
 
                Definition::Enum(_) => self.resolve_base_enum_definition(ctx, root_id, definition_id),
 
                Definition::Struct(_) => self.resolve_base_struct_definition(ctx, root_id, definition_id),
 
                Definition::Component(_) => self.resolve_base_component_definition(ctx, root_id, definition_id),
 
                Definition::Function(_) => self.resolve_base_function_definition(ctx, root_id, definition_id),
 
            }?;
 

	
 
            // Otherwise: `ingest_resolve_result` has pushed a new breadcrumb
 
            // that we must follow before we can resolve the current type
 
            if can_pop_breadcrumb {
 
                self.iter.pop();
 
            }
 
        }
 

	
 
        // We must have resolved the type
 
        debug_assert!(self.lookup.contains_key(&definition_id), "base type not resolved");
 
        Ok(())
 
    }
 

	
 
    /// Resolve the basic enum definition to an entry in the type table. It will
 
    /// not instantiate any monomorphized instances of polymorphic enum
 
    /// definitions. If a subtype has to be resolved first then this function
 
    /// will return `false` after calling `ingest_resolve_result`.
 
    fn resolve_base_enum_definition(&mut self, ctx: &mut TypeCtx, root_id: RootId, definition_id: DefinitionId) -> Result<bool, ParseError2> {
 
        debug_assert!(ctx.heap[definition_id].is_enum());
 
        debug_assert!(!self.lookup.contains_key(&definition_id), "base enum already resolved");
 
        
 
        let definition = ctx.heap[definition_id].as_enum();
 

	
 
        // Check if the enum should be implemented as a classic enumeration or
 
        // a tagged union. Keep track of variant index for error messages. Make
 
        // sure all embedded types are resolved.
 
        let mut first_tag_value = None;
 
        let mut first_int_value = None;
 
        for variant in &definition.variants {
 
            match &variant.value {
 
                EnumVariantValue::None => {},
 
                EnumVariantValue::Integer(_) => if first_int_value.is_none() {
 
                    first_int_value = Some(variant.position);
 
                },
 
                EnumVariantValue::Type(variant_type_id) => {
 
                    if first_tag_value.is_none() {
 
                        first_tag_value = Some(variant.position);
 
                    }
 

	
 
                    // Check if the embedded type needs to be resolved
 
                    let resolve_result = self.resolve_base_parser_type(ctx, &definition.poly_vars, root_id, *variant_type_id)?;
 
                    if !self.ingest_resolve_result(ctx, resolve_result)? {
 
                        return Ok(false)
 
                    }
 
                }
 
            }
 
        }
 

	
 
        if first_tag_value.is_some() && first_int_value.is_some() {
 
            // Not illegal, but useless and probably a programmer mistake
 
            let module_source = &ctx.modules[root_id.index as usize].source;
 
            let tag_pos = first_tag_value.unwrap();
 
            let int_pos = first_int_value.unwrap();
 
            return Err(
 
                ParseError2::new_error(
 
                    module_source, definition.position,
 
                    "Illegal combination of enum integer variant(s) and enum union variant(s)"
 
                )
 
                    .with_postfixed_info(module_source, int_pos, "Assigning an integer value here")
 
                    .with_postfixed_info(module_source, tag_pos, "Embedding a type in a union variant here")
 
            );
 
        }
 

	
 
        // Enumeration is legal
 
        if first_tag_value.is_some() {
 
            // Implement as a tagged union
 

	
 
            // Determine the union variants
 
            let mut tag_value = -1;
 
            let mut variants = Vec::with_capacity(definition.variants.len());
 
            for variant in &definition.variants {
 
                tag_value += 1;
 
                let parser_type = match &variant.value {
 
                    EnumVariantValue::None => {
 
                        None
 
                    },
 
                    EnumVariantValue::Type(parser_type_id) => {
 
                        // Type should be resolvable, we checked this above
 
                        Some(*parser_type_id)
 
                    },
 
                    EnumVariantValue::Integer(_) => {
 
                        debug_assert!(false, "Encountered `Integer` variant after asserting enum is a discriminated union");
 
                        unreachable!();
 
                    }
 
                };
 

	
 
                variants.push(UnionVariant{
 
                    identifier: variant.identifier.clone(),
 
                    parser_type,
 
                    tag_value,
 
                })
 
            }
 

	
 
            // Ensure union names and polymorphic args do not conflict
 
            self.check_identifier_collision(
 
                ctx, root_id, &variants, |variant| &variant.identifier, "enum variant"
 
            )?;
 
            self.check_poly_args_collision(ctx, root_id, &definition.poly_vars)?;
 

	
 
            let mut poly_args = self.create_initial_poly_args(&definition.poly_vars);
 
            let mut poly_args = self.create_initial_poly_vars(&definition.poly_vars);
 
            for variant in &variants {
 
                if let Some(embedded) = variant.parser_type {
 
                    self.check_and_resolve_embedded_type_and_modify_poly_args(ctx, definition_id, &mut poly_args, root_id, embedded)?;
 
                }
 
            }
 
            let is_polymorph = poly_args.iter().any(|arg| arg.is_in_use);
 

	
 
            // Insert base definition in type table
 
            self.lookup.insert(definition_id, DefinedType {
 
                ast_root: root_id,
 
                ast_definition: definition_id,
 
                definition: DefinedTypeVariant::Union(UnionType{
 
                    variants,
 
                    tag_representation: Self::enum_tag_type(-1, tag_value),
 
                }),
 
                poly_args,
 
                poly_vars: poly_args,
 
                is_polymorph,
 
                is_pointerlike: false, // TODO: @cyclic_types
 
                monomorphs: Vec::new()
 
            });
 
        } else {
 
            // Implement as a regular enum
 
            let mut enum_value = -1;
 
            let mut min_enum_value = 0;
 
            let mut max_enum_value = 0;
 
            let mut variants = Vec::with_capacity(definition.variants.len());
 
            for variant in &definition.variants {
 
                enum_value += 1;
 
                match &variant.value {
 
                    EnumVariantValue::None => {
 
                        variants.push(EnumVariant{
 
                            identifier: variant.identifier.clone(),
 
                            value: enum_value,
 
                        });
 
                    },
 
                    EnumVariantValue::Integer(override_value) => {
 
                        enum_value = *override_value;
 
                        variants.push(EnumVariant{
 
                            identifier: variant.identifier.clone(),
 
                            value: enum_value,
 
                        });
 
                    },
 
                    EnumVariantValue::Type(_) => {
 
                        debug_assert!(false, "Encountered `Type` variant after asserting enum is not a discriminated union");
 
                        unreachable!();
 
                    }
 
                }
 
                if enum_value < min_enum_value { min_enum_value = enum_value; }
 
                else if enum_value > max_enum_value { max_enum_value = enum_value; }
 
            }
 

	
 
            // Ensure enum names and polymorphic args do not conflict
 
            self.check_identifier_collision(
 
                ctx, root_id, &variants, |variant| &variant.identifier, "enum variant"
 
            )?;
 
            self.check_poly_args_collision(ctx, root_id, &definition.poly_vars)?;
 

	
 
            // Note: although we cannot have embedded type dependent on the
 
            // polymorphic variables, they might still be present as tokens
 
            let definition_id = definition.this.upcast();
 
            self.lookup.insert(definition_id, DefinedType {
 
                ast_root: root_id,
 
                ast_definition: definition_id,
 
                definition: DefinedTypeVariant::Enum(EnumType{
 
                    variants,
 
                    representation: Self::enum_tag_type(min_enum_value, max_enum_value)
 
                }),
 
                poly_args: self.create_initial_poly_args(&definition.poly_vars),
 
                poly_vars: self.create_initial_poly_vars(&definition.poly_vars),
 
                is_polymorph: false,
 
                is_pointerlike: false,
 
                monomorphs: Vec::new()
 
            });
 
        }
 

	
 
        Ok(true)
 
    }
 

	
 
    /// Resolves the basic struct definition to an entry in the type table. It
 
    /// will not instantiate any monomorphized instances of polymorphic struct
 
    /// definitions.
 
    fn resolve_base_struct_definition(&mut self, ctx: &mut TypeCtx, root_id: RootId, definition_id: DefinitionId) -> Result<bool, ParseError2> {
 
        debug_assert!(ctx.heap[definition_id].is_struct());
 
        debug_assert!(!self.lookup.contains_key(&definition_id), "base struct already resolved");
 

	
 
        let definition = ctx.heap[definition_id].as_struct();
 

	
 
        // Make sure all fields point to resolvable types
 
        for field_definition in &definition.fields {
 
            let resolve_result = self.resolve_base_parser_type(ctx, &definition.poly_vars, root_id, field_definition.parser_type)?;
 
            if !self.ingest_resolve_result(ctx, resolve_result)? {
 
                return Ok(false)
 
            }
 
        }
 

	
 
        // All fields types are resolved, construct base type
 
        let mut fields = Vec::with_capacity(definition.fields.len());
 
        for field_definition in &definition.fields {
 
            fields.push(StructField{
 
                identifier: field_definition.field.clone(),
 
                parser_type: field_definition.parser_type,
 
            })
 
        }
 

	
 
        // And make sure no conflicts exist in field names and/or polymorphic args
 
        self.check_identifier_collision(
 
            ctx, root_id, &fields, |field| &field.identifier, "struct field"
 
        )?;
 
        self.check_poly_args_collision(ctx, root_id, &definition.poly_vars)?;
 

	
 
        // Construct representation of polymorphic arguments
 
        let mut poly_args = self.create_initial_poly_args(&definition.poly_vars);
 
        let mut poly_args = self.create_initial_poly_vars(&definition.poly_vars);
 
        for field in &fields {
 
            self.check_and_resolve_embedded_type_and_modify_poly_args(ctx, definition_id, &mut poly_args, root_id, field.parser_type)?;
 
        }
 

	
 
        let is_polymorph = poly_args.iter().any(|arg| arg.is_in_use);
 

	
 
        self.lookup.insert(definition_id, DefinedType{
 
            ast_root: root_id,
 
            ast_definition: definition_id,
 
            definition: DefinedTypeVariant::Struct(StructType{
 
                fields,
 
            }),
 
            poly_args,
 
            poly_vars: poly_args,
 
            is_polymorph,
 
            is_pointerlike: false, // TODO: @cyclic
 
            monomorphs: Vec::new(),
 
        });
 

	
 
        Ok(true)
 
    }
 

	
 
    /// Resolves the basic function definition to an entry in the type table. It
 
    /// will not instantiate any monomorphized instances of polymorphic function
 
    /// definitions.
 
    fn resolve_base_function_definition(&mut self, ctx: &mut TypeCtx, root_id: RootId, definition_id: DefinitionId) -> Result<bool, ParseError2> {
 
        debug_assert!(ctx.heap[definition_id].is_function());
 
        debug_assert!(!self.lookup.contains_key(&definition_id), "base function already resolved");
 

	
 
        let definition = ctx.heap[definition_id].as_function();
 
        let return_type = definition.return_type;
 

	
 
        // Check the return type
 
        let resolve_result = self.resolve_base_parser_type(
 
            ctx, &definition.poly_vars, root_id, definition.return_type
 
        )?;
 
        if !self.ingest_resolve_result(ctx, resolve_result)? {
 
            return Ok(false)
 
        }
 

	
 
        // Check the argument types
 
        for param_id in &definition.parameters {
 
            let param = &ctx.heap[*param_id];
 
            let resolve_result = self.resolve_base_parser_type(
 
                ctx, &definition.poly_vars, root_id, param.parser_type
 
            )?;
 
            if !self.ingest_resolve_result(ctx, resolve_result)? {
 
                return Ok(false)
 
            }
 
        }
 

	
 
        // Construct arguments to function
 
        let mut arguments = Vec::with_capacity(definition.parameters.len());
 
        for param_id in &definition.parameters {
 
            let param = &ctx.heap[*param_id];
 
            arguments.push(FunctionArgument{
 
                identifier: param.identifier.clone(),
 
                parser_type: param.parser_type,
 
            })
 
        }
 

	
 
        // Check conflict of argument and polyarg identifiers
 
        self.check_identifier_collision(
 
            ctx, root_id, &arguments, |arg| &arg.identifier, "function argument"
 
        )?;
 
        self.check_poly_args_collision(ctx, root_id, &definition.poly_vars)?;
 

	
 
        // Construct polymorphic arguments
 
        let mut poly_args = self.create_initial_poly_args(&definition.poly_vars);
 
        let mut poly_args = self.create_initial_poly_vars(&definition.poly_vars);
 
        let return_type_id = definition.return_type;
 
        self.check_and_resolve_embedded_type_and_modify_poly_args(ctx, definition_id, &mut poly_args, root_id, return_type_id)?;
 
        for argument in &arguments {
 
            self.check_and_resolve_embedded_type_and_modify_poly_args(ctx, definition_id, &mut poly_args, root_id, argument.parser_type)?;
 
        }
 

	
 
        let is_polymorph = poly_args.iter().any(|arg| arg.is_in_use);
 

	
 
        // Construct entry in type table
 
        self.lookup.insert(definition_id, DefinedType{
 
            ast_root: root_id,
 
            ast_definition: definition_id,
 
            definition: DefinedTypeVariant::Function(FunctionType{
 
                return_type,
 
                arguments,
 
            }),
 
            poly_args,
 
            poly_vars: poly_args,
 
            is_polymorph,
 
            is_pointerlike: false, // TODO: @cyclic
 
            monomorphs: Vec::new(),
 
        });
 

	
 
        Ok(true)
 
    }
 

	
 
    /// Resolves the basic component definition to an entry in the type table.
 
    /// It will not instantiate any monomorphized instancees of polymorphic
 
    /// component definitions.
 
    fn resolve_base_component_definition(&mut self, ctx: &mut TypeCtx, root_id: RootId, definition_id: DefinitionId) -> Result<bool, ParseError2> {
 
        debug_assert!(ctx.heap[definition_id].is_component());
 
        debug_assert!(!self.lookup.contains_key(&definition_id), "base component already resolved");
 

	
 
        let definition = ctx.heap[definition_id].as_component();
 
        let component_variant = definition.variant;
 

	
 
        // Check argument types
 
        for param_id in &definition.parameters {
 
            let param = &ctx.heap[*param_id];
 
            let resolve_result = self.resolve_base_parser_type(
 
                ctx, &definition.poly_vars, root_id, param.parser_type
 
            )?;
 
            if !self.ingest_resolve_result(ctx, resolve_result)? {
 
                return Ok(false)
 
            }
 
        }
 

	
 
        // Construct argument types
 
        let mut arguments = Vec::with_capacity(definition.parameters.len());
 
        for param_id in &definition.parameters {
 
            let param = &ctx.heap[*param_id];
 
            arguments.push(FunctionArgument{
 
                identifier: param.identifier.clone(),
 
                parser_type: param.parser_type
 
            })
 
        }
 

	
 
        // Check conflict of argument and polyarg identifiers
 
        self.check_identifier_collision(
 
            ctx, root_id, &arguments, |arg| &arg.identifier, "component argument"
 
        )?;
 
        self.check_poly_args_collision(ctx, root_id, &definition.poly_vars)?;
 

	
 
        // Construct polymorphic arguments
 
        let mut poly_args = self.create_initial_poly_args(&definition.poly_vars);
 
        let mut poly_args = self.create_initial_poly_vars(&definition.poly_vars);
 
        for argument in &arguments {
 
            self.check_and_resolve_embedded_type_and_modify_poly_args(ctx, definition_id, &mut poly_args, root_id, argument.parser_type)?;
 
        }
 

	
 
        let is_polymorph = poly_args.iter().any(|v| v.is_in_use);
 

	
 
        // Construct entry in type table
 
        self.lookup.insert(definition_id, DefinedType{
 
            ast_root: root_id,
 
            ast_definition: definition_id,
 
            definition: DefinedTypeVariant::Component(ComponentType{
 
                variant: component_variant,
 
                arguments,
 
            }),
 
            poly_args,
 
            poly_vars: poly_args,
 
            is_polymorph,
 
            is_pointerlike: false, // TODO: @cyclic
 
            monomorphs: Vec::new(),
 
        });
 

	
 
        Ok(true)
 
    }
 

	
 
    /// Takes a ResolveResult and returns `true` if the caller can happily
 
    /// continue resolving its current type, or `false` if the caller must break
 
    /// resolving the current type and exit to the outer resolving loop. In the
 
    /// latter case the `result` value was `ResolveResult::Unresolved`, implying
 
    /// that the type must be resolved first.
 
    fn ingest_resolve_result(&mut self, ctx: &TypeCtx, result: ResolveResult) -> Result<bool, ParseError2> {
 
        match result {
 
            ResolveResult::BuiltIn | ResolveResult::PolyArg(_) => Ok(true),
 
            ResolveResult::Resolved(_) => Ok(true),
 
            ResolveResult::Unresolved((root_id, definition_id)) => {
 
                if self.iter.contains(root_id, definition_id) {
 
                    // Cyclic dependency encountered
 
                    // TODO: Allow this
 
                    let mut error = ParseError2::new_error(
 
                        &ctx.modules[root_id.index as usize].source, ctx.heap[definition_id].position(),
 
                        "Evaluating this type definition results in a cyclic type"
 
                    );
 

	
 
                    for (breadcrumb_idx, (root_id, definition_id)) in self.iter.breadcrumbs.iter().enumerate() {
 
                        let msg = if breadcrumb_idx == 0 {
 
                            "The cycle started with this definition"
 
                        } else {
 
                            "Which depends on this definition"
 
                        };
 

	
 
                        error = error.with_postfixed_info(
 
                            &ctx.modules[root_id.index as usize].source,
 
                            ctx.heap[*definition_id].position(), msg
 
                        );
 
                    }
 

	
 
                    Err(error)
 
                } else {
 
                    // Type is not yet resolved, so push IDs on iterator and
 
                    // continue the resolving loop
 
                    self.iter.push(root_id, definition_id);
 
                    Ok(false)
 
                }
 
            }
 
        }
 
    }
 

	
 
    /// Each type definition may consist of several embedded subtypes. This
 
    /// function checks whether that embedded type is a builtin, a direct
 
    /// reference to a polymorphic argument, or an (un)resolved type definition.
 
    /// If the embedded type's symbol cannot be found then this function returns
 
    /// an error.
 
    ///
 
    /// If the embedded type is resolved, then one always receives the type's
 
    /// (module, definition) tuple. If any of the types in the embedded type's
 
    /// tree is not yet resolved, then one may receive a (module, definition)
 
    /// tuple that does not correspond to the `parser_type_id` passed into this
 
    /// function.
 
    fn resolve_base_parser_type(&mut self, ctx: &TypeCtx, poly_vars: &Vec<Identifier>, root_id: RootId, parser_type_id: ParserTypeId) -> Result<ResolveResult, ParseError2> {
 
        use ParserTypeVariant as PTV;
 

	
 
        // Prepping iterator
 
        self.parser_type_iter.clear();
 
        self.parser_type_iter.push_back(parser_type_id);
 

	
 
        // Result for the very first time we resolve a
 
        let mut resolve_result = None;
 
        let mut set_resolve_result = |v: ResolveResult| {
 
            if resolve_result.is_none() { resolve_result = Some(v); }
 
        };
 

	
 
        'resolve_loop: while let Some(parser_type_id) = self.parser_type_iter.pop_back() {
 
            let parser_type = &ctx.heap[parser_type_id];
 

	
 
            match &parser_type.variant {
 
                // Builtin types. An array is a builtin as it is implemented as a
 
                // couple of pointers, so we do not require the subtype to be fully
 
                // resolved. Similar for input/output ports.
 
                PTV::Array(_) | PTV::Input(_) | PTV::Output(_) | PTV::Message |
 
                PTV::Bool | PTV::Byte | PTV::Short | PTV::Int | PTV::Long |
 
                PTV::String => {
 
                    set_resolve_result(ResolveResult::BuiltIn);
 
                },
 
                // IntegerLiteral types and the inferred marker are not allowed in
 
                // definitions of types
 
                PTV::IntegerLiteral |
 
                PTV::Inferred => {
 
                    debug_assert!(false, "Encountered illegal ParserTypeVariant within type definition");
 
                    unreachable!();
 
                },
 
                // Symbolic type, make sure its base type, and the base types
 
                // of all members of the embedded type tree are resolved. We
 
                // don't care about monomorphs yet.
 
                PTV::Symbolic(symbolic) => {
 
                    // Check if the symbolic type is one of the definition's
 
                    // polymorphic arguments. If so then we can halt the
 
                    // execution
 
                    for (poly_arg_idx, poly_arg) in poly_vars.iter().enumerate() {
 
                        if symbolic.identifier == *poly_arg {
 
                        if symbolic.identifier.matches_identifier(poly_arg) {
 
                            set_resolve_result(ResolveResult::PolyArg(poly_arg_idx));
 
                            continue 'resolve_loop;
 
                        }
 
                    }
 

	
 
                    // Lookup the definition in the symbol table
 
                    let (symbol, mut ident_iter) = ctx.symbols.resolve_namespaced_symbol(root_id, &symbolic.identifier);
 
                    let (symbol, mut ident_iter) = ctx.symbols.resolve_namespaced_identifier(root_id, &symbolic.identifier);
 
                    if symbol.is_none() {
 
                        return Err(ParseError2::new_error(
 
                            &ctx.modules[root_id.index as usize].source, symbolic.identifier.position,
 
                            "Could not resolve type"
 
                        ))
 
                    }
 

	
 
                    let symbol_value = symbol.unwrap();
 
                    let module_source = &ctx.modules[root_id.index as usize].source;
 

	
 
                    match symbol_value.symbol {
 
                        Symbol::Namespace(_) => {
 
                            // Reference to a namespace instead of a type
 
                            let last_ident = ident_iter.prev();
 
                            return if ident_iter.num_remaining() == 0 {
 
                                // Could also have polymorphic args, but we 
 
                                // don't care, just throw this error: 
 
                                Err(ParseError2::new_error(
 
                                    module_source, symbolic.identifier.position,
 
                                    "Expected a type, got a module name"
 
                                ))
 
                            } else if last_ident.is_some() && last_ident.map(|(_, poly_args)| poly_args.is_some()).unwrap() {
 
                                // Halted at a namespaced because we encountered
 
                                // polymorphic arguments
 
                                Err(ParseError2::new_error(
 
                                    module_source, symbolic.identifier.position,
 
                                    "Illegal specification of polymorphic arguments to a module name"
 
                                ))
 
                            } else {
 
                                // Impossible (with the current implementation 
 
                                // of the symbol table)
 
                                unreachable!(
 
                                    "Got namespace symbol with {} returned symbols from {}",
 
                                    ident_iter.num_returned(),
 
                                    &String::from_utf8_lossy(&symbolic.identifier.value)
 
                                );
 
                            }
 
                        },
 
                        Symbol::Definition((root_id, definition_id)) => {
 
                            let definition = &ctx.heap[definition_id];
 
                            if ident_iter.num_remaining() > 0 {
 
                                // Namespaced identifier is longer than the type
 
                                // we found. Return the appropriate message
 
                                return if definition.is_struct() || definition.is_enum() {
 
                                    Err(ParseError2::new_error(
 
                                        module_source, symbolic.identifier.position,
 
                                        &format!(
 
                                            "Unknown type '{}', did you mean to use '{}'?",
 
                                            String::from_utf8_lossy(&symbolic.identifier.value),
 
                                            String::from_utf8_lossy(&definition.identifier().value)
 
                                        )
 
                                    ))
 
                                } else {
 
                                    Err(ParseError2::new_error(
 
                                        module_source, symbolic.identifier.position,
 
                                        "Unknown datatype"
 
                                    ))
 
                                }
 
                            }
 

	
 
                            // Found a match, make sure it is a datatype
 
                            if !(definition.is_struct() || definition.is_enum()) {
 
                                return Err(ParseError2::new_error(
 
                                    module_source, symbolic.identifier.position,
 
                                    "Embedded types must be datatypes (structs or enums)"
 
                                ))
 
                            }
 

	
 
                            // Found a struct/enum definition
 
                            if !self.lookup.contains_key(&definition_id) {
 
                                // Type is not yet resoled, immediately return
 
                                // this
 
                                return Ok(ResolveResult::Unresolved((root_id, definition_id)));
 
                            }
 

	
 
                            // Type is resolved, so set as result, but continue
 
                            // iterating over the parser types in the embedded
 
                            // type's tree
 
                            set_resolve_result(ResolveResult::Resolved((root_id, definition_id)));
 

	
 
                            // Note: because we're resolving parser types, not
 
                            // embedded types, we're parsing a tree, so we can't
 
                            // get stuck in a cyclic loop.
 
                            let last_ident = ident_iter.prev();
 
                            if let Some((_, Some(poly_args))) = last_ident {
 
                                for poly_arg_type_id in poly_args {
 
                                    self.parser_type_iter.push_back(*poly_arg_type_id);
 
                                }
 
                            }
 
                        }
 
                    }
 
                }
 
            }
 
        }
 

	
 
        // If here then all types in the embedded type's tree were resolved.
 
        debug_assert!(resolve_result.is_some(), "faulty logic in ParserType resolver");
 
        return Ok(resolve_result.unwrap())
 
    }
 

	
 
    fn create_initial_poly_args(&self, poly_args: &[Identifier]) -> Vec<PolyArg> {
 
    fn create_initial_poly_vars(&self, poly_args: &[Identifier]) -> Vec<PolyVar> {
 
        poly_args
 
            .iter()
 
            .map(|v| PolyArg{ identifier: v.clone(), is_in_use: false })
 
            .map(|v| PolyVar{ identifier: v.clone(), is_in_use: false })
 
            .collect()
 
    }
 

	
 
    /// This function modifies the passed `poly_args` by checking the embedded
 
    /// type tree. This should be called after `resolve_base_parser_type` is
 
    /// called on each node in this tree: we assume that each symbolic type was
 
    /// resolved to either a polymorphic arg or a definition.
 
    ///
 
    /// This function will also make sure that if the embedded type has
 
    /// polymorphic variables itself, that the number of polymorphic variables
 
    /// matches the number of arguments in the associated definition.
 
    ///
 
    /// Finally, for all embedded types (which includes function/component 
 
    /// arguments and return types) in type definitions we will modify the AST
 
    /// when the embedded type is a polymorphic variable or points to another
 
    /// user-defined type.
 
    fn check_and_resolve_embedded_type_and_modify_poly_args(
 
        &mut self, ctx: &mut TypeCtx, 
 
        type_definition_id: DefinitionId, poly_args: &mut [PolyArg], 
 
        type_definition_id: DefinitionId, poly_args: &mut [PolyVar], 
 
        root_id: RootId, embedded_type_id: ParserTypeId,
 
    ) -> Result<(), ParseError2> {
 
        use ParserTypeVariant as PTV;
 

	
 
        self.parser_type_iter.clear();
 
        self.parser_type_iter.push_back(embedded_type_id);
 

	
 
        'type_loop: while let Some(embedded_type_id) = self.parser_type_iter.pop_back() {
 
            let embedded_type = &mut ctx.heap[embedded_type_id];
 

	
 
            match &mut embedded_type.variant {
 
                PTV::Message | PTV::Bool | 
 
                PTV::Byte | PTV::Short | PTV::Int | PTV::Long |
 
                PTV::String => {
 
                    // Builtins, no modification/iteration required
 
                },
 
                PTV::IntegerLiteral | PTV::Inferred => {
 
                    // TODO: @hack Allowed for now so we can continue testing 
 
                    //  the parser/lexer
 
                    // debug_assert!(false, "encountered illegal parser type during ParserType/PolyArg modification");
 
                    // unreachable!();
 
                },
 
                PTV::Array(subtype_id) |
 
                PTV::Input(subtype_id) |
 
                PTV::Output(subtype_id) => {
 
                    // Outer type is fixed, but inner type might be symbolix
 
                    // Outer type is fixed, but inner type might be symbolic
 
                    self.parser_type_iter.push_back(*subtype_id);
 
                },
 
                PTV::Symbolic(symbolic) => {
 
                    for (poly_arg_idx, poly_arg) in poly_args.iter_mut().enumerate() {
 
                        if symbolic.identifier == poly_arg.identifier {
 
                        if symbolic.identifier.matches_identifier(&poly_arg.identifier) {
 
                            poly_arg.is_in_use = true;
 
                            // TODO: If we allow higher-kinded types in the future,
 
                            //  then we can't continue here, but must resolve the
 
                            //  polyargs as well
 
                            debug_assert!(!symbolic.identifier.has_poly_args(), "got polymorphic arguments to a polymorphic variable");
 
                            debug_assert!(symbolic.identifier.get_poly_args().is_none(), "got polymorphic arguments to a polymorphic variable");
 
                            debug_assert!(symbolic.variant.is_none(), "symbolic parser type's variant already resolved");
 
                            symbolic.variant = Some(SymbolicParserTypeVariant::PolyArg(type_definition_id, poly_arg_idx));
 
                            continue 'type_loop;
 
                        }
 
                    }
 

	
 
                    // Must match a definition
 
                    let (symbol, _) = ctx.symbols.resolve_namespaced_symbol(root_id, &symbolic.identifier);
 
                    let (symbol, ident_iter) = ctx.symbols.resolve_namespaced_identifier(root_id, &symbolic.identifier);
 
                    debug_assert!(symbol.is_some(), "could not resolve symbolic parser type when determining poly args");
 
                    let (symbol, ident_iter) = symbol.unwrap();
 
                    let symbol = symbol.unwrap();
 
                    debug_assert_eq!(ident_iter.num_remaining(), 0, "no exact symbol match when determining poly args");
 
                    let (_root_id, definition_id) = symbol.as_definition().unwrap();
 
    
 
                    // Must be a struct, enum, or union, we checked this
 
                    let defined_type = self.lookup.get(&definition_id).unwrap();
 
                    let (_, poly_args) = ident_iter.prev().unwrap();
 
                    let poly_args = poly_args.unwrap_or_default();
 

	
 
                    if cfg!(debug_assertions) {
 
                        // Make sure type class is correct
 
                        // Everything here should already be checked in 
 
                        // `resolve_base_parser_type`.
 
                        let type_class = defined_type.definition.type_class();
 
                        debug_assert!(
 
                            type_class == TypeClass::Struct || type_class == TypeClass::Enum || type_class == TypeClass::Union,
 
                            "embedded type's class is not struct, enum or union"
 
                        );
 
                        // Make sure polymorphic arguments occurred at the end
 
                        let num_poly = symbolic.identifier.iter()
 
                            .map(|(_, v)| v)
 
                            .filter(|v| v.is_some())
 
                            .count();
 
                        debug_assert!(num_poly <= 1, "more than one section with polymorphic arguments");
 
                        if num_poly == 1 {
 
                            let (_, poly_args) = symbolic.identifier.iter().last().unwrap();
 
                            debug_assert!(poly_args.is_some(), "got poly args, but not at end of identifier");
 
                        }
 
                        debug_assert_eq!(poly_args.len(), symbolic.identifier.poly_args.len());
 
                    }
 
    
 
                    if symbolic.poly_args.len() != defined_type.poly_args.len() {
 
                    if poly_args.len() != defined_type.poly_vars.len() {
 
                        // Mismatch in number of polymorphic arguments. This is 
 
                        // not allowed in type definitions (no inference is 
 
                        // allowed within type definitions, only in bodies of
 
                        // functions/components).
 
                        let module_source = &ctx.modules[root_id.index as usize].source;
 
                        let number_args_msg = if defined_type.poly_args.is_empty() {
 
                        let number_args_msg = if defined_type.poly_vars.is_empty() {
 
                            String::from("is not polymorphic")
 
                        } else {
 
                            format!("accepts {} polymorphic arguments", defined_type.poly_args.len())
 
                            format!("accepts {} polymorphic arguments", defined_type.poly_vars.len())
 
                        };
 
    
 
                        return Err(ParseError2::new_error(
 
                            module_source, symbolic.identifier.position,
 
                            &format!(
 
                                "The type '{}' {}, but {} polymorphic arguments were provided",
 
                                String::from_utf8_lossy(&symbolic.identifier.value),
 
                                number_args_msg, symbolic.poly_args.len()
 
                                String::from_utf8_lossy(&symbolic.identifier.strip_poly_args()),
 
                                number_args_msg, poly_args.len()
 
                            )
 
                        ));
 
                    }
 
    
 
                    self.parser_type_iter.extend(&symbolic.poly_args);
 
                    self.parser_type_iter.extend(poly_args);
 
                    debug_assert!(symbolic.variant.is_none(), "symbolic parser type's variant already resolved");
 
                    symbolic.variant = Some(SymbolicParserTypeVariant::Definition(definition_id));
 
                }
 
            }
 
        }
 

	
 
        // All nodes in the embedded type tree were valid
 
        Ok(())
 
    }
 

	
 
    /// Go through a list of identifiers and ensure that all identifiers have
 
    /// unique names
 
    fn check_identifier_collision<T: Sized, F: Fn(&T) -> &Identifier>(
 
        &self, ctx: &TypeCtx, root_id: RootId, items: &[T], getter: F, item_name: &'static str
 
    ) -> Result<(), ParseError2> {
 
        for (item_idx, item) in items.iter().enumerate() {
 
            let item_ident = getter(item);
 
            for other_item in &items[0..item_idx] {
 
                let other_item_ident = getter(other_item);
 
                if item_ident == other_item_ident {
 
                    let module_source = &ctx.modules[root_id.index as usize].source;
 
                    return Err(ParseError2::new_error(
 
                        module_source, item_ident.position, &format!("This {} is defined more than once", item_name)
 
                    ).with_postfixed_info(
 
                        module_source, other_item_ident.position, &format!("The other {} is defined here", item_name)
 
                    ));
 
                }
 
            }
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    /// Go through a list of polymorphic arguments and make sure that the
 
    /// arguments all have unique names, and the arguments do not conflict with
 
    /// any symbols defined at the module scope.
 
    fn check_poly_args_collision(
 
        &self, ctx: &TypeCtx, root_id: RootId, poly_args: &[Identifier]
 
    ) -> Result<(), ParseError2> {
 
        // Make sure polymorphic arguments are unique and none of the
 
        // identifiers conflict with any imported scopes
 
        for (arg_idx, poly_arg) in poly_args.iter().enumerate() {
 
            for other_poly_arg in &poly_args[..arg_idx] {
 
                if poly_arg == other_poly_arg {
 
                    let module_source = &ctx.modules[root_id.index as usize].source;
 
                    return Err(ParseError2::new_error(
 
                        module_source, poly_arg.position,
 
                        "This polymorphic argument is defined more than once"
 
                    ).with_postfixed_info(
 
                        module_source, other_poly_arg.position,
 
                        "It conflicts with this polymorphic argument"
 
                    ));
 
                }
 
            }
 

	
 
            // Check if identifier conflicts with a symbol defined or imported
 
            // in the current module
 
            if let Some(symbol) = ctx.symbols.resolve_symbol(root_id, &poly_arg.value) {
 
                // We have a conflict
 
                let module_source = &ctx.modules[root_id.index as usize].source;
 
                return Err(ParseError2::new_error(
 
                    module_source, poly_arg.position,
 
                    "This polymorphic argument conflicts with another symbol"
 
                ).with_postfixed_info(
 
                    module_source, symbol.position,
 
                    "It conflicts due to this symbol"
 
                ));
 
            }
 
        }
 

	
 
        // All arguments are fine
 
        Ok(())
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Small utilities
 
    //--------------------------------------------------------------------------
 

	
 
    fn enum_tag_type(min_tag_value: i64, max_tag_value: i64) -> PrimitiveType {
 
        // TODO: @consistency tag values should be handled correctly
 
        debug_assert!(min_tag_value < max_tag_value);
 
        let abs_max_value = min_tag_value.abs().max(max_tag_value.abs());
 
        if abs_max_value <= u8::max_value() as i64 {
 
            PrimitiveType::Byte
 
        } else if abs_max_value <= u16::max_value() as i64 {
 
            PrimitiveType::Short
 
        } else if abs_max_value <= u32::max_value() as i64 {
 
            PrimitiveType::Int
 
        } else {
 
            PrimitiveType::Long
 
        }
 
    }
 

	
 
    fn find_root_id(ctx: &TypeCtx, definition_id: DefinitionId) -> RootId {
 
        // TODO: Keep in lookup or something
 
        for module in ctx.modules {
 
            let root_id = module.root_id;
 
            let root = &ctx.heap[root_id];
 
            for module_definition_id in root.definitions.iter() {
 
                if *module_definition_id == definition_id {
 
                    return root_id
 
                }
 
            }
 
        }
 

	
 
        debug_assert!(false, "DefinitionId without corresponding RootId");
 
        unreachable!();
 
    }
 
}
 
\ No newline at end of file

Changeset was too big and was cut off... Show full diff anyway

0 comments (0 inline, 0 general)