Changeset - 339b493050e2
[Not reviewed]
0 9 0
MH - 3 years ago 2022-05-14 21:18:24
contact@maxhenger.nl
WIP on tcp listener/socket test
9 files changed with 202 insertions and 50 deletions:
0 comments (0 inline, 0 general)
src/protocol/ast.rs
Show inline comments
 
@@ -1041,96 +1041,97 @@ impl ExpressionInfo {
 
            type_id: TypeId::new_invalid(),
 
            variant: ExpressionInfoVariant::Generic,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy)]
 
pub enum ExpressionInfoVariant {
 
    Generic,
 
    Procedure(TypeId, u32), // procedure TypeID and its monomorph index
 
    Select(i32), // index
 
}
 

	
 
impl ExpressionInfoVariant {
 
    pub(crate) fn as_select(&self) -> i32 {
 
        match self {
 
            ExpressionInfoVariant::Select(v) => *v,
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
    pub(crate) fn as_procedure(&self) -> (TypeId, u32) {
 
        match self {
 
            ExpressionInfoVariant::Procedure(type_id, monomorph_index) => (*type_id, *monomorph_index),
 
            _ => unreachable!(),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug)]
 
pub enum ProcedureSource {
 
    FuncUserDefined,
 
    CompUserDefined,
 
    // Builtin functions, available to user
 
    FuncGet,
 
    FuncPut,
 
    FuncFires,
 
    FuncCreate,
 
    FuncLength,
 
    FuncAssert,
 
    FuncPrint,
 
    // Buitlin functions, not available to user
 
    FuncSelectStart,
 
    FuncSelectRegisterCasePort,
 
    FuncSelectWait,
 
    // Builtin components, available to user
 
    CompRandomU32, // TODO: Remove, temporary thing
 
    CompTcpClient,
 
    CompTcpListener,
 
}
 

	
 
impl ProcedureSource {
 
    pub(crate) fn is_builtin(&self) -> bool {
 
        match self {
 
            ProcedureSource::FuncUserDefined | ProcedureSource::CompUserDefined => false,
 
            _ => true,
 
        }
 
    }
 
}
 

	
 

	
 
/// Generic storage for functions and components.
 
// Note that we will have function definitions for builtin functions as well. In
 
// that case the span, the identifier span and the body are all invalid.
 
#[derive(Debug)]
 
pub struct ProcedureDefinition {
 
    pub this: ProcedureDefinitionId,
 
    pub defined_in: RootId,
 
    // Symbol scanning
 
    pub kind: ProcedureKind,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    // Parser
 
    pub source: ProcedureSource,
 
    pub return_type: Option<ParserType>, // present on functions, not components
 
    pub parameters: Vec<VariableId>,
 
    pub scope: ScopeId,
 
    pub body: BlockStatementId,
 
    // Monomorphization of typed procedures
 
    pub monomorphs: Vec<ProcedureDefinitionMonomorph>,
 
}
 

	
 
impl ProcedureDefinition {
 
    pub(crate) fn new_empty(
 
        this: ProcedureDefinitionId, defined_in: RootId,
 
        kind: ProcedureKind, identifier: Identifier, poly_vars: Vec<Identifier>
 
    ) -> Self {
 
        Self {
 
            this, defined_in,
 
            kind, identifier, poly_vars,
 
            source: ProcedureSource::FuncUserDefined,
 
            return_type: None,
 
            parameters: Vec::new(),
 
            scope: ScopeId::new_invalid(),
 
            body: BlockStatementId::new_invalid(),
 
            monomorphs: Vec::new(),
 
        }
 
@@ -1807,107 +1808,108 @@ pub struct SelectExpression {
 

	
 
#[derive(Debug, Clone)]
 
pub struct CastExpression {
 
    pub this: CastExpressionId,
 
    // Parsing
 
    pub cast_span: InputSpan, // of the "cast" keyword,
 
    pub full_span: InputSpan, // includes the cast subject
 
    pub to_type: ParserType,
 
    pub subject: ExpressionId,
 
    // Validator/linker
 
    pub parent: ExpressionParent,
 
    // Typing
 
    pub type_index: i32,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct CallExpression {
 
    pub this: CallExpressionId,
 
    // Parsing
 
    pub func_span: InputSpan, // of the function name
 
    pub full_span: InputSpan, // includes the arguments and parentheses
 
    pub parser_type: ParserType, // of the function call, not the return type
 
    pub method: Method,
 
    pub arguments: Vec<ExpressionId>,
 
    pub procedure: ProcedureDefinitionId,
 
    // Validator/Linker
 
    pub parent: ExpressionParent,
 
    // Typing
 
    pub type_index: i32,
 
}
 

	
 
#[derive(Debug, Clone, PartialEq, Eq)]
 
pub enum Method {
 
    // Builtin function, accessible by programmer
 
    Get,
 
    Put,
 
    Fires,
 
    Create,
 
    Length,
 
    Assert,
 
    Print,
 
    // Builtin function, not accessible by programmer
 
    SelectStart, // SelectStart(total_num_cases, total_num_ports)
 
    SelectRegisterCasePort, // SelectRegisterCasePort(case_index, port_index, port_id)
 
    SelectWait, // SelectWait() -> u32
 
    // Builtin component,
 
    ComponentRandomU32,
 
    ComponentTcpClient,
 
    ComponentTcpListener,
 
    // User-defined
 
    UserFunction,
 
    UserComponent,
 
}
 

	
 
impl Method {
 
    pub(crate) fn is_public_builtin(&self) -> bool {
 
        use Method::*;
 
        match self {
 
            Get | Put | Fires | Create | Length | Assert | Print => true,
 
            ComponentRandomU32 | ComponentTcpClient => true,
 
            ComponentRandomU32 | ComponentTcpClient | ComponentTcpListener => true,
 
            _ => false,
 
        }
 
    }
 

	
 
    pub(crate) fn is_user_defined(&self) -> bool {
 
        use Method::*;
 
        match self {
 
            UserFunction | UserComponent => true,
 
            _ => false,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct LiteralExpression {
 
    pub this: LiteralExpressionId,
 
    // Parsing
 
    pub span: InputSpan,
 
    pub value: Literal,
 
    // Validator/Linker
 
    pub parent: ExpressionParent,
 
    // Typing
 
    pub type_index: i32,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Literal {
 
    Null, // message
 
    True,
 
    False,
 
    Character(char),
 
    Bytestring(Vec<u8>),
 
    String(StringRef<'static>),
 
    Integer(LiteralInteger),
 
    Struct(LiteralStruct),
 
    Enum(LiteralEnum),
 
    Union(LiteralUnion),
 
    Array(Vec<ExpressionId>),
 
    Tuple(Vec<ExpressionId>),
 
}
 

	
 
impl Literal {
 
    pub(crate) fn as_struct(&self) -> &LiteralStruct {
 
        if let Literal::Struct(literal) = self{
 
            literal
 
        } else {
 
            unreachable!("Attempted to obtain {:?} as Literal::Struct", self)
 
        }
src/protocol/eval/executor.rs
Show inline comments
 
@@ -725,97 +725,97 @@ impl Prompt {
 
                                    }
 
                                },
 
                                Method::Print => {
 
                                    // Convert the runtime-variant of a string
 
                                    // into an actual string.
 
                                    let value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let is_literal_string = value.get_heap_pos().is_some();
 
                                    let value = self.store.maybe_read_ref(&value);
 
                                    let value_heap_pos = value.as_string();
 
                                    let elements = &self.store.heap_regions[value_heap_pos as usize].values;
 

	
 
                                    let mut message = String::with_capacity(elements.len());
 
                                    for element in elements {
 
                                        message.push(element.as_char());
 
                                    }
 

	
 
                                    // Drop the heap-allocated value from the
 
                                    // store
 
                                    if is_literal_string {
 
                                        self.store.drop_heap_pos(value_heap_pos);
 
                                    }
 

	
 
                                    println!("{}", message);
 
                                },
 
                                Method::SelectStart => {
 
                                    let num_cases = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_uint32();
 
                                    let num_ports = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_uint32();
 

	
 
                                    return Ok(EvalContinuation::SelectStart(num_cases, num_ports));
 
                                },
 
                                Method::SelectRegisterCasePort => {
 
                                    let case_index = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_uint32();
 
                                    let port_index = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_uint32();
 
                                    let port_value = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_port_id();
 

	
 
                                    return Ok(EvalContinuation::SelectRegisterPort(expr_id, case_index, port_index, port_value));
 
                                },
 
                                Method::SelectWait => {
 
                                    match ctx.performed_select_wait() {
 
                                        Some(select_index) => {
 
                                            cur_frame.expr_values.push_back(Value::UInt32(select_index));
 
                                        },
 
                                        None => {
 
                                            cur_frame.expr_stack.push_back(ExprInstruction::EvalExpr(expr.this.upcast()));
 
                                            return Ok(EvalContinuation::SelectWait)
 
                                        },
 
                                    }
 
                                },
 
                                Method::ComponentRandomU32 | Method::ComponentTcpClient => {
 
                                Method::ComponentRandomU32 | Method::ComponentTcpClient | Method::ComponentTcpListener => {
 
                                    debug_assert_eq!(heap[expr.procedure].parameters.len(), cur_frame.expr_values.len());
 
                                    debug_assert_eq!(heap[cur_frame.position].as_new().expression, expr.this);
 
                                },
 
                                Method::UserComponent => {
 
                                    // This is actually handled by the evaluation
 
                                    // of the statement.
 
                                    debug_assert_eq!(heap[expr.procedure].parameters.len(), cur_frame.expr_values.len());
 
                                    debug_assert_eq!(heap[cur_frame.position].as_new().expression, expr.this);
 
                                },
 
                                Method::UserFunction => {
 
                                    // Push a new frame. Note that all expressions have
 
                                    // been pushed to the front, so they're in the order
 
                                    // of the definition.
 
                                    let num_args = expr.arguments.len();
 

	
 
                                    // Determine stack boundaries
 
                                    let cur_stack_boundary = self.store.cur_stack_boundary;
 
                                    let new_stack_boundary = self.store.stack.len();
 

	
 
                                    // Push new boundary and function arguments for new frame
 
                                    self.store.stack.push(Value::PrevStackBoundary(cur_stack_boundary as isize));
 
                                    for _ in 0..num_args {
 
                                        let argument = self.store.read_take_ownership(cur_frame.expr_values.pop_front().unwrap());
 
                                        self.store.stack.push(argument);
 
                                    }
 

	
 
                                    // Determine the monomorph index of the function we're calling
 
                                    let mono_data = &heap[cur_frame.definition].monomorphs[cur_frame.monomorph_index];
 
                                    let (type_id, monomorph_index) = mono_data.expr_info[expr.type_index as usize].variant.as_procedure();
 

	
 
                                    // Push the new frame and reserve its stack size
 
                                    let new_frame = Frame::new(heap, expr.procedure, type_id, monomorph_index);
 
                                    let new_stack_size = new_frame.max_stack_size;
 
                                    self.frames.push(new_frame);
 
                                    self.store.cur_stack_boundary = new_stack_boundary;
 
                                    self.store.reserve_stack(new_stack_size);
 

	
 
                                    // To simplify the logic a little bit we will now
 
                                    // return and ask our caller to call us again
 
                                    return Ok(EvalContinuation::Stepping);
 
                                }
 
                            }
 
                        },
 
                        Expression::Variable(expr) => {
 
                            let variable = &heap[expr.declaration.unwrap()];
 
                            let ref_value = if expr.used_as_binding_target {
 
                                Value::Binding(variable.unique_id_in_scope as StackPos)
 
                            } else {
src/protocol/mod.rs
Show inline comments
 
@@ -115,96 +115,122 @@ impl ProtocolDescription {
 
            return Err(ComponentCreationError::InvalidNumArguments);
 
        }
 

	
 
        // - for each argument try to make sure the types match
 
        for arg_idx in 0..arguments.values.len() {
 
            let expected_type_id = monomorph_info.argument_types[arg_idx];
 
            let expected_type = &self.types.get_monomorph(expected_type_id).concrete_type;
 
            let provided_value = &arguments.values[arg_idx];
 
            if !self.verify_same_type(expected_type, 0, &arguments, provided_value) {
 
                return Err(ComponentCreationError::InvalidArgumentType(arg_idx));
 
            }
 
        }
 

	
 
        // By now we're sure that all of the arguments are correct. So create
 
        // the connector.
 
        return Ok(Prompt::new(&self.types, &self.heap, ast_definition.this, procedure_type_id, arguments));
 
    }
 

	
 
    /// A somewhat temporary method. Can be used by components to lookup type
 
    /// definitions by their name (to have their implementation somewhat
 
    /// resistant to changes in the standard library)
 
    pub(crate) fn find_type<'a>(&'a self, module_name: &[u8], type_name: &[u8]) -> Option<TypeInspector<'a>> {
 
        // Lookup type definition in module
 
        let root_id = self.lookup_module_root(module_name)?;
 
        let module = &self.heap[root_id];
 
        let definition_id = module.get_definition_by_ident(&self.heap, type_name)?;
 
        let definition = &self.heap[definition_id];
 

	
 
        // Make sure type is not polymorphic and is not a procedure
 
        if !definition.poly_vars().is_empty() {
 
            return None;
 
        }
 
        if definition.is_procedure() {
 
            return None;
 
        }
 

	
 
        // Lookup type in type table
 
        let type_parts = [ConcreteTypePart::Instance(definition_id, 0)];
 
        let type_id = self.types.get_monomorph_type_id(&definition_id, &type_parts)
 
            .expect("type ID for non-polymorphic type");
 
        let type_monomorph = self.types.get_monomorph(type_id);
 

	
 
        return Some(TypeInspector{
 
            heap: definition,
 
            type_table: type_monomorph
 
        });
 
    }
 

	
 
    /// Again a somewhat temporary method. Can be used by components to look up
 
    /// the definition of a particular procedure. Intended use is to find the
 
    /// DefinitionId/TypeId of builtin components.
 
    pub(crate) fn find_procedure(&self, module_name: &[u8], proc_name: &[u8]) -> Option<(ProcedureDefinitionId, TypeId)> {
 
        // Lookup type definition in module
 
        let root_id = self.lookup_module_root(module_name)?;
 
        let module = &self.heap[root_id];
 
        let definition_id = module.get_definition_by_ident(&self.heap, proc_name)?;
 
        let definition = &self.heap[definition_id];
 

	
 
        // Make sure the procedure is not polymorphic
 
        if !definition.poly_vars().is_empty() {
 
            return None;
 
        }
 
        if !definition.is_procedure() {
 
            return None;
 
        }
 

	
 
        // Lookup in type table
 
        let definition = definition.as_procedure();
 
        let type_parts = [ConcreteTypePart::Component(definition.this, 0)];
 
        let type_id = self.types.get_monomorph_type_id(&definition.this.upcast(), &type_parts)
 
            .expect("type ID for non-polymorphic procedure");
 
        return Some((definition.this, type_id));
 
    }
 

	
 
    fn lookup_module_root(&self, module_name: &[u8]) -> Option<RootId> {
 
        for module in self.modules.iter() {
 
            match &module.name {
 
                Some(name) => if name.as_bytes() == module_name {
 
                    return Some(module.root_id);
 
                },
 
                None => if module_name.is_empty() {
 
                    return Some(module.root_id);
 
                }
 
            }
 
        }
 

	
 
        return None;
 
    }
 

	
 
    fn verify_same_type(&self, expected: &ConcreteType, expected_idx: usize, arguments: &ValueGroup, argument: &Value) -> bool {
 
        use ConcreteTypePart as CTP;
 

	
 
        match &expected.parts[expected_idx] {
 
            CTP::Void | CTP::Message | CTP::Slice | CTP::Pointer | CTP::Function(_, _) | CTP::Component(_, _) => unreachable!(),
 
            CTP::Bool => if let Value::Bool(_) = argument { true } else { false },
 
            CTP::UInt8 => if let Value::UInt8(_) = argument { true } else { false },
 
            CTP::UInt16 => if let Value::UInt16(_) = argument { true } else { false },
 
            CTP::UInt32 => if let Value::UInt32(_) = argument { true } else { false },
 
            CTP::UInt64 => if let Value::UInt64(_) = argument { true } else { false },
 
            CTP::SInt8 => if let Value::SInt8(_) = argument { true } else { false },
 
            CTP::SInt16 => if let Value::SInt16(_) = argument { true } else { false },
 
            CTP::SInt32 => if let Value::SInt32(_) = argument { true } else { false },
 
            CTP::SInt64 => if let Value::SInt64(_) = argument { true } else { false },
 
            CTP::Character => if let Value::Char(_) = argument { true } else { false },
 
            CTP::String => {
 
                // Match outer string type and embedded character types
 
                if let Value::String(heap_pos) = argument {
 
                    for element in &arguments.regions[*heap_pos as usize] {
 
                        if let Value::Char(_) = element {} else {
 
                            return false;
 
                        }
 
                    }
 
                } else {
 
                    return false;
 
                }
 

	
 
                return true;
 
            },
 
            CTP::Array => {
 
                if let Value::Array(heap_pos) = argument {
 
                    let heap_pos = *heap_pos;
 
                    for element in &arguments.regions[heap_pos as usize] {
src/protocol/parser/pass_definitions.rs
Show inline comments
 
@@ -333,96 +333,97 @@ impl PassDefinitions {
 

	
 
        Ok(())
 
    }
 

	
 
    /// Consumes a procedure's body: either a user-defined procedure, which we
 
    /// parse as normal, or a builtin function, where we'll make sure we expect
 
    /// the particular builtin.
 
    ///
 
    /// We expect that the procedure's name is already stored in the
 
    /// preallocated AST node.
 
    fn consume_procedure_body(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx, definition_id: DefinitionId, kind: ProcedureKind
 
    ) -> Result<(BlockStatementId, ProcedureSource), ParseError> {
 
        if iter.next() == Some(TokenKind::OpenCurly) && iter.peek() == Some(TokenKind::Pragma) {
 
            // Consume the placeholder "{ #builtin }" tokens
 
            iter.consume(); // opening curly brace
 
            let (pragma, pragma_span) = consume_pragma(&module.source, iter)?;
 
            if pragma != b"#builtin" {
 
                return Err(ParseError::new_error_str_at_span(
 
                    &module.source, pragma_span,
 
                    "expected a '#builtin' pragma, or a function body"
 
                ));
 
            }
 

	
 
            if iter.next() != Some(TokenKind::CloseCurly) {
 
                // Just to keep the compiler writers in line ;)
 
                panic!("compiler error: when using the #builtin pragma, wrap it in curly braces");
 
            }
 
            iter.consume();
 

	
 
            // Retrieve module and procedure name
 
            assert!(module.name.is_some(), "compiler error: builtin procedure body in unnamed module");
 
            let (_, module_name) = module.name.as_ref().unwrap();
 
            let module_name = module_name.as_str();
 

	
 
            let definition = ctx.heap[definition_id].as_procedure();
 
            let procedure_name = definition.identifier.value.as_str();
 

	
 
            let source = match (module_name, procedure_name) {
 
                ("std.global", "get") => ProcedureSource::FuncGet,
 
                ("std.global", "put") => ProcedureSource::FuncPut,
 
                ("std.global", "fires") => ProcedureSource::FuncFires,
 
                ("std.global", "create") => ProcedureSource::FuncCreate,
 
                ("std.global", "length") => ProcedureSource::FuncLength,
 
                ("std.global", "assert") => ProcedureSource::FuncAssert,
 
                ("std.global", "print") => ProcedureSource::FuncPrint,
 
                ("std.random", "random_u32") => ProcedureSource::CompRandomU32,
 
                ("std.internet", "tcp_client") => ProcedureSource::CompTcpClient,
 
                ("std.internet", "tcp_listener") => ProcedureSource::CompTcpListener,
 
                _ => panic!(
 
                    "compiler error: unknown builtin procedure '{}' in module '{}'",
 
                    procedure_name, module_name
 
                ),
 
            };
 

	
 
            return Ok((BlockStatementId::new_invalid(), source));
 
        } else {
 
            let body_id = self.consume_block_statement(module, iter, ctx)?;
 
            let source = match kind {
 
                ProcedureKind::Function =>
 
                    ProcedureSource::FuncUserDefined,
 
                ProcedureKind::Component =>
 
                    ProcedureSource::CompUserDefined,
 
            };
 

	
 
            return Ok((body_id, source))
 
        }
 
    }
 

	
 
    /// Consumes a statement and returns a boolean indicating whether it was a
 
    /// block or not.
 
    fn consume_statement(&mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx) -> Result<StatementId, ParseError> {
 
        let next = iter.next().expect("consume_statement has a next token");
 

	
 
        if next == TokenKind::OpenCurly {
 
            let id = self.consume_block_statement(module, iter, ctx)?;
 
            return Ok(id.upcast());
 
        } else if next == TokenKind::Ident {
 
            let ident = peek_ident(&module.source, iter).unwrap();
 
            if ident == KW_STMT_IF {
 
                // Consume if statement and place end-if statement directly
 
                // after it.
 
                let id = self.consume_if_statement(module, iter, ctx)?;
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_WHILE {
 
                let id = self.consume_while_statement(module, iter, ctx)?;
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_BREAK {
 
                let id = self.consume_break_statement(module, iter, ctx)?;
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_CONTINUE {
 
                let id = self.consume_continue_statement(module, iter, ctx)?;
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_SYNC {
 
                let id = self.consume_synchronous_statement(module, iter, ctx)?;
 
                return Ok(id.upcast());
 
            } else if ident == KW_STMT_FORK {
 
@@ -1635,96 +1636,97 @@ impl PassDefinitions {
 
                            },
 
                            Definition::Union(_) => {
 
                                // Union literal: consume the variant
 
                                consume_token(&module.source, iter, TokenKind::ColonColon)?;
 
                                let variant = consume_ident_interned(&module.source, iter, ctx)?;
 

	
 
                                // Consume any possible embedded values
 
                                let mut end_pos = variant.span.end;
 
                                let values = if Some(TokenKind::OpenParen) == iter.next() {
 
                                    self.consume_expression_list(module, iter, ctx, Some(&mut end_pos))?
 
                                } else {
 
                                    Vec::new()
 
                                };
 

	
 
                                ctx.heap.alloc_literal_expression(|this| LiteralExpression{
 
                                    this,
 
                                    span: InputSpan::from_positions(ident_span.begin, end_pos),
 
                                    value: Literal::Union(LiteralUnion{
 
                                        parser_type, variant, values,
 
                                        definition: target_definition_id,
 
                                        variant_idx: 0,
 
                                    }),
 
                                    parent: ExpressionParent::None,
 
                                    type_index: -1,
 
                                }).upcast()
 
                            },
 
                            Definition::Procedure(proc_def) => {
 
                                // Check whether it is a builtin function
 
                                // TODO: Once we start generating bytecode this is unnecessary
 
                                let procedure_id = proc_def.this;
 
                                let method = match proc_def.source {
 
                                    // Bit of a hack, at this point the source is not yet known, except if it is a
 
                                    // builtin. So we check for the "kind"
 
                                    ProcedureSource::FuncUserDefined | ProcedureSource::CompUserDefined => {
 
                                        match proc_def.kind {
 
                                            ProcedureKind::Function => Method::UserFunction,
 
                                            ProcedureKind::Component => Method::UserComponent,
 
                                        }
 
                                    },
 
                                    ProcedureSource::FuncGet => Method::Get,
 
                                    ProcedureSource::FuncPut => Method::Put,
 
                                    ProcedureSource::FuncFires => Method::Fires,
 
                                    ProcedureSource::FuncCreate => Method::Create,
 
                                    ProcedureSource::FuncLength => Method::Length,
 
                                    ProcedureSource::FuncAssert => Method::Assert,
 
                                    ProcedureSource::FuncPrint => Method::Print,
 
                                    ProcedureSource::CompRandomU32 => Method::ComponentRandomU32,
 
                                    ProcedureSource::CompTcpClient => Method::ComponentTcpClient,
 
                                    ProcedureSource::CompTcpListener => Method::ComponentTcpListener,
 
                                    _ => todo!("other procedure sources"),
 
                                };
 

	
 
                                // Function call: consume the arguments
 
                                let func_span = parser_type.full_span;
 
                                let mut full_span = func_span;
 
                                let arguments = self.consume_expression_list(
 
                                    module, iter, ctx, Some(&mut full_span.end)
 
                                )?;
 

	
 
                                ctx.heap.alloc_call_expression(|this| CallExpression{
 
                                    this, func_span, full_span, parser_type, method, arguments,
 
                                    procedure: procedure_id,
 
                                    parent: ExpressionParent::None,
 
                                    type_index: -1,
 
                                }).upcast()
 
                            }
 
                        }
 
                    },
 
                    _ => {
 
                        return Err(ParseError::new_error_str_at_span(
 
                            &module.source, parser_type.full_span, "unexpected type in expression"
 
                        ))
 
                    }
 
                }
 
            } else {
 
                // Check for builtin keywords or builtin functions
 
                if ident_text == KW_LIT_NULL || ident_text == KW_LIT_TRUE || ident_text == KW_LIT_FALSE {
 
                    iter.consume();
 

	
 
                    // Parse builtin literal
 
                    let value = match ident_text {
 
                        KW_LIT_NULL => Literal::Null,
 
                        KW_LIT_TRUE => Literal::True,
 
                        KW_LIT_FALSE => Literal::False,
 
                        _ => unreachable!(),
 
                    };
 

	
 
                    ctx.heap.alloc_literal_expression(|this| LiteralExpression {
 
                        this,
 
                        span: ident_span,
 
                        value,
 
                        parent: ExpressionParent::None,
 
                        type_index: -1,
 
                    }).upcast()
 
                } else if ident_text == KW_LET {
 
                    // Binding expression
 
                    let operator_span = iter.next_span();
src/protocol/parser/pass_validation_linking.rs
Show inline comments
 
@@ -1113,97 +1113,98 @@ impl Visitor for PassValidationLinking {
 
        // Check whether the method is allowed to be called within the code's
 
        // context (in sync, definition type, etc.)
 
        let mut expecting_wrapping_new_stmt = false;
 
        let mut expecting_wrapping_sync_stmt = false;
 
        let mut expecting_no_select_stmt = false;
 

	
 
        match call_expr.method {
 
            Method::Get => {
 
                expecting_wrapping_sync_stmt = true;
 
                if !self.in_select_guard.is_invalid() {
 
                    // In a select guard. Take the argument (i.e. the port we're
 
                    // retrieving from) and add it to the list of involved ports
 
                    // of the guard
 
                    if call_expr.arguments.len() == 1 {
 
                        // We're checking the number of arguments later, for now
 
                        // assume it is correct.
 
                        let argument = call_expr.arguments[0];
 
                        let select_stmt = &mut ctx.heap[self.in_select_guard];
 
                        let select_case = &mut select_stmt.cases[self.in_select_arm as usize];
 
                        select_case.involved_ports.push((id, argument));
 
                    }
 
                }
 
            },
 
            Method::Put => {
 
                expecting_wrapping_sync_stmt = true;
 
                expecting_no_select_stmt = true;
 
            },
 
            Method::Fires => {
 
                expecting_wrapping_sync_stmt = true;
 
            },
 
            Method::Create => {},
 
            Method::Length => {},
 
            Method::Assert => {
 
                expecting_wrapping_sync_stmt = true;
 
                expecting_no_select_stmt = true;
 
                if self.proc_kind == ProcedureKind::Function {
 
                    let call_span = call_expr.func_span;
 
                    return Err(ParseError::new_error_str_at_span(
 
                        &ctx.module().source, call_span,
 
                        "assert statement may only occur in components"
 
                    ));
 
                }
 
            },
 
            Method::Print => {},
 
            Method::SelectStart
 
            | Method::SelectRegisterCasePort
 
            | Method::SelectWait => unreachable!(), // not usable by programmer directly
 
            Method::ComponentRandomU32
 
            | Method::ComponentTcpClient => {
 
            | Method::ComponentTcpClient
 
            | Method::ComponentTcpListener => {
 
                expecting_wrapping_new_stmt = true;
 
            },
 
            Method::UserFunction => {}
 
            Method::UserComponent => {
 
                expecting_wrapping_new_stmt = true;
 
            },
 
        }
 

	
 
        let call_expr = &mut ctx.heap[id];
 

	
 
        fn get_span_and_name<'a>(ctx: &'a Ctx, id: CallExpressionId) -> (InputSpan, String) {
 
            let call = &ctx.heap[id];
 
            let span = call.func_span;
 
            let name = String::from_utf8_lossy(ctx.module().source.section_at_span(span)).to_string();
 
            return (span, name);
 
        }
 

	
 
        if expecting_wrapping_sync_stmt {
 
            if self.in_sync.is_invalid() {
 
                let (call_span, func_name) = get_span_and_name(ctx, id);
 
                return Err(ParseError::new_error_at_span(
 
                    &ctx.module().source, call_span,
 
                    format!("a call to '{}' may only occur inside synchronous blocks", func_name)
 
                ))
 
            }
 
        }
 

	
 
        if expecting_no_select_stmt {
 
            if !self.in_select_guard.is_invalid() {
 
                let (call_span, func_name) = get_span_and_name(ctx, id);
 
                return Err(ParseError::new_error_at_span(
 
                    &ctx.module().source, call_span,
 
                    format!("a call to '{}' may not occur in a select statement's guard", func_name)
 
                ));
 
            }
 
        }
 

	
 
        if expecting_wrapping_new_stmt {
 
            if !self.expr_parent.is_new() {
 
                let call_span = call_expr.func_span;
 
                return Err(ParseError::new_error_str_at_span(
 
                    &ctx.module().source, call_span,
 
                    "cannot call a component, it can only be instantiated by using 'new'"
 
                ));
 
            }
 
        } else {
 
            if self.expr_parent.is_new() {
 
                let call_span = call_expr.func_span;
src/runtime2/component/component.rs
Show inline comments
 
@@ -196,96 +196,97 @@ impl CompExecState {
 
    }
 

	
 
    pub(crate) fn set_as_blocked_put_without_ports(&mut self, port: PortId, value: ValueGroup) {
 
        self.mode = CompMode::BlockedPut;
 
        self.mode_port = port;
 
        self.mode_value = value;
 
    }
 

	
 
    pub(crate) fn set_as_blocked_put_with_ports(&mut self, port: PortId, value: ValueGroup) {
 
        self.mode = CompMode::PutPortsBlockedTransferredPorts;
 
        self.mode_port = port;
 
        self.mode_value = value;
 
    }
 

	
 
    pub(crate) fn is_blocked_on_put_without_ports(&self, port: PortId) -> bool {
 
        return
 
            self.mode == CompMode::BlockedPut &&
 
            self.mode_port == port;
 
    }
 

	
 
    pub(crate) fn is_blocked_on_create_component(&self) -> bool {
 
        return self.mode == CompMode::NewComponentBlocked;
 
    }
 
}
 

	
 
// TODO: Replace when implementing port sending. Should probably be incorporated
 
//  into CompCtx (and rename CompCtx into CompComms)
 
pub(crate) type InboxMain = Vec<Option<DataMessage>>;
 
pub(crate) type InboxMainRef = [Option<DataMessage>];
 
pub(crate) type InboxBackup = Vec<DataMessage>;
 

	
 
/// Creates a new component based on its definition. Meaning that if it is a
 
/// user-defined component then we set up the PDL code state. Otherwise we
 
/// construct a custom component. This does NOT take care of port and message
 
/// management.
 
pub(crate) fn create_component(
 
    protocol: &ProtocolDescription,
 
    definition_id: ProcedureDefinitionId, type_id: TypeId,
 
    arguments: ValueGroup, num_ports: usize
 
) -> Box<dyn Component> {
 
    let definition = &protocol.heap[definition_id];
 
    debug_assert_eq!(definition.kind, ProcedureKind::Component);
 

	
 
    if definition.source.is_builtin() {
 
        // Builtin component
 
        let component: Box<dyn Component> = match definition.source {
 
            ProcedureSource::CompRandomU32 => Box::new(ComponentRandomU32::new(arguments)),
 
            ProcedureSource::CompTcpClient => Box::new(ComponentTcpClient::new(arguments)),
 
            ProcedureSource::CompTcpListener => Box::new(ComponentTcpListener::new(arguments)),
 
            _ => unreachable!(),
 
        };
 

	
 
        return component;
 
    } else {
 
        // User-defined component
 
        let prompt = Prompt::new(
 
            &protocol.types, &protocol.heap,
 
            definition_id, type_id, arguments
 
        );
 
        let component = CompPDL::new(prompt, num_ports);
 
        return Box::new(component);
 
    }
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// Generic component messaging utilities (for sending and receiving)
 
// -----------------------------------------------------------------------------
 

	
 
/// Default handling of sending a data message. In case the port is blocked then
 
/// the `ExecState` will become blocked as well. Note that
 
/// `default_handle_control_message` will ensure that the port becomes
 
/// unblocked if so instructed by the receiving component. The returned
 
/// scheduling value must be used.
 
#[must_use]
 
pub(crate) fn default_send_data_message(
 
    exec_state: &mut CompExecState, transmitting_port_id: PortId,
 
    port_instruction: PortInstruction, value: ValueGroup,
 
    sched_ctx: &SchedulerCtx, consensus: &mut Consensus,
 
    control: &mut ControlLayer, comp_ctx: &mut CompCtx
 
) -> Result<CompScheduling, (PortInstruction, String)> {
 
    debug_assert_eq!(exec_state.mode, CompMode::Sync);
 

	
 
    let port_handle = comp_ctx.get_port_handle(transmitting_port_id);
 
    let port_info = comp_ctx.get_port_mut(port_handle);
 
    port_info.last_instruction = port_instruction;
 

	
 
    let port_info = comp_ctx.get_port(port_handle);
 
    debug_assert_eq!(port_info.kind, PortKind::Putter);
 

	
 
    let mut ports = Vec::new();
 
    find_ports_in_value_group(&value, &mut ports);
 

	
 
    if port_info.state.is_closed() {
 
        // Note: normally peer is eventually consistent, but if it has shut down
 
        // then we can be sure it is consistent (I think?)
 
        return Err((
 
            port_info.last_instruction,
src/runtime2/component/component_internet.rs
Show inline comments
 
use crate::protocol::eval::{ValueGroup, Value};
 
use crate::runtime2::*;
 
use crate::runtime2::component::{CompCtx, CompId, PortInstruction};
 
use crate::runtime2::stdlib::internet::*;
 
use crate::runtime2::poll::*;
 

	
 
use super::component::{self, *};
 
use super::control_layer::*;
 
use super::consensus::*;
 

	
 

	
 
use std::io::ErrorKind as IoErrorKind;
 
use std::net::{IpAddr, Ipv4Addr};
 
use crate::protocol::{ProcedureDefinitionId, TypeId};
 

	
 
// -----------------------------------------------------------------------------
 
// ComponentTcpClient
 
// -----------------------------------------------------------------------------
 

	
 
enum ClientSocketState {
 
    Connected(SocketTcpClient),
 
    Error,
 
}
 

	
 
impl ClientSocketState {
 
    fn get_socket(&self) -> &SocketTcpClient {
 
        match self {
 
            ClientSocketState::Connected(v) => v,
 
            ClientSocketState::Error => unreachable!(),
 
        }
 
    }
 
}
 

	
 
/// States from the point of view of the component that is connecting to this
 
/// TCP component (i.e. from the point of view of attempting to interface with
 
/// a socket).
 
#[derive(PartialEq, Debug)]
 
enum ClientSyncState {
 
    AwaitingCmd,
 
    Getting,
 
    Putting,
 
    FinishSync,
 
    FinishSyncThenQuit,
 
}
 

	
 
pub struct ComponentTcpClient {
 
    // Properties for the tcp socket
 
    socket_state: ClientSocketState,
 
    sync_state: ClientSyncState,
 
    poll_ticket: Option<PollTicket>,
 
    inbox_main: InboxMain,
 
    inbox_backup: InboxBackup,
 
    pdl_input_port_id: PortId, // input from PDL, so transmitted over socket
 
    pdl_output_port_id: PortId, // output towards PDL, so received over socket
 
    // Information about union tags, extracted from PDL
 
    input_union_send_tag_value: i64,
 
    input_union_receive_tag_value: i64,
 
    input_union_finish_tag_value: i64,
 
    input_union_shutdown_tag_value: i64,
 
    // Generic component state
 
    exec_state: CompExecState,
 
    control: ControlLayer,
 
@@ -368,370 +370,384 @@ impl ComponentTcpClient {
 
        debug_assert_eq!(message.data_header.target_port, self.pdl_input_port_id);
 
        debug_assert_eq!(message.content.values.len(), 1);
 

	
 
        if let Value::Array(array_pos) = message.content.values[0] {
 
            let region = &message.content.regions[array_pos as usize];
 
            bytes.reserve(region.len());
 
            for value in region {
 
                bytes.push(value.as_uint8());
 
            }
 
        } else {
 
            unreachable!();
 
        }
 
    }
 

	
 
    fn bytes_to_data_message_content(&self, buffer: &[u8]) -> ValueGroup {
 
        // Turn bytes into silly executor-style array
 
        let mut values = Vec::with_capacity(buffer.len());
 
        for byte in buffer.iter().copied() {
 
            values.push(Value::UInt8(byte));
 
        }
 

	
 
        // Put in a value group
 
        let mut value_group = ValueGroup::default();
 
        value_group.regions.push(values);
 
        value_group.values.push(Value::Array(0));
 

	
 
        return value_group;
 
    }
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// ComponentTcpListener
 
// -----------------------------------------------------------------------------
 

	
 
enum ListenerSocketState {
 
    Connected(SocketTcpListener),
 
    Error,
 
}
 

	
 
impl ListenerSocketState {
 
    fn get_socket(&self) -> &SocketTcpListener {
 
        match self {
 
            ListenerSocketState::Connected(v) => return v,
 
            ListenerSocketState::Error => unreachable!(),
 
        }
 
    }
 
}
 

	
 
struct PendingComponent {
 
    client: SocketTcpClient,
 
    cmd_rx: PortId,
 
    data_tx: PortId,
 
}
 

	
 
enum ListenerSyncState {
 
    AwaitingCmd,
 
    AcceptCommandReceived,
 
    AcceptChannelGenerated{ client: SocketTcpClient, cmd_rx: PortId, data_tx: PortId },
 
    AcceptCommandReceived, // just received `Accept` command
 
    AcceptChannelGenerated, // created channel, waiting to end the sync round
 
    AcceptGenerateComponent, // sync ended, back in non-sync, now generate component
 
    FinishSyncThenQuit,
 
}
 

	
 
impl ListenerSyncState {
 
    // Bit of a hacky solution: keeps the listener sync state intact, except
 
    // if it is `AcceptChannelGenerated`, that will be replaced with
 
    // `AwaitingCmd`. The reason is to move the `client` out.
 
    fn take(&mut self) -> ListenerSyncState {
 
        use ListenerSyncState::*;
 

	
 
        match self {
 
            AwaitingCmd => return AwaitingCmd,
 
            AcceptCommandReceived => return AcceptCommandReceived,
 
            FinishSyncThenQuit => return FinishSyncThenQuit,
 
            AcceptChannelGenerated{ .. } => {
 
                let mut swapped = ListenerSyncState::AwaitingCmd;
 
                std::mem::swap(self, &mut swapped);
 
                return swapped;
 
            }
 
        }
 
    }
 
}
 

	
 
pub struct ComponentTcpListener {
 
    // Properties for the tcp socket
 
    socket_state: ListenerSocketState,
 
    sync_state: ListenerSyncState,
 
    pending_component: Option<PendingComponent>,
 
    poll_ticket: Option<PollTicket>,
 
    inbox_main: InboxMain,
 
    inbox_backup: InboxBackup,
 
    pdl_input_port_id: PortId, // input port, receives commands
 
    pdl_output_port_id: PortId, // output port, sends connections
 
    // Information about union tags
 
    // Type information extracted from protocol
 
    tcp_client_definition: (ProcedureDefinitionId, TypeId),
 
    input_union_accept_tag: i64,
 
    input_union_shutdown_tag: i64,
 
    output_struct_rx_index: usize,
 
    output_struct_tx_index: usize,
 
    // Generic component state
 
    exec_state: CompExecState,
 
    control: ControlLayer,
 
    consensus: Consensus,
 
}
 

	
 
impl Component for ComponentTcpListener {
 
    fn on_creation(&mut self, id: CompId, sched_ctx: &SchedulerCtx) {
 
        // Retrieve type information for the message with ports we're going to send
 
        let pd = &sched_ctx.runtime.protocol;
 

	
 
        let cmd_type = pd.find_type(b"std.internet", b"ListenerCmd")
 
            .expect("'ListenerCmd' type in the 'std.internet' module");
 
        let cmd_type = cmd_type.as_union();
 

	
 
        self.input_union_accept_tag = cmd_type.get_variant_tag_value(b"Accept").unwrap();
 
        self.input_union_shutdown_tag = cmd_type.get_variant_tag_value(b"Shutdown").unwrap();
 

	
 
        let conn_type = pd.find_type(b"std.internet", b"TcpConnection")
 
            .expect("'TcpConnection' type in the 'std.internet' module");
 
        let conn_type = conn_type.as_struct();
 

	
 
        assert_eq!(conn_type.get_num_struct_fields(), 2);
 
        self.output_struct_rx_index = conn_type.get_struct_field_index(b"rx").unwrap();
 
        self.output_struct_tx_index = conn_type.get_struct_field_index(b"tx").unwrap();
 

	
 
        // Register socket for async events
 
        if let ListenerSocketState::Connected(socket) = &self.socket_state {
 
            let self_handle = sched_ctx.runtime.get_component_public(id);
 
            let poll_ticket = sched_ctx.polling.register(socket, self_handle, true, false)
 
                .expect("registering tcp listener");
 

	
 
            debug_assert!(self.poll_ticket.is_none());
 
            self.poll_ticket = Some(poll_ticket);
 
        }
 
    }
 

	
 
    fn on_shutdown(&mut self, sched_ctx: &SchedulerCtx) {
 
        if let Some(poll_ticket) = self.poll_ticket.take() {
 
            sched_ctx.polling.unregister(poll_ticket);
 
        }
 
    }
 

	
 
    fn adopt_message(&mut self, _comp_ctx: &mut CompCtx, _message: DataMessage) {
 
        unreachable!();
 
    }
 

	
 
    fn handle_message(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx, message: Message) {
 
        match message {
 
            Message::Data(_message) => unreachable!(),
 
            Message::Data(message) => {
 
                self.handle_incoming_data_message(sched_ctx, comp_ctx, message);
 
            },
 
            Message::Sync(message) => {
 
                let decision = self.consensus.receive_sync_message(sched_ctx, comp_ctx, message);
 
                component::default_handle_sync_decision(sched_ctx, &mut self.exec_state, comp_ctx, decision, &mut self.consensus);
 
            },
 
            Message::Control(message) => {
 
                if let Err(location_and_message) = component::default_handle_control_message(
 
                    &mut self.exec_state, &mut self.control, &mut self.consensus,
 
                    message, sched_ctx, comp_ctx, &mut self.inbox_main, &mut self.inbox_backup
 
                ) {
 
                    component::default_handle_error_for_builtin(&mut self.exec_state, sched_ctx, location_and_message);
 
                }
 
            },
 
            Message::Poll => {
 
                sched_ctx.info("Received polling event");
 
            },
 
        }
 
    }
 

	
 
    fn run(&mut self, sched_ctx: &mut SchedulerCtx, comp_ctx: &mut CompCtx) -> CompScheduling {
 
        sched_ctx.info(&format!("Running comonent ComponentTcpListener (mode: {:?})", self.exec_state.mode));
 
        sched_ctx.info(&format!("Running component ComponentTcpListener (mode: {:?})", self.exec_state.mode));
 

	
 
        match self.exec_state.mode {
 
            CompMode::BlockedSelect
 
                => unreachable!(),
 
            CompMode::PutPortsBlockedTransferredPorts |
 
            CompMode::PutPortsBlockedAwaitingAcks |
 
            CompMode::PutPortsBlockedSendingPort |
 
            CompMode::NewComponentBlocked
 
                => return CompScheduling::Sleep,
 
            CompMode::NonSync => {
 
                match &self.socket_state {
 
                    ListenerSocketState::Connected(_socket) => {
 
                        match self.sync_state.take() {
 
                        match self.sync_state {
 
                            ListenerSyncState::AwaitingCmd => {
 
                                component::default_handle_sync_start(
 
                                    &mut self.exec_state, &mut self.inbox_main, sched_ctx, comp_ctx, &mut self.consensus
 
                                );
 
                            },
 
                            ListenerSyncState::AcceptCommandReceived => unreachable!(),
 
                            ListenerSyncState::AcceptChannelGenerated{ client, cmd_rx, data_tx } => {
 
                            ListenerSyncState::AcceptCommandReceived |
 
                            ListenerSyncState::AcceptChannelGenerated => unreachable!(),
 
                            ListenerSyncState::AcceptGenerateComponent => {
 
                                // Now that we're outside the sync round, create the tcp client
 
                                // component
 
                                let socket_component: Box<dyn Component> = Box::new(ComponentTcpClient::new_with_existing_connection(client, cmd_rx, data_tx));
 
                                let pending = self.pending_component.take().unwrap();
 
                                let socket_component: Box<dyn Component> = Box::new(ComponentTcpClient::new_with_existing_connection(
 
                                    pending.client, pending.cmd_rx, pending.data_tx
 
                                ));
 
                                component::special_create_component(
 
                                    &mut self.exec_state, sched_ctx, comp_ctx, &mut self.control,
 
                                    &mut self.inbox_main, &mut self.inbox_backup, socket_component,
 
                                    vec![cmd_rx, data_tx]
 
                                    vec![pending.cmd_rx, pending.data_tx]
 
                                );
 
                                self.sync_state = ListenerSyncState::AwaitingCmd; // superfluous, see ListenerSyncState.take()
 
                            },
 
                            ListenerSyncState::FinishSyncThenQuit => {
 
                                self.exec_state.set_as_start_exit(ExitReason::Termination);
 
                            },
 
                        }
 

	
 
                        return CompScheduling::Immediate;
 
                    },
 
                    ListenerSocketState::Error => {
 
                        self.exec_state.set_as_start_exit(ExitReason::ErrorNonSync);
 
                        return CompScheduling::Immediate;
 
                    }
 
                }
 
            },
 
            CompMode::Sync => {
 
                match self.sync_state {
 
                    ListenerSyncState::AwaitingCmd => {
 
                        match component::default_attempt_get(
 
                            &mut self.exec_state, self.pdl_input_port_id, PortInstruction::NoSource,
 
                            &mut self.inbox_main, &mut self.inbox_backup, sched_ctx, comp_ctx,
 
                            &mut self.control, &mut self.consensus
 
                        ) {
 
                            GetResult::Received(message) => {
 
                                let (tag_value, _) = message.content.values[0].as_union();
 
                                if tag_value == self.input_union_accept_tag {
 
                                    self.sync_state = ListenerSyncState::AcceptCommandReceived;
 
                                } else if tag_value == self.input_union_shutdown_tag {
 
                                    self.sync_state = ListenerSyncState::FinishSyncThenQuit;
 
                                } else {
 
                                    unreachable!("got tag_value {}", tag_value);
 
                                }
 

	
 
                                return CompScheduling::Immediate;
 
                            },
 
                            GetResult::NoMessage => {
 
                                return CompScheduling::Sleep;
 
                            },
 
                            GetResult::Error(location_and_message) => {
 
                                component::default_handle_error_for_builtin(&mut self.exec_state, sched_ctx, location_and_message);
 
                                return CompScheduling::Immediate;
 
                            }
 
                        }
 
                    },
 
                    ListenerSyncState::AcceptCommandReceived => {
 
                        let socket = self.socket_state.get_socket();
 
                        match socket.accept() {
 
                            Ok(client) => {
 
                                // Create the channels (and the inbox entries, to stay consistent
 
                                // with the expectations from the `component` module's functions)
 
                                let client = client.unwrap();
 
                                let cmd_channel = comp_ctx.create_channel();
 
                                let data_channel = comp_ctx.create_channel();
 

	
 
                                let port_ids = [
 
                                    cmd_channel.putter_id, cmd_channel.getter_id,
 
                                    data_channel.putter_id, data_channel.getter_id,
 
                                ];
 
                                for port_id in port_ids {
 
                                    let expected_port_index = self.inbox_main.len();
 
                                    let port_handle = comp_ctx.get_port_handle(port_id);
 
                                    self.inbox_main.push(None);
 
                                    self.consensus.notify_of_new_port(expected_port_index, port_handle, comp_ctx);
 
                                }
 

	
 
                                // Construct the message containing the appropriate ports that will
 
                                // be sent to the component commanding this listener.
 
                                let mut values = ValueGroup::new_stack(vec![
 
                                    Value::Unassigned, Value::Unassigned
 
                                ]);
 
                                values.values[self.output_struct_tx_index] = Value::Output(port_id_to_eval(cmd_channel.putter_id));
 
                                values.values[self.output_struct_rx_index] = Value::Input(port_id_to_eval(data_channel.getter_id));
 
                                let mut values = ValueGroup::new_stack(Vec::with_capacity(1));
 
                                values.values.push(Value::Struct(0));
 
                                values.regions.push(vec![Value::Unassigned, Value::Unassigned]);
 
                                values.regions[0][self.output_struct_tx_index] = Value::Output(port_id_to_eval(cmd_channel.putter_id));
 
                                values.regions[0][self.output_struct_rx_index] = Value::Input(port_id_to_eval(data_channel.getter_id));
 
                                if let Err(location_and_message) = component::default_send_data_message(
 
                                    &mut self.exec_state, self.pdl_output_port_id, PortInstruction::NoSource, values,
 
                                    sched_ctx, &mut self.consensus, &mut self.control, comp_ctx
 
                                ) {
 
                                    component::default_handle_error_for_builtin(
 
                                        &mut self.exec_state, sched_ctx, location_and_message
 
                                    );
 
                                }
 

	
 
                                // And finish the consensus round
 
                                component::default_handle_sync_end(&mut self.exec_state, sched_ctx, comp_ctx, &mut self.consensus);
 

	
 
                                // Enter a state such that when we leave the consensus round and
 
                                // go back to the nonsync state, that we will actually create the
 
                                // tcp client component.
 
                                self.sync_state = ListenerSyncState::AcceptChannelGenerated {
 
                                // Prepare for finishing the consensus round, and once finished,
 
                                // create the tcp client component
 
                                self.sync_state = ListenerSyncState::AcceptChannelGenerated;
 
                                debug_assert!(self.pending_component.is_none());
 
                                self.pending_component = Some(PendingComponent{
 
                                    client,
 
                                    cmd_rx: cmd_channel.getter_id,
 
                                    data_tx: data_channel.putter_id
 
                                };
 
                                });
 

	
 
                                return CompScheduling::Requeue;
 
                            },
 
                            Err(err) => {
 
                                if err.kind() == IoErrorKind::WouldBlock {
 
                                    return CompScheduling::Sleep;
 
                                } else {
 
                                    todo!("handle listener.accept error {:?}", err)
 
                                }
 
                            }
 
                        }
 
                    },
 
                    ListenerSyncState::AcceptChannelGenerated{ .. } => unreachable!(),
 
                    ListenerSyncState::FinishSyncThenQuit => {
 
                    ListenerSyncState::AcceptChannelGenerated => {
 
                        component::default_handle_sync_end(&mut self.exec_state, sched_ctx, comp_ctx, &mut self.consensus);
 
                        self.sync_state = ListenerSyncState::AcceptGenerateComponent;
 
                        return CompScheduling::Requeue;
 
                    }
 
                    ListenerSyncState::FinishSyncThenQuit => {
 
                        component::default_handle_sync_end(&mut self.exec_state, sched_ctx, comp_ctx, &mut self.consensus);
 
                        return CompScheduling::Requeue;
 
                    },
 
                    ListenerSyncState::AcceptGenerateComponent => unreachable!(),
 
                }
 
            },
 
            CompMode::BlockedGet => {
 
                return CompScheduling::Sleep;
 
            },
 
            CompMode::SyncEnd | CompMode::BlockedPut
 
                => return CompScheduling::Sleep,
 
            CompMode::StartExit =>
 
                return component::default_handle_start_exit(&mut self.exec_state, &mut self.control, sched_ctx, comp_ctx, &mut self.consensus),
 
            CompMode::BusyExit =>
 
                return component::default_handle_busy_exit(&mut self.exec_state, &mut self.control, sched_ctx),
 
            CompMode::Exit =>
 
                return component::default_handle_exit(&self.exec_state),
 
        }
 
    }
 
}
 

	
 
impl ComponentTcpListener {
 
    pub(crate) fn new(arguments: ValueGroup) -> Self {
 
        debug_assert_eq!(arguments.values.len(), 4);
 

	
 
        // Parsing arguments
 
        let (ip_address, port) = ip_addr_and_port_from_args(&arguments, 0, 1);
 
        let input_port = component::port_id_from_eval(arguments.values[2].as_input());
 
        let output_port = component::port_id_from_eval(arguments.values[3].as_output());
 

	
 
        let socket = SocketTcpListener::new(ip_address, port);
 
        if let Err(socket) = socket {
 
            todo!("friendly error reporting: failed to open socket (reason: {:?})", socket);
 
        }
 

	
 
        return Self {
 
            socket_state: ListenerSocketState::Connected(socket.unwrap()),
 
            sync_state: ListenerSyncState::AwaitingCmd,
 
            pending_component: None,
 
            poll_ticket: None,
 
            inbox_main: vec![None, None],
 
            inbox_backup: InboxBackup::new(),
 
            pdl_input_port_id: input_port,
 
            pdl_output_port_id: output_port,
 
            input_union_accept_tag: -1,
 
            input_union_shutdown_tag: -1,
 
            output_struct_tx_index: 0,
 
            output_struct_rx_index: 0,
 
            exec_state: CompExecState::new(),
 
            control: ControlLayer::default(),
 
            consensus: Consensus::new(),
 
        }
 
    }
 

	
 
    fn handle_incoming_data_message(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, message: DataMessage) {
 
        if self.exec_state.mode.is_in_sync_block() {
 
            self.consensus.handle_incoming_data_message(comp_ctx, &message);
 
        }
 

	
 
        match component::default_handle_incoming_data_message(
 
            &mut self.exec_state, &mut self.inbox_main, comp_ctx, message, sched_ctx, &mut self.control
 
        ) {
 
            IncomingData::PlacedInSlot => {},
 
            IncomingData::SlotFull(message) => {
 
                self.inbox_backup.push(message);
 
            }
 
        }
 
    }
 
}
 

	
 
fn ip_addr_and_port_from_args(
 
    arguments: &ValueGroup, ip_index: usize, port_index: usize
 
) -> (IpAddr, u16) {
 
    debug_assert!(ip_index < arguments.values.len());
 
    debug_assert!(port_index < arguments.values.len());
 

	
 
    // Parsing IP address
 
    let ip_heap_pos = arguments.values[0].as_array();
 
    let ip_elements = &arguments.regions[ip_heap_pos as usize];
 

	
 
    let ip_address = match ip_elements.len() {
 
        0 => IpAddr::V4(Ipv4Addr::UNSPECIFIED),
 
        4 => IpAddr::V4(Ipv4Addr::new(
 
            ip_elements[0].as_uint8(), ip_elements[1].as_uint8(),
 
            ip_elements[2].as_uint8(), ip_elements[3].as_uint8()
 
        )),
 
        _ => todo!("friendly error reporting: ip should contain 4 octets (or 0 for unspecified)")
 
    };
 

	
 
    let port = arguments.values[port_index].as_uint16();
 

	
 
    return (ip_address, port);
 
}
 

	
src/runtime2/tests/internet.rs
Show inline comments
 
@@ -27,48 +27,152 @@ fn test_stdlib_file() {
 
                while (keep_going) {
 
                    auto cmd = get(cmds);
 
                    if (let inet::ClientCmd::Send(data) = cmd) {
 
                        to_send = data;
 
                        keep_going = false;
 
                    } else if (let inet::ClientCmd::Receive = cmd) {
 
                        put(tx, to_send);
 
                    } else if (let inet::ClientCmd::Finish = cmd) {
 
                        keep_going = false;
 
                    } else if (let inet::ClientCmd::Shutdown = cmd) {
 
                        keep_going = false;
 
                        shutdown = true;
 
                    }
 
                }
 
            }
 
        }
 
    }
 

	
 
    comp fake_client(inet::TcpConnection conn) {
 
        sync put(conn.tx, inet::ClientCmd::Send({1, 3, 3, 7}));
 
        sync {
 
            put(conn.tx, inet::ClientCmd::Receive);
 
            auto val = get(conn.rx);
 
            while (val[0] != 1 || val[1] != 3 || val[2] != 3 || val[3] != 7) {
 
                print(\"this is going very wrong\");
 
            }
 
            put(conn.tx, inet::ClientCmd::Finish);
 
        }
 
        sync put(conn.tx, inet::ClientCmd::Shutdown);
 
    }
 

	
 
    comp constructor() {
 
        channel conn_tx -> conn_rx;
 
        new fake_listener_once(conn_tx);
 

	
 
        // Same crap as before:
 
        channel cmd_tx -> unused_cmd_rx;
 
        channel unused_data_tx -> data_rx;
 
        auto connection = inet::TcpConnection{ tx: cmd_tx, rx: data_rx };
 

	
 
        sync {
 
            connection = get(conn_rx);
 
        }
 

	
 
        new fake_client(connection);
 
    }
 
    ", "constructor", no_args());
 
}
 

	
 
#[test]
 
fn test_tcp_listener_and_client() {
 
    compile_and_create_component("
 
    import std.internet::*;
 

	
 
    func listen_port() -> u16 {
 
        return 2393;
 
    }
 

	
 
    comp server(u32 num_connections) {
 
        // Start tcp listener
 
        channel listen_cmd_tx -> listen_cmd_rx;
 
        channel listen_conn_tx -> listen_conn_rx;
 
        new tcp_listener({}, listen_port(), listen_cmd_rx, listen_conn_tx);
 

	
 
        // Fake channels such that we can create a dummy connection variable
 
        channel client_cmd_tx -> unused_client_cmd_rx;
 
        channel unused_client_data_tx -> client_data_rx;
 
        auto new_connection = TcpConnection{
 
            tx: client_cmd_tx,
 
            rx: client_data_rx,
 
        };
 

	
 
        auto connection_counter = 0;
 
        while (connection_counter < num_connections) {
 
            // Wait until we get a connection
 
            print(\"server: waiting for an accepted connection\");
 
            sync {
 
                put(listen_cmd_tx, ListenerCmd::Accept);
 
                new_connection = get(listen_conn_rx);
 
            }
 

	
 
            // We have a new connection, spawn an 'echoer' for it
 
            print(\"server: spawning an echo'ing component\");
 
            new echo_machine(new_connection);
 
            connection_counter += 1;
 
        }
 

	
 
        // Shut down the listener
 
        print(\"server: shutting down listener\");
 
    }
 

	
 
    // Waits for a single TCP byte (to simplify potentially having to
 
    // concatenate requests) and echos it
 
    comp echo_machine(TcpConnection conn) {
 
        auto data_to_echo = {};
 

	
 
        // Wait for a message
 
        sync {
 
            print(\"echo: receiving data\");
 
            put(conn.tx, ClientCmd::Receive);
 
            data_to_echo = get(conn.rx);
 
            put(conn.tx, ClientCmd::Finish);
 
        }
 

	
 
        // Echo the message
 
        print(\"echo: sending back data\");
 
        sync put(conn.tx, ClientCmd::Send(data_to_echo));
 

	
 
        // Ask the tcp connection to shut down
 
        print(\"echo: shutting down\");
 
        sync put(conn.tx, ClientCmd::Shutdown);
 
    }
 

	
 
    comp echo_requester(u8 byte_to_send) {
 
        channel cmd_tx -> cmd_rx;
 
        channel data_tx -> data_rx;
 
        new tcp_client({127, 0, 0, 1}, listen_port(), cmd_rx, data_tx);
 

	
 
        // Send the message
 
        print(\"requester: sending bytes\");
 
        sync put(cmd_tx, ClientCmd::Send({ byte_to_send }));
 

	
 
        // Receive the echo'd byte
 
        auto received_byte = byte_to_send + 1;
 
        sync {
 
            print(\"requester: receiving echo response\");
 
            put(cmd_tx, ClientCmd::Receive);
 
            received_byte = get(data_rx)[0];
 
            put(cmd_tx, ClientCmd::Finish);
 
        }
 

	
 
        // Silly check, as always
 
        while (byte_to_send != received_byte) {
 
            print(\"requester: Oh no! The echo is an otherworldly distorter\");
 
        }
 

	
 
        // Shut down the TCP connection
 
        print(\"requester: shutting down TCP component\");
 
        sync put(cmd_tx, ClientCmd::Shutdown);
 
    }
 

	
 
    comp constructor() {
 
        auto num_connections = 1;
 
        new server(num_connections);
 

	
 
        auto connection_index = 0;
 
        while (connection_index < num_connections) {
 
            new echo_requester(cast(connection_index));
 
        }
 
    }
 
    ", "constructor", no_args());
 
}
 
\ No newline at end of file
std/std.internet.pdl
Show inline comments
 
#module std.internet
 

	
 
union ClientCmd {
 
    Send(u8[]),
 
    Receive,
 
    Finish,
 
    Shutdown,
 
}
 

	
 
comp tcp_client(u8[] ip, u16 port, in<ClientCmd> cmds, out<u8[]> rx) {
 
    #builtin
 
}
 

	
 
union ListenerCmd {
 
    Accept,
 
    Shutdown,
 
}
 

	
 
struct TcpConnection {
 
    out<ClientCmd> tx,
 
    in<u8[]> rx,
 
}
 

	
 
/* comp tcp_listener(u8[] ip, u16 port, in<ListenerCmd> cmds, out<TcpConnection> rx) {
 
comp tcp_listener(u8[] ip, u16 port, in<ListenerCmd> cmds, out<TcpConnection> rx) {
 
    #builtin
 
} */
 
\ No newline at end of file
 
}
 
\ No newline at end of file
0 comments (0 inline, 0 general)