Changeset - 36cc1fe490f7
[Not reviewed]
Merge
! ! !
MH - 4 years ago 2021-11-15 12:23:58
contact@maxhenger.nl
Merge branch 'feat-api-cmds-and-branching'

Implements the programmer-facing API to allow programmatic
specification of a synchronous round. The way in which these put/get
interactions are performed is in an initial shape. Perhaps this will
change in the future.

The second main set of changes is the addion of a 'fork' statement,
which allows explicit forking, and allowing multiple puts/gets over the
same transport link within a single sync round.
18 files changed:
0 comments (0 inline, 0 general)
examples/bench_04/main.c
Show inline comments
 
#include <time.h>
 
#include "../../reowolf.h"
 
#include "../utility.c"
 
int main(int argc, char** argv) {
 
	int i, proto_components;
 
	proto_components = atoi(argv[1]);
 
	printf("proto_components: %d\n", proto_components);
 

	
 
	const unsigned char pdl[] = 
 
	"primitive trivial_loop() {   "
 
	"    while(true) synchronous{}"
 
	"    while(true) sync {}"
 
	"}                            "
 
	;
 
	Arc_ProtocolDescription * pd = protocol_description_parse(pdl, sizeof(pdl)-1);
 
	char logpath[] = "./bench_4.txt";
 
	Connector * c = connector_new_logging(pd, logpath, sizeof(logpath)-1);
 
	for (i=0; i<proto_components; i++) {
 
		char ident[] = "trivial_loop";
 
		connector_add_component(c, ident, sizeof(ident)-1, NULL, 0);
 
		printf("Error str `%s`\n", reowolf_error_peek(NULL));
 
	}
 
	connector_connect(c, -1);
 
	printf("Error str `%s`\n", reowolf_error_peek(NULL));
 
	
 
	clock_t begin = clock();
 
	for (i=0; i<1000000; i++) {
 
		connector_sync(c, -1);
 
	}
 
	clock_t end = clock();
 
	double time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
 
	printf("Time taken: %f\n", time_spent);
 
	return 0;
 
}
 
\ No newline at end of file
examples/bench_05/main.c
Show inline comments
 
#include <time.h>
 
#include "../../reowolf.h"
 
#include "../utility.c"
 
int main(int argc, char** argv) {
 
	int i, port_pairs, proto_components;
 
	port_pairs = atoi(argv[1]);
 
	proto_components = atoi(argv[2]);
 
	printf("port_pairs %d, proto_components: %d\n", port_pairs, proto_components);
 

	
 
	const unsigned char pdl[] = 
 
	"primitive trivial_loop() {   "
 
	"    while(true) synchronous{}"
 
	"    while(true) sync {}"
 
	"}                            "
 
	;
 
	Arc_ProtocolDescription * pd = protocol_description_parse(pdl, sizeof(pdl)-1);
 
	char logpath[] = "./bench_5.txt";
 
	Connector * c = connector_new_logging(pd, logpath, sizeof(logpath)-1);
 
	for (i=0; i<port_pairs; i++) {
 
		connector_add_port_pair(c, NULL, NULL);
 
	}
 
	for (i=0; i<proto_components; i++) {
 
		char ident[] = "trivial_loop";
 
		connector_add_component(c, ident, sizeof(ident)-1, NULL, 0);
 
		printf("Error str `%s`\n", reowolf_error_peek(NULL));
 
	}
 
	connector_connect(c, -1);
 
	printf("Error str `%s`\n", reowolf_error_peek(NULL));
 
	
 
	clock_t begin = clock();
 
	for (i=0; i<1000000; i++) {
 
		connector_sync(c, -1);
 
	}
 
	clock_t end = clock();
 
	double time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
 
	printf("Time taken: %f\n", time_spent);
 
	return 0;
 
}
 
\ No newline at end of file
examples/bench_09/main.c
Show inline comments
 
#include <time.h>
 
#include "../../reowolf.h"
 
#include "../utility.c"
 
int main(int argc, char** argv) {
 
	int i, proto_components;
 
	proto_components = atoi(argv[1]);
 
	printf("proto_components: %d\n", proto_components);
 

	
 
	const unsigned char pdl[] = 
 
	"primitive presync_work() {   "
 
	"    int i = 0;               "
 
	"    while(true) {            "
 
	"        i = 0;               "
 
	"        while(i < 2)  i++;   "
 
	"        synchronous {}       "
 
	"        sync {}       "
 
	"    }                        "
 
	"}                            "
 
	;
 
	Arc_ProtocolDescription * pd = protocol_description_parse(pdl, sizeof(pdl)-1);
 
	char logpath[] = "./bench_4.txt";
 
	Connector * c = connector_new_logging(pd, logpath, sizeof(logpath)-1);
 
	for (i=0; i<proto_components; i++) {
 
		char ident[] = "presync_work";
 
		connector_add_component(c, ident, sizeof(ident)-1, NULL, 0);
 
		printf("Error str `%s`\n", reowolf_error_peek(NULL));
 
	}
 
	connector_connect(c, -1);
 
	printf("Error str `%s`\n", reowolf_error_peek(NULL));
 
	
 
	clock_t begin = clock();
 
	for (i=0; i<1000000; i++) {
 
		connector_sync(c, -1);
 
	}
 
	clock_t end = clock();
 
	double time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
 
	printf("Time taken: %f\n", time_spent);
 
	return 0;
 
}
 
\ No newline at end of file
examples/bench_11/main.c
Show inline comments
 
#include <time.h>
 
#include "../../reowolf.h"
 
#include "../utility.c"
 
int main(int argc, char** argv) {
 
	int i, j, forwards, num_options, correct_index;
 
	forwards = atoi(argv[1]);
 
	num_options = atoi(argv[2]);
 
	printf("forwards %d, num_options %d\n",
 
		forwards, num_options);
 
	unsigned char pdl[] = 
 
	"primitive recv_zero(in a) {  "
 
	"    while(true) synchronous {"
 
	"    while(true) sync {"
 
	"        msg m = get(a);      "
 
	"        assert(m[0] == 0);   "
 
	"    }                        "
 
	"}                            "
 
	; 
 
	Arc_ProtocolDescription * pd = protocol_description_parse(pdl, sizeof(pdl)-1);
 
	printf("Error str `%s`\n", reowolf_error_peek(NULL));
 
	char logpath[] = "./bench_11.txt";
 
	Connector * c = connector_new_logging(pd, logpath, sizeof(logpath)-1);
 

	
 
	PortId native_putter, native_getter;
 
	connector_add_port_pair(c, &native_putter, &native_getter);
 
	for (i=0; i<forwards; i++) {
 
		// create a forward to tail of chain
 
		PortId putter, getter;
 
		connector_add_port_pair(c, &putter, &getter);
 
		// native ports: {native_putter, native_getter, putter, getter}
 
		// thread a forward component onto native_tail
 
		char ident[] = "forward";
 
		connector_add_component(c, ident, sizeof(ident)-1, (PortId[]){native_getter, putter}, 2);
 
		// native ports: {native_putter, getter}
 
		printf("Error str `%s`\n", reowolf_error_peek(NULL));
 
		native_getter = getter;
 
	}
 
	// add "recv_zero" on end of chain
 
	char ident[] = "recv_zero";
 
	connector_add_component(c, ident, sizeof(ident)-1, &native_getter, 1);
 
	connector_connect(c, -1);
 
	printf("Error str `%s`\n", reowolf_error_peek(NULL));
 
	
 
	clock_t begin = clock();
 
	char msg = 0;
 
	for (i=0; i<1000; i++) {
 
		correct_index = i%num_options;
 
		for(j=0; j<num_options; j++) {
 
			msg = j==correct_index ? 0 : 1;
 
			connector_put_bytes(c, native_putter, &msg, 1);
 
			if(j+1 < num_options) {
 
				connector_next_batch(c);
 
			}
 
		}	
 
		connector_sync(c, -1);	
 
	}
 
	clock_t end = clock();
 
	double time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
 
	printf("Time taken: %f\n", time_spent);
 
	return 0;
 
}
 
\ No newline at end of file
examples/bench_23/main.c
Show inline comments
 
#include <time.h>
 
#include "../../reowolf.h"
 
#include "../utility.c"
 
int main(int argc, char** argv) {
 
	int i;
 

	
 
	// unsigned char pdl[] = "\
 
	// primitive xrouter(in a, out b, out c) {\
 
 //        while(true) synchronous {\
 
 //        while(true) sync {\
 
 //            if(fires(a)) {\
 
 //                if(fires(b)) put(b, get(a));\
 
 //                else         put(c, get(a));\
 
 //            }\
 
 //        }\
 
 //    }"
 
 //    ;
 
	unsigned char pdl[] = "\
 
	primitive lossy(in a, out b) {\
 
        while(true) synchronous {\
 
        while(true) sync {\
 
            if(fires(a)) {\
 
                msg m = get(a);\
 
                if(fires(b)) put(b, m);\
 
            }\
 
        }\
 
    }\
 
    primitive sync_drain(in a, in b) {\
 
        while(true) synchronous {\
 
        while(true) sync {\
 
            if(fires(a)) {\
 
                get(a);\
 
                get(b);\
 
            }\
 
        }\
 
    }\
 
    composite xrouter(in a, out b, out c) {\
 
        channel d -> e;\
 
        channel f -> g;\
 
        channel h -> i;\
 
        channel j -> k;\
 
        channel l -> m;\
 
        channel n -> o;\
 
        channel p -> q;\
 
        channel r -> s;\
 
        channel t -> u;\
 
        new replicator(a, d, f);\
 
        new replicator(g, t, h);\
 
        new lossy(e, l);\
 
        new lossy(i, j);\
 
        new replicator(m, b, p);\
 
        new replicator(k, n, c);\
 
        new merger(q, o, r);\
 
        new sync_drain(u, s);\
 
    }"
 
    ;
 
	Arc_ProtocolDescription * pd = protocol_description_parse(pdl, sizeof(pdl)-1);
 
	Connector * c = connector_new_with_id(pd, 0);
 
	printf("Error str `%s`\n", reowolf_error_peek(NULL));
 

	
 
	PortId ports[6];
 
	for(i=0; i<3; i++) {
 
		connector_add_port_pair(c, &ports[2*i], &ports[2*i+1]);
 
	}
 
	// [native~~~~~~~~~~]
 
	//  0  1  2  3  4  5
 
	//  |  ^  |  ^  |  ^  
 
	//  `--`  `--`  `--`  
 
	char ident[] = "xrouter";
 
	connector_add_component(
 
		c,
 
		ident,
 
		sizeof(ident)-1,
 
		(PortId[]) { ports[1], ports[2], ports[4] },
 
		3);
 
	printf("Error str `%s`\n", reowolf_error_peek(NULL));
 

	
 
	// [native~~~~~~~~~~]
 
	//  0        3     5
 
	//  V        ^     ^  
 
	//  1        2     4  
 
	// [xrouter~~~~~~~~~]
 
	connector_connect(c, -1);
 
	printf("Connect OK!\n");
 
	
 
	int msg_len = 1000;
 
	char * msg = malloc(msg_len);
 
	memset(msg, 42, msg_len);
 

	
 
	{
 
		clock_t begin = clock();
 
		for (i=0; i<100000; i++) {
 
			connector_put_bytes(c, ports[0], msg, msg_len);
 
			connector_get(c, ports[3]);
 
			connector_sync(c, -1);
 
		}
 
		clock_t end = clock();
 
		double time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
 
		printf("First: %f\n", time_spent);
 
	}
 
	{
 
		clock_t begin = clock();
 
		for (i=0; i<100000; i++) {
 
			connector_put_bytes(c, ports[0], msg, msg_len);
 
			connector_get(c, ports[5]);
 
			connector_sync(c, -1);
 
		}
 
		clock_t end = clock();
 
		double time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
 
		printf("Second: %f\n", time_spent);
 
	}
 
	{
 
		clock_t begin = clock();
 
		for (i=0; i<100000; i++) {
 
			connector_put_bytes(c, ports[0], msg, msg_len);
 
			connector_get(c, ports[3 + (i%2)*2]);
 
			connector_sync(c, -1);
 
		}
 
		clock_t end = clock();
 
		double time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
 
		printf("Alternating: %f\n", time_spent);
 
	}
 
	free(msg);
 
	return 0;
 
}
 
\ No newline at end of file
examples/bench_24/main.c
Show inline comments
 
#include <time.h>
 
#include "../../reowolf.h"
 
#include "../utility.c"
 
int main(int argc, char** argv) {
 
	int i, j;
 

	
 
	unsigned char pdl[] = "\
 
	primitive fifo1_init(msg m, in a, out b) {\
 
        while(true) synchronous {\
 
        while(true) sync {\
 
            if(m != null && fires(b)) {\
 
                put(b, m);\
 
                m = null;\
 
            } else if (m == null && fires(a)) {\
 
                m = get(a);\
 
            }\
 
        }\
 
    }\
 
    composite fifo1_full(in a, out b) {\
 
        new fifo1_init(create(0), a, b);\
 
    }\
 
    composite fifo1(in a, out b) {\
 
        new fifo1_init(null, a, b);\
 
    }\
 
    composite sequencer3(out a, out b, out c) {\
 
        channel d -> e;\
 
        channel f -> g;\
 
        channel h -> i;\
 
        channel j -> k;\
 
        channel l -> m;\
 
        channel n -> o;\
 
        new fifo1_full(o, d);\
 
        new replicator(e, f, a);\
 
        new fifo1(g, h);\
 
        new replicator(i, j, b);\
 
        new fifo1(k, l);\
 
        new replicator(m, n, c);\
 
    }"
 
    ;
 
	// unsigned char pdl[] = "\
 
	// primitive sequencer3(out a, out b, out c) {\
 
 //        int i = 0;\
 
 //        while(true) synchronous {\
 
 //        while(true) sync {\
 
 //            out to = a;\
 
 //            if     (i==1) to = b;\
 
 //            else if(i==2) to = c;\
 
 //            if(fires(to)) {\
 
 //                put(to, create(0));\
 
 //                i = (i + 1)%3;\
 
 //            }\
 
 //        }\
 
 //    }"
 
    ;
 
	Arc_ProtocolDescription * pd = protocol_description_parse(pdl, sizeof(pdl)-1);
 
	Connector * c = connector_new_with_id(pd, 0);
 
	printf("Error str `%s`\n", reowolf_error_peek(NULL));
 

	
 
	PortId putters[3], getters[3];
 
	for(i=0; i<3; i++) {
 
		connector_add_port_pair(c, &putters[i], &getters[i]);
 
	}
 
	char ident[] = "sequencer3";
 
	connector_add_component(c, ident, sizeof(ident)-1, putters, 3);
 
	printf("Error str `%s`\n", reowolf_error_peek(NULL));
 
	connector_connect(c, -1);
 
	printf("Connect OK!\n");
 

	
 
	clock_t begin = clock();
 
	for (i=0; i<1000000/3; i++) {
 
		for (j=0; j<3; j++) {
 
			connector_get(c, getters[j]);
 
			connector_sync(c, -1);
 
		}
 
	}
 
	clock_t end = clock();
 
	double time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
 
	printf("Time taken: %f\n", time_spent);
 
	return 0;
 
}
 
\ No newline at end of file
examples/bench_27/main.c
Show inline comments
 
#include <time.h>
 
#include "../../reowolf.h"
 
#include "../utility.c"
 
int main(int argc, char** argv) {
 
    int i, rounds;
 
    char optimized = argv[1][0];
 
    rounds = atoi(argv[2]);
 
    printf("optimized %c, rounds %d\n", optimized, rounds);
 

	
 
    unsigned char pdl[] = "\
 
    primitive xrouter(in a, out b, out c) {\
 
        while(true) synchronous {\
 
        while(true) sync {\
 
            if(fires(a)) {\
 
                if(fires(b)) put(b, get(a));\
 
                else         put(c, get(a));\
 
            }\
 
        }\
 
    }\
 
    ";
 
    Arc_ProtocolDescription * pd = protocol_description_parse(pdl, sizeof(pdl)-1);
 
    printf("Error str `%s`\n", reowolf_error_peek(NULL));
 
    Connector * c = connector_new_with_id(pd, 0);
 
    PortId ports[8];
 
    if(optimized=='y') {
 
        connector_add_port_pair(c, &ports[0], &ports[1]);
 
        connector_add_port_pair(c, &ports[2], &ports[7]); // 3,4,5,6 uninitialized
 
        connector_add_component(c, "sync", 4, ports+1, 2);
 
        printf("Error str `%s`\n", reowolf_error_peek(NULL));
 
    } else {
 
        for(i=0; i<4; i++) {
 
            connector_add_port_pair(c, &ports[i*2+0], &ports[i*2+1]);
 
        }
 
        connector_add_component(c, "xrouter", 7, (PortId[]) {ports[1],ports[2],ports[4]}, 3);
 
        printf("Error str `%s`\n", reowolf_error_peek(NULL));
 
        connector_add_component(c, "merger" , 6, (PortId[]) {ports[3],ports[5],ports[6]}, 3);
 
        printf("Error str `%s`\n", reowolf_error_peek(NULL));
 
    }
 
    connector_connect(c, -1);
 
    printf("Error str `%s`\n", reowolf_error_peek(NULL));
 

	
 
    size_t msg_len = 1000;
 
    char * msg = malloc(msg_len);
 
    memset(msg, 42, msg_len);
 
    
 
    clock_t begin = clock();
 
    for (i=0; i<rounds; i++) {
 
        connector_put_bytes(c, ports[0], msg, msg_len);
 
        connector_get(c, ports[7]);
 
        connector_sync(c, -1);
 
    }
 
    clock_t end = clock();
 
    double time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
 
    printf("Time Spent: %f\n", time_spent);
 

	
 
    free(msg);
 
    return 0;
 
}
 
\ No newline at end of file
examples/eg_protocols.pdl
Show inline comments
 
primitive pres_2(in i, out o) {
 
  synchronous {
 
  sync {
 
    put(o, get(i));
 
  }
 
}
 
primitive together(in ia, in ib, out oa, out ob){
 
  while(true) synchronous {
 
  while(true) sync {
 
    if(fires(ia)) {
 
      put(oa, get(ia));
 
      put(ob, get(ib));
 
    }
 
  }	
 
}
 

	
 
primitive alt_round_merger(in a, in b, out c){
 
  while(true) {
 
    synchronous{ put(c, get(a)); }
 
    synchronous{ put(c, get(b)); }
 
    sync { put(c, get(a)); }
 
    sync { put(c, get(b)); }
 
  }	
 
}
src/protocol/ast.rs
Show inline comments
 
@@ -45,192 +45,194 @@ macro_rules! define_aliased_ast_id {
 
        impl Heap {
 
            pub fn $fn_name(&mut self, f: impl FnOnce($name) -> $indexed_type) -> $name {
 
                self.$indexed_arena.alloc_with_id(|id| f(id))
 
            }
 
        }
 
    };
 
}
 

	
 
/// Helper macro that defines a wrapper type for a particular variant of an AST
 
/// element ID. Only used to define single-wrapping IDs.
 
macro_rules! define_new_ast_id {
 
    // Variant where we just defined the new type, without any indexing
 
    ($name:ident, $parent:ty) => {
 
        #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
 
        pub struct $name (pub(crate) $parent);
 

	
 
        #[allow(dead_code)]
 
        impl $name {
 
            pub(crate) fn new_invalid() -> Self     { Self(<$parent>::new_invalid()) }
 
            pub(crate) fn is_invalid(&self) -> bool { self.0.is_invalid() }
 
            pub fn upcast(self) -> $parent          { self.0 }
 
        }
 
    };
 
    // Variant where we define the type, and the Index and IndexMut traits
 
    (
 
        $name:ident, $parent:ty, 
 
        index($indexed_type:ty, $wrapper_type:path, $indexed_arena:ident)
 
    ) => {
 
        define_new_ast_id!($name, $parent);
 
        impl Index<$name> for Heap {
 
            type Output = $indexed_type;
 
            fn index(&self, index: $name) -> &Self::Output {
 
                if let $wrapper_type(v) = &self.$indexed_arena[index.0] {
 
                    v
 
                } else {
 
                    unreachable!()
 
                }
 
            }
 
        }
 

	
 
        impl IndexMut<$name> for Heap {
 
            fn index_mut(&mut self, index: $name) -> &mut Self::Output {
 
                if let $wrapper_type(v) = &mut self.$indexed_arena[index.0] {
 
                    v
 
                } else {
 
                    unreachable!()
 
                }
 
            }
 
        }
 
    };
 
    // Variant where we define the type, the Index and IndexMut traits, and an allocation function
 
    (
 
        $name:ident, $parent:ty, 
 
        index($indexed_type:ty, $wrapper_type:path, $indexed_arena:ident),
 
        alloc($fn_name:ident)
 
    ) => {
 
        define_new_ast_id!($name, $parent, index($indexed_type, $wrapper_type, $indexed_arena));
 
        impl Heap {
 
            pub fn $fn_name(&mut self, f: impl FnOnce($name) -> $indexed_type) -> $name {
 
                $name(
 
                    self.$indexed_arena.alloc_with_id(|id| {
 
                        $wrapper_type(f($name(id)))
 
                    })
 
                )
 
            }
 
        }
 
    }
 
}
 

	
 
define_aliased_ast_id!(RootId, Id<Root>, index(Root, protocol_descriptions), alloc(alloc_protocol_description));
 
define_aliased_ast_id!(PragmaId, Id<Pragma>, index(Pragma, pragmas), alloc(alloc_pragma));
 
define_aliased_ast_id!(ImportId, Id<Import>, index(Import, imports), alloc(alloc_import));
 
define_aliased_ast_id!(VariableId, Id<Variable>, index(Variable, variables), alloc(alloc_variable));
 

	
 
define_aliased_ast_id!(DefinitionId, Id<Definition>, index(Definition, definitions));
 
define_new_ast_id!(StructDefinitionId, DefinitionId, index(StructDefinition, Definition::Struct, definitions), alloc(alloc_struct_definition));
 
define_new_ast_id!(EnumDefinitionId, DefinitionId, index(EnumDefinition, Definition::Enum, definitions), alloc(alloc_enum_definition));
 
define_new_ast_id!(UnionDefinitionId, DefinitionId, index(UnionDefinition, Definition::Union, definitions), alloc(alloc_union_definition));
 
define_new_ast_id!(ComponentDefinitionId, DefinitionId, index(ComponentDefinition, Definition::Component, definitions), alloc(alloc_component_definition));
 
define_new_ast_id!(FunctionDefinitionId, DefinitionId, index(FunctionDefinition, Definition::Function, definitions), alloc(alloc_function_definition));
 

	
 
define_aliased_ast_id!(StatementId, Id<Statement>, index(Statement, statements));
 
define_new_ast_id!(BlockStatementId, StatementId, index(BlockStatement, Statement::Block, statements), alloc(alloc_block_statement));
 
define_new_ast_id!(EndBlockStatementId, StatementId, index(EndBlockStatement, Statement::EndBlock, statements), alloc(alloc_end_block_statement));
 
define_new_ast_id!(LocalStatementId, StatementId, index(LocalStatement, Statement::Local, statements), alloc(alloc_local_statement));
 
define_new_ast_id!(MemoryStatementId, LocalStatementId);
 
define_new_ast_id!(ChannelStatementId, LocalStatementId);
 
define_new_ast_id!(LabeledStatementId, StatementId, index(LabeledStatement, Statement::Labeled, statements), alloc(alloc_labeled_statement));
 
define_new_ast_id!(IfStatementId, StatementId, index(IfStatement, Statement::If, statements), alloc(alloc_if_statement));
 
define_new_ast_id!(EndIfStatementId, StatementId, index(EndIfStatement, Statement::EndIf, statements), alloc(alloc_end_if_statement));
 
define_new_ast_id!(WhileStatementId, StatementId, index(WhileStatement, Statement::While, statements), alloc(alloc_while_statement));
 
define_new_ast_id!(EndWhileStatementId, StatementId, index(EndWhileStatement, Statement::EndWhile, statements), alloc(alloc_end_while_statement));
 
define_new_ast_id!(BreakStatementId, StatementId, index(BreakStatement, Statement::Break, statements), alloc(alloc_break_statement));
 
define_new_ast_id!(ContinueStatementId, StatementId, index(ContinueStatement, Statement::Continue, statements), alloc(alloc_continue_statement));
 
define_new_ast_id!(SynchronousStatementId, StatementId, index(SynchronousStatement, Statement::Synchronous, statements), alloc(alloc_synchronous_statement));
 
define_new_ast_id!(EndSynchronousStatementId, StatementId, index(EndSynchronousStatement, Statement::EndSynchronous, statements), alloc(alloc_end_synchronous_statement));
 
define_new_ast_id!(ForkStatementId, StatementId, index(ForkStatement, Statement::Fork, statements), alloc(alloc_fork_statement));
 
define_new_ast_id!(EndForkStatementId, StatementId, index(EndForkStatement, Statement::EndFork, statements), alloc(alloc_end_fork_statement));
 
define_new_ast_id!(ReturnStatementId, StatementId, index(ReturnStatement, Statement::Return, statements), alloc(alloc_return_statement));
 
define_new_ast_id!(GotoStatementId, StatementId, index(GotoStatement, Statement::Goto, statements), alloc(alloc_goto_statement));
 
define_new_ast_id!(NewStatementId, StatementId, index(NewStatement, Statement::New, statements), alloc(alloc_new_statement));
 
define_new_ast_id!(ExpressionStatementId, StatementId, index(ExpressionStatement, Statement::Expression, statements), alloc(alloc_expression_statement));
 

	
 
define_aliased_ast_id!(ExpressionId, Id<Expression>, index(Expression, expressions));
 
define_new_ast_id!(AssignmentExpressionId, ExpressionId, index(AssignmentExpression, Expression::Assignment, expressions), alloc(alloc_assignment_expression));
 
define_new_ast_id!(BindingExpressionId, ExpressionId, index(BindingExpression, Expression::Binding, expressions), alloc(alloc_binding_expression));
 
define_new_ast_id!(ConditionalExpressionId, ExpressionId, index(ConditionalExpression, Expression::Conditional, expressions), alloc(alloc_conditional_expression));
 
define_new_ast_id!(BinaryExpressionId, ExpressionId, index(BinaryExpression, Expression::Binary, expressions), alloc(alloc_binary_expression));
 
define_new_ast_id!(UnaryExpressionId, ExpressionId, index(UnaryExpression, Expression::Unary, expressions), alloc(alloc_unary_expression));
 
define_new_ast_id!(IndexingExpressionId, ExpressionId, index(IndexingExpression, Expression::Indexing, expressions), alloc(alloc_indexing_expression));
 
define_new_ast_id!(SlicingExpressionId, ExpressionId, index(SlicingExpression, Expression::Slicing, expressions), alloc(alloc_slicing_expression));
 
define_new_ast_id!(SelectExpressionId, ExpressionId, index(SelectExpression, Expression::Select, expressions), alloc(alloc_select_expression));
 
define_new_ast_id!(LiteralExpressionId, ExpressionId, index(LiteralExpression, Expression::Literal, expressions), alloc(alloc_literal_expression));
 
define_new_ast_id!(CastExpressionId, ExpressionId, index(CastExpression, Expression::Cast, expressions), alloc(alloc_cast_expression));
 
define_new_ast_id!(CallExpressionId, ExpressionId, index(CallExpression, Expression::Call, expressions), alloc(alloc_call_expression));
 
define_new_ast_id!(VariableExpressionId, ExpressionId, index(VariableExpression, Expression::Variable, expressions), alloc(alloc_variable_expression));
 

	
 
#[derive(Debug)]
 
pub struct Heap {
 
    // Root arena, contains the entry point for different modules. Each root
 
    // contains lists of IDs that correspond to the other arenas.
 
    pub(crate) protocol_descriptions: Arena<Root>,
 
    // Contents of a file, these are the elements the `Root` elements refer to
 
    pragmas: Arena<Pragma>,
 
    pub(crate) imports: Arena<Import>,
 
    pub(crate) variables: Arena<Variable>,
 
    pub(crate) definitions: Arena<Definition>,
 
    pub(crate) statements: Arena<Statement>,
 
    pub(crate) expressions: Arena<Expression>,
 
}
 

	
 
impl Heap {
 
    pub fn new() -> Heap {
 
        Heap {
 
            // string_alloc: StringAllocator::new(),
 
            protocol_descriptions: Arena::new(),
 
            pragmas: Arena::new(),
 
            imports: Arena::new(),
 
            variables: Arena::new(),
 
            definitions: Arena::new(),
 
            statements: Arena::new(),
 
            expressions: Arena::new(),
 
        }
 
    }
 
    pub fn alloc_memory_statement(
 
        &mut self,
 
        f: impl FnOnce(MemoryStatementId) -> MemoryStatement,
 
    ) -> MemoryStatementId {
 
        MemoryStatementId(LocalStatementId(self.statements.alloc_with_id(|id| {
 
            Statement::Local(LocalStatement::Memory(
 
                f(MemoryStatementId(LocalStatementId(id)))
 
            ))
 
        })))
 
    }
 
    pub fn alloc_channel_statement(
 
        &mut self,
 
        f: impl FnOnce(ChannelStatementId) -> ChannelStatement,
 
    ) -> ChannelStatementId {
 
        ChannelStatementId(LocalStatementId(self.statements.alloc_with_id(|id| {
 
            Statement::Local(LocalStatement::Channel(
 
                f(ChannelStatementId(LocalStatementId(id)))
 
            ))
 
        })))
 
    }
 
}
 

	
 
impl Index<MemoryStatementId> for Heap {
 
    type Output = MemoryStatement;
 
    fn index(&self, index: MemoryStatementId) -> &Self::Output {
 
        &self.statements[index.0.0].as_memory()
 
    }
 
}
 

	
 
impl Index<ChannelStatementId> for Heap {
 
    type Output = ChannelStatement;
 
    fn index(&self, index: ChannelStatementId) -> &Self::Output {
 
        &self.statements[index.0.0].as_channel()
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct Root {
 
    pub this: RootId,
 
    // Phase 1: parser
 
    // pub position: InputPosition,
 
    pub pragmas: Vec<PragmaId>,
 
    pub imports: Vec<ImportId>,
 
    pub definitions: Vec<DefinitionId>,
 
}
 

	
 
impl Root {
 
    pub fn get_definition_ident(&self, h: &Heap, id: &[u8]) -> Option<DefinitionId> {
 
        for &def in self.definitions.iter() {
 
            if h[def].identifier().value.as_bytes() == id {
 
@@ -942,440 +944,461 @@ pub struct UnionDefinition {
 
impl UnionDefinition {
 
    pub(crate) fn new_empty(
 
        this: UnionDefinitionId, defined_in: RootId, span: InputSpan,
 
        identifier: Identifier, poly_vars: Vec<Identifier>
 
    ) -> Self {
 
        Self{ this, defined_in, span, identifier, poly_vars, variants: Vec::new() }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy)]
 
pub enum ComponentVariant {
 
    Primitive,
 
    Composite,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ComponentDefinition {
 
    pub this: ComponentDefinitionId,
 
    pub defined_in: RootId,
 
    // Symbol scanning
 
    pub span: InputSpan,
 
    pub variant: ComponentVariant,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    // Parsing
 
    pub parameters: Vec<VariableId>,
 
    pub body: BlockStatementId,
 
    // Validation/linking
 
    pub num_expressions_in_body: i32,
 
}
 

	
 
impl ComponentDefinition {
 
    // Used for preallocation during symbol scanning
 
    pub(crate) fn new_empty(
 
        this: ComponentDefinitionId, defined_in: RootId, span: InputSpan,
 
        variant: ComponentVariant, identifier: Identifier, poly_vars: Vec<Identifier>
 
    ) -> Self {
 
        Self{ 
 
            this, defined_in, span, variant, identifier, poly_vars,
 
            parameters: Vec::new(), 
 
            body: BlockStatementId::new_invalid(),
 
            num_expressions_in_body: -1,
 
        }
 
    }
 
}
 

	
 
// Note that we will have function definitions for builtin functions as well. In
 
// that case the span, the identifier span and the body are all invalid.
 
#[derive(Debug, Clone)]
 
pub struct FunctionDefinition {
 
    pub this: FunctionDefinitionId,
 
    pub defined_in: RootId,
 
    // Symbol scanning
 
    pub builtin: bool,
 
    pub span: InputSpan,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    // Parser
 
    pub return_types: Vec<ParserType>,
 
    pub parameters: Vec<VariableId>,
 
    pub body: BlockStatementId,
 
    // Validation/linking
 
    pub num_expressions_in_body: i32,
 
}
 

	
 
impl FunctionDefinition {
 
    pub(crate) fn new_empty(
 
        this: FunctionDefinitionId, defined_in: RootId, span: InputSpan,
 
        identifier: Identifier, poly_vars: Vec<Identifier>
 
    ) -> Self {
 
        Self {
 
            this, defined_in,
 
            builtin: false,
 
            span, identifier, poly_vars,
 
            return_types: Vec::new(),
 
            parameters: Vec::new(),
 
            body: BlockStatementId::new_invalid(),
 
            num_expressions_in_body: -1,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Statement {
 
    Block(BlockStatement),
 
    EndBlock(EndBlockStatement),
 
    Local(LocalStatement),
 
    Labeled(LabeledStatement),
 
    If(IfStatement),
 
    EndIf(EndIfStatement),
 
    While(WhileStatement),
 
    EndWhile(EndWhileStatement),
 
    Break(BreakStatement),
 
    Continue(ContinueStatement),
 
    Synchronous(SynchronousStatement),
 
    EndSynchronous(EndSynchronousStatement),
 
    Fork(ForkStatement),
 
    EndFork(EndForkStatement),
 
    Return(ReturnStatement),
 
    Goto(GotoStatement),
 
    New(NewStatement),
 
    Expression(ExpressionStatement),
 
}
 

	
 
impl Statement {
 
    pub fn as_block(&self) -> &BlockStatement {
 
        match self {
 
            Statement::Block(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `BlockStatement`"),
 
        }
 
    }
 
    pub fn as_local(&self) -> &LocalStatement {
 
        match self {
 
            Statement::Local(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `LocalStatement`"),
 
        }
 
    }
 
    pub fn as_memory(&self) -> &MemoryStatement {
 
        self.as_local().as_memory()
 
    }
 
    pub fn as_channel(&self) -> &ChannelStatement {
 
        self.as_local().as_channel()
 
    }
 

	
 
    pub fn as_new(&self) -> &NewStatement {
 
        match self {
 
            Statement::New(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `NewStatement`"),
 
        }
 
    }
 

	
 
    pub fn span(&self) -> InputSpan {
 
        match self {
 
            Statement::Block(v) => v.span,
 
            Statement::Local(v) => v.span(),
 
            Statement::Labeled(v) => v.label.span,
 
            Statement::If(v) => v.span,
 
            Statement::While(v) => v.span,
 
            Statement::Break(v) => v.span,
 
            Statement::Continue(v) => v.span,
 
            Statement::Synchronous(v) => v.span,
 
            Statement::Fork(v) => v.span,
 
            Statement::Return(v) => v.span,
 
            Statement::Goto(v) => v.span,
 
            Statement::New(v) => v.span,
 
            Statement::Expression(v) => v.span,
 
            Statement::EndBlock(_) | Statement::EndIf(_) | Statement::EndWhile(_) | Statement::EndSynchronous(_) => unreachable!(),
 
            Statement::EndBlock(_) | Statement::EndIf(_) | Statement::EndWhile(_) | Statement::EndSynchronous(_) | Statement::EndFork(_) => unreachable!(),
 
        }
 
    }
 
    pub fn link_next(&mut self, next: StatementId) {
 
        match self {
 
            Statement::Block(stmt) => stmt.next = next,
 
            Statement::EndBlock(stmt) => stmt.next = next,
 
            Statement::Local(stmt) => match stmt {
 
                LocalStatement::Channel(stmt) => stmt.next = next,
 
                LocalStatement::Memory(stmt) => stmt.next = next,
 
            },
 
            Statement::EndIf(stmt) => stmt.next = next,
 
            Statement::EndWhile(stmt) => stmt.next = next,
 
            Statement::EndSynchronous(stmt) => stmt.next = next,
 
            Statement::EndFork(stmt) => stmt.next = next,
 
            Statement::New(stmt) => stmt.next = next,
 
            Statement::Expression(stmt) => stmt.next = next,
 
            Statement::Return(_)
 
            | Statement::Break(_)
 
            | Statement::Continue(_)
 
            | Statement::Synchronous(_)
 
            | Statement::Fork(_)
 
            | Statement::Goto(_)
 
            | Statement::While(_)
 
            | Statement::Labeled(_)
 
            | Statement::If(_) => unreachable!(),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct BlockStatement {
 
    pub this: BlockStatementId,
 
    // Phase 1: parser
 
    pub is_implicit: bool,
 
    pub span: InputSpan, // of the complete block
 
    pub statements: Vec<StatementId>,
 
    pub end_block: EndBlockStatementId,
 
    // Phase 2: linker
 
    pub scope_node: ScopeNode,
 
    pub first_unique_id_in_scope: i32, // Temporary fix until proper bytecode/asm is generated
 
    pub next_unique_id_in_scope: i32, // Temporary fix until proper bytecode/asm is generated
 
    pub relative_pos_in_parent: u32,
 
    pub locals: Vec<VariableId>,
 
    pub labels: Vec<LabeledStatementId>,
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EndBlockStatement {
 
    pub this: EndBlockStatementId,
 
    // Parser
 
    pub start_block: BlockStatementId,
 
    // Validation/Linking
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum LocalStatement {
 
    Memory(MemoryStatement),
 
    Channel(ChannelStatement),
 
}
 

	
 
impl LocalStatement {
 
    pub fn this(&self) -> LocalStatementId {
 
        match self {
 
            LocalStatement::Memory(stmt) => stmt.this.upcast(),
 
            LocalStatement::Channel(stmt) => stmt.this.upcast(),
 
        }
 
    }
 
    pub fn as_memory(&self) -> &MemoryStatement {
 
        match self {
 
            LocalStatement::Memory(result) => result,
 
            _ => panic!("Unable to cast `LocalStatement` to `MemoryStatement`"),
 
        }
 
    }
 
    pub fn as_channel(&self) -> &ChannelStatement {
 
        match self {
 
            LocalStatement::Channel(result) => result,
 
            _ => panic!("Unable to cast `LocalStatement` to `ChannelStatement`"),
 
        }
 
    }
 
    pub fn span(&self) -> InputSpan {
 
        match self {
 
            LocalStatement::Channel(v) => v.span,
 
            LocalStatement::Memory(v) => v.span,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct MemoryStatement {
 
    pub this: MemoryStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan,
 
    pub variable: VariableId,
 
    // Phase 2: linker
 
    pub next: StatementId,
 
}
 

	
 
/// ChannelStatement is the declaration of an input and output port associated
 
/// with the same channel. Note that the polarity of the ports are from the
 
/// point of view of the component. So an output port is something that a
 
/// component uses to send data over (i.e. it is the "input end" of the
 
/// channel), and vice versa.
 
#[derive(Debug, Clone)]
 
pub struct ChannelStatement {
 
    pub this: ChannelStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "channel" keyword
 
    pub from: VariableId, // output
 
    pub to: VariableId,   // input
 
    // Phase 2: linker
 
    pub relative_pos_in_block: u32,
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct LabeledStatement {
 
    pub this: LabeledStatementId,
 
    // Phase 1: parser
 
    pub label: Identifier,
 
    pub body: StatementId,
 
    // Phase 2: linker
 
    pub relative_pos_in_block: u32,
 
    pub in_sync: SynchronousStatementId, // may be invalid
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct IfStatement {
 
    pub this: IfStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "if" keyword
 
    pub test: ExpressionId,
 
    pub true_body: BlockStatementId,
 
    pub false_body: Option<BlockStatementId>,
 
    pub end_if: EndIfStatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EndIfStatement {
 
    pub this: EndIfStatementId,
 
    pub start_if: IfStatementId,
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct WhileStatement {
 
    pub this: WhileStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "while" keyword
 
    pub test: ExpressionId,
 
    pub body: BlockStatementId,
 
    pub end_while: EndWhileStatementId,
 
    pub in_sync: SynchronousStatementId, // may be invalid
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EndWhileStatement {
 
    pub this: EndWhileStatementId,
 
    pub start_while: WhileStatementId,
 
    // Phase 2: linker
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct BreakStatement {
 
    pub this: BreakStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "break" keyword
 
    pub label: Option<Identifier>,
 
    // Phase 2: linker
 
    pub target: Option<EndWhileStatementId>,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ContinueStatement {
 
    pub this: ContinueStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "continue" keyword
 
    pub label: Option<Identifier>,
 
    // Phase 2: linker
 
    pub target: Option<WhileStatementId>,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct SynchronousStatement {
 
    pub this: SynchronousStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "sync" keyword
 
    pub body: BlockStatementId,
 
    // Phase 2: linker
 
    pub end_sync: EndSynchronousStatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EndSynchronousStatement {
 
    pub this: EndSynchronousStatementId,
 
    pub start_sync: SynchronousStatementId,
 
    // Phase 2: linker
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ForkStatement {
 
    pub this: ForkStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "fork" keyword
 
    pub left_body: BlockStatementId,
 
    pub right_body: Option<BlockStatementId>,
 
    pub end_fork: EndForkStatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EndForkStatement {
 
    pub this: EndForkStatementId,
 
    pub start_fork: ForkStatementId,
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ReturnStatement {
 
    pub this: ReturnStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "return" keyword
 
    pub expressions: Vec<ExpressionId>,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct GotoStatement {
 
    pub this: GotoStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "goto" keyword
 
    pub label: Identifier,
 
    // Phase 2: linker
 
    pub target: Option<LabeledStatementId>,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct NewStatement {
 
    pub this: NewStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "new" keyword
 
    pub expression: CallExpressionId,
 
    // Phase 2: linker
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ExpressionStatement {
 
    pub this: ExpressionStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan,
 
    pub expression: ExpressionId,
 
    // Phase 2: linker
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
 
pub enum ExpressionParent {
 
    None, // only set during initial parsing
 
    If(IfStatementId),
 
    While(WhileStatementId),
 
    Return(ReturnStatementId),
 
    New(NewStatementId),
 
    ExpressionStmt(ExpressionStatementId),
 
    Expression(ExpressionId, u32) // index within expression (e.g LHS or RHS of expression)
 
}
 

	
 
impl ExpressionParent {
 
    pub fn is_new(&self) -> bool {
 
        match self {
 
            ExpressionParent::New(_) => true,
 
            _ => false,
 
        }
 
    }
 

	
 
    pub fn as_expression(&self) -> ExpressionId {
 
        match self {
 
            ExpressionParent::Expression(id, _) => *id,
 
            _ => panic!("called as_expression() on {:?}", self),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Expression {
 
    Assignment(AssignmentExpression),
 
    Binding(BindingExpression),
 
    Conditional(ConditionalExpression),
 
    Binary(BinaryExpression),
 
    Unary(UnaryExpression),
 
    Indexing(IndexingExpression),
 
    Slicing(SlicingExpression),
 
    Select(SelectExpression),
 
    Literal(LiteralExpression),
 
    Cast(CastExpression),
 
    Call(CallExpression),
 
    Variable(VariableExpression),
 
}
 

	
 
impl Expression {
 
    pub fn as_variable(&self) -> &VariableExpression {
 
        match self {
 
            Expression::Variable(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `VariableExpression`"),
 
        }
 
    }
 

	
 
    /// Returns operator span, function name, a binding's "let" span, etc. An
 
    /// indicator for the kind of expression that is being applied.
 
    pub fn operation_span(&self) -> InputSpan {
 
        match self {
 
            Expression::Assignment(expr) => expr.operator_span,
 
            Expression::Binding(expr) => expr.operator_span,
 
            Expression::Conditional(expr) => expr.operator_span,
src/protocol/ast_printer.rs
Show inline comments
 
#![allow(dead_code)]
 

	
 
use std::fmt::{Debug, Display};
 
use std::io::Write as IOWrite;
 

	
 
use super::ast::*;
 
use super::token_parsing::*;
 

	
 
const INDENT: usize = 2;
 

	
 
const PREFIX_EMPTY: &'static str = "    ";
 
const PREFIX_ROOT_ID: &'static str = "Root";
 
const PREFIX_PRAGMA_ID: &'static str = "Prag";
 
const PREFIX_IMPORT_ID: &'static str = "Imp ";
 
const PREFIX_TYPE_ANNOT_ID: &'static str = "TyAn";
 
const PREFIX_VARIABLE_ID: &'static str = "Var ";
 
const PREFIX_DEFINITION_ID: &'static str = "Def ";
 
const PREFIX_STRUCT_ID: &'static str = "DefS";
 
const PREFIX_ENUM_ID: &'static str = "DefE";
 
const PREFIX_UNION_ID: &'static str = "DefU";
 
const PREFIX_COMPONENT_ID: &'static str = "DefC";
 
const PREFIX_FUNCTION_ID: &'static str = "DefF";
 
const PREFIX_STMT_ID: &'static str = "Stmt";
 
const PREFIX_BLOCK_STMT_ID: &'static str = "SBl ";
 
const PREFIX_ENDBLOCK_STMT_ID: &'static str = "SEBl";
 
const PREFIX_LOCAL_STMT_ID: &'static str = "SLoc";
 
const PREFIX_MEM_STMT_ID: &'static str = "SMem";
 
const PREFIX_CHANNEL_STMT_ID: &'static str = "SCha";
 
const PREFIX_SKIP_STMT_ID: &'static str = "SSki";
 
const PREFIX_LABELED_STMT_ID: &'static str = "SLab";
 
const PREFIX_IF_STMT_ID: &'static str = "SIf ";
 
const PREFIX_ENDIF_STMT_ID: &'static str = "SEIf";
 
const PREFIX_WHILE_STMT_ID: &'static str = "SWhi";
 
const PREFIX_ENDWHILE_STMT_ID: &'static str = "SEWh";
 
const PREFIX_BREAK_STMT_ID: &'static str = "SBre";
 
const PREFIX_CONTINUE_STMT_ID: &'static str = "SCon";
 
const PREFIX_SYNC_STMT_ID: &'static str = "SSyn";
 
const PREFIX_ENDSYNC_STMT_ID: &'static str = "SESy";
 
const PREFIX_FORK_STMT_ID: &'static str = "SFrk";
 
const PREFIX_END_FORK_STMT_ID: &'static str = "SEFk";
 
const PREFIX_RETURN_STMT_ID: &'static str = "SRet";
 
const PREFIX_ASSERT_STMT_ID: &'static str = "SAsr";
 
const PREFIX_GOTO_STMT_ID: &'static str = "SGot";
 
const PREFIX_NEW_STMT_ID: &'static str = "SNew";
 
const PREFIX_PUT_STMT_ID: &'static str = "SPut";
 
const PREFIX_EXPR_STMT_ID: &'static str = "SExp";
 
const PREFIX_ASSIGNMENT_EXPR_ID: &'static str = "EAsi";
 
const PREFIX_BINDING_EXPR_ID: &'static str = "EBnd";
 
const PREFIX_CONDITIONAL_EXPR_ID: &'static str = "ECnd";
 
const PREFIX_BINARY_EXPR_ID: &'static str = "EBin";
 
const PREFIX_UNARY_EXPR_ID: &'static str = "EUna";
 
const PREFIX_INDEXING_EXPR_ID: &'static str = "EIdx";
 
const PREFIX_SLICING_EXPR_ID: &'static str = "ESli";
 
const PREFIX_SELECT_EXPR_ID: &'static str = "ESel";
 
const PREFIX_LITERAL_EXPR_ID: &'static str = "ELit";
 
const PREFIX_CAST_EXPR_ID: &'static str = "ECas";
 
const PREFIX_CALL_EXPR_ID: &'static str = "ECll";
 
const PREFIX_VARIABLE_EXPR_ID: &'static str = "EVar";
 

	
 
struct KV<'a> {
 
    buffer: &'a mut String,
 
    prefix: Option<(&'static str, i32)>,
 
    indent: usize,
 
    temp_key: &'a mut String,
 
    temp_val: &'a mut String,
 
}
 

	
 
impl<'a> KV<'a> {
 
    fn new(buffer: &'a mut String, temp_key: &'a mut String, temp_val: &'a mut String, indent: usize) -> Self {
 
        temp_key.clear();
 
        temp_val.clear();
 
        KV{
 
            buffer,
 
            prefix: None,
 
            indent,
 
            temp_key,
 
            temp_val
 
        }
 
    }
 

	
 
    fn with_id(mut self, prefix: &'static str, id: i32) -> Self {
 
        self.prefix = Some((prefix, id));
 
        self
 
    }
 

	
 
    fn with_s_key(self, key: &str) -> Self {
 
        self.temp_key.push_str(key);
 
        self
 
    }
 

	
 
    fn with_d_key<D: Display>(self, key: &D) -> Self {
 
        self.temp_key.push_str(&key.to_string());
 
        self
 
    }
 

	
 
    fn with_s_val(self, val: &str) -> Self {
 
        self.temp_val.push_str(val);
 
        self
 
    }
 

	
 
    fn with_disp_val<D: Display>(self, val: &D) -> Self {
 
        self.temp_val.push_str(&format!("{}", val));
 
        self
 
    }
 

	
 
    fn with_debug_val<D: Debug>(self, val: &D) -> Self {
 
        self.temp_val.push_str(&format!("{:?}", val));
 
        self
 
    }
 

	
 
    fn with_identifier_val(self, val: &Identifier) -> Self {
 
        self.temp_val.push_str(val.value.as_str());
 
        self
 
    }
 

	
 
    fn with_opt_disp_val<D: Display>(self, val: Option<&D>) -> Self {
 
        match val {
 
            Some(v) => { self.temp_val.push_str(&format!("Some({})", v)); },
 
            None => { self.temp_val.push_str("None"); }
 
        }
 
        self
 
    }
 

	
 
    fn with_opt_identifier_val(self, val: Option<&Identifier>) -> Self {
 
        match val {
 
            Some(v) => {
 
                self.temp_val.push_str("Some(");
 
                self.temp_val.push_str(v.value.as_str());
 
                self.temp_val.push(')');
 
            },
 
            None => {
 
                self.temp_val.push_str("None");
 
            }
 
        }
 
        self
 
    }
 
@@ -418,192 +420,210 @@ impl ASTWriter {
 
                            .with_s_key("LocalChannel");
 

	
 
                        self.kv(indent2).with_s_key("From");
 
                        self.write_variable(heap, stmt.from, indent3);
 
                        self.kv(indent2).with_s_key("To");
 
                        self.write_variable(heap, stmt.to, indent3);
 
                        self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
                    },
 
                    LocalStatement::Memory(stmt) => {
 
                        self.kv(indent).with_id(PREFIX_MEM_STMT_ID, stmt.this.0.0.index)
 
                            .with_s_key("LocalMemory");
 

	
 
                        self.kv(indent2).with_s_key("Variable");
 
                        self.write_variable(heap, stmt.variable, indent3);
 
                        self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
                    }
 
                }
 
            },
 
            Statement::Labeled(stmt) => {
 
                self.kv(indent).with_id(PREFIX_LABELED_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Labeled");
 

	
 
                self.kv(indent2).with_s_key("Label").with_identifier_val(&stmt.label);
 
                self.kv(indent2).with_s_key("Statement");
 
                self.write_stmt(heap, stmt.body, indent3);
 
            },
 
            Statement::If(stmt) => {
 
                self.kv(indent).with_id(PREFIX_IF_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("If");
 

	
 
                self.kv(indent2).with_s_key("EndIf").with_disp_val(&stmt.end_if.0.index);
 

	
 
                self.kv(indent2).with_s_key("Condition");
 
                self.write_expr(heap, stmt.test, indent3);
 

	
 
                self.kv(indent2).with_s_key("TrueBody");
 
                self.write_stmt(heap, stmt.true_body.upcast(), indent3);
 

	
 
                if let Some(false_body) = stmt.false_body {
 
                    self.kv(indent2).with_s_key("FalseBody");
 
                    self.write_stmt(heap, false_body.upcast(), indent3);
 
                }
 
            },
 
            Statement::EndIf(stmt) => {
 
                self.kv(indent).with_id(PREFIX_ENDIF_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndIf");
 
                self.kv(indent2).with_s_key("StartIf").with_disp_val(&stmt.start_if.0.index);
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            },
 
            Statement::While(stmt) => {
 
                self.kv(indent).with_id(PREFIX_WHILE_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("While");
 

	
 
                self.kv(indent2).with_s_key("EndWhile").with_disp_val(&stmt.end_while.0.index);
 
                self.kv(indent2).with_s_key("InSync")
 
                    .with_disp_val(&stmt.in_sync.0.index);
 
                self.kv(indent2).with_s_key("Condition");
 
                self.write_expr(heap, stmt.test, indent3);
 
                self.kv(indent2).with_s_key("Body");
 
                self.write_stmt(heap, stmt.body.upcast(), indent3);
 
            },
 
            Statement::EndWhile(stmt) => {
 
                self.kv(indent).with_id(PREFIX_ENDWHILE_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndWhile");
 
                self.kv(indent2).with_s_key("StartWhile").with_disp_val(&stmt.start_while.0.index);
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            },
 
            Statement::Break(stmt) => {
 
                self.kv(indent).with_id(PREFIX_BREAK_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Break");
 
                self.kv(indent2).with_s_key("Label")
 
                    .with_opt_identifier_val(stmt.label.as_ref());
 
                self.kv(indent2).with_s_key("Target")
 
                    .with_opt_disp_val(stmt.target.as_ref().map(|v| &v.0.index));
 
            },
 
            Statement::Continue(stmt) => {
 
                self.kv(indent).with_id(PREFIX_CONTINUE_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Continue");
 
                self.kv(indent2).with_s_key("Label")
 
                    .with_opt_identifier_val(stmt.label.as_ref());
 
                self.kv(indent2).with_s_key("Target")
 
                    .with_opt_disp_val(stmt.target.as_ref().map(|v| &v.0.index));
 
            },
 
            Statement::Synchronous(stmt) => {
 
                self.kv(indent).with_id(PREFIX_SYNC_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Synchronous");
 
                self.kv(indent2).with_s_key("EndSync").with_disp_val(&stmt.end_sync.0.index);
 
                self.kv(indent2).with_s_key("Body");
 
                self.write_stmt(heap, stmt.body.upcast(), indent3);
 
            },
 
            Statement::EndSynchronous(stmt) => {
 
                self.kv(indent).with_id(PREFIX_ENDSYNC_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndSynchronous");
 
                self.kv(indent2).with_s_key("StartSync").with_disp_val(&stmt.start_sync.0.index);
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            },
 
            Statement::Fork(stmt) => {
 
                self.kv(indent).with_id(PREFIX_FORK_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Fork");
 
                self.kv(indent2).with_s_key("EndFork").with_disp_val(&stmt.end_fork.0.index);
 
                self.kv(indent2).with_s_key("LeftBody");
 
                self.write_stmt(heap, stmt.left_body.upcast(), indent3);
 

	
 
                if let Some(right_body_id) = stmt.right_body {
 
                    self.kv(indent2).with_s_key("RightBody");
 
                    self.write_stmt(heap, right_body_id.upcast(), indent3);
 
                }
 
            },
 
            Statement::EndFork(stmt) => {
 
                self.kv(indent).with_id(PREFIX_END_FORK_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndFork");
 
                self.kv(indent2).with_s_key("StartFork").with_disp_val(&stmt.start_fork.0.index);
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            }
 
            Statement::Return(stmt) => {
 
                self.kv(indent).with_id(PREFIX_RETURN_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Return");
 
                self.kv(indent2).with_s_key("Expressions");
 
                for expr_id in &stmt.expressions {
 
                    self.write_expr(heap, *expr_id, indent3);
 
                }
 
            },
 
            Statement::Goto(stmt) => {
 
                self.kv(indent).with_id(PREFIX_GOTO_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Goto");
 
                self.kv(indent2).with_s_key("Label").with_identifier_val(&stmt.label);
 
                self.kv(indent2).with_s_key("Target")
 
                    .with_opt_disp_val(stmt.target.as_ref().map(|v| &v.0.index));
 
            },
 
            Statement::New(stmt) => {
 
                self.kv(indent).with_id(PREFIX_NEW_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("New");
 
                self.kv(indent2).with_s_key("Expression");
 
                self.write_expr(heap, stmt.expression.upcast(), indent3);
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            },
 
            Statement::Expression(stmt) => {
 
                self.kv(indent).with_id(PREFIX_EXPR_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("ExpressionStatement");
 
                self.write_expr(heap, stmt.expression, indent2);
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            }
 
        }
 
    }
 

	
 
    fn write_expr(&mut self, heap: &Heap, expr_id: ExpressionId, indent: usize) {
 
        let expr = &heap[expr_id];
 
        let indent2 = indent + 1;
 
        let indent3 = indent2 + 1;
 

	
 
        match expr {
 
            Expression::Assignment(expr) => {
 
                self.kv(indent).with_id(PREFIX_ASSIGNMENT_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("AssignmentExpr");
 
                self.kv(indent2).with_s_key("Operation").with_debug_val(&expr.operation);
 
                self.kv(indent2).with_s_key("Left");
 
                self.write_expr(heap, expr.left, indent3);
 
                self.kv(indent2).with_s_key("Right");
 
                self.write_expr(heap, expr.right, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Binding(expr) => {
 
                self.kv(indent).with_id(PREFIX_BINARY_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("BindingExpr");
 
                self.kv(indent2).with_s_key("BindToExpression");
 
                self.write_expr(heap, expr.bound_to, indent3);
 
                self.kv(indent2).with_s_key("BindFromExpression");
 
                self.write_expr(heap, expr.bound_from, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Conditional(expr) => {
 
                self.kv(indent).with_id(PREFIX_CONDITIONAL_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("ConditionalExpr");
 
                self.kv(indent2).with_s_key("Condition");
 
                self.write_expr(heap, expr.test, indent3);
 
                self.kv(indent2).with_s_key("TrueExpression");
 
                self.write_expr(heap, expr.true_expression, indent3);
 
                self.kv(indent2).with_s_key("FalseExpression");
 
                self.write_expr(heap, expr.false_expression, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Binary(expr) => {
 
                self.kv(indent).with_id(PREFIX_BINARY_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("BinaryExpr");
 
                self.kv(indent2).with_s_key("Operation").with_debug_val(&expr.operation);
 
                self.kv(indent2).with_s_key("Left");
 
                self.write_expr(heap, expr.left, indent3);
 
                self.kv(indent2).with_s_key("Right");
 
                self.write_expr(heap, expr.right, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Unary(expr) => {
 
                self.kv(indent).with_id(PREFIX_UNARY_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("UnaryExpr");
 
                self.kv(indent2).with_s_key("Operation").with_debug_val(&expr.operation);
 
                self.kv(indent2).with_s_key("Argument");
 
                self.write_expr(heap, expr.expression, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Indexing(expr) => {
 
                self.kv(indent).with_id(PREFIX_INDEXING_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("IndexingExpr");
 
                self.kv(indent2).with_s_key("Subject");
 
                self.write_expr(heap, expr.subject, indent3);
 
                self.kv(indent2).with_s_key("Index");
src/protocol/eval/executor.rs
Show inline comments
 
@@ -107,192 +107,193 @@ impl Frame {
 
        match &heap[id] {
 
            Expression::Assignment(expr) => {
 
                self.serialize_expression(heap, expr.left);
 
                self.serialize_expression(heap, expr.right);
 
            },
 
            Expression::Binding(expr) => {
 
                self.serialize_expression(heap, expr.bound_to);
 
                self.serialize_expression(heap, expr.bound_from);
 
            },
 
            Expression::Conditional(expr) => {
 
                self.serialize_expression(heap, expr.test);
 
            },
 
            Expression::Binary(expr) => {
 
                self.serialize_expression(heap, expr.left);
 
                self.serialize_expression(heap, expr.right);
 
            },
 
            Expression::Unary(expr) => {
 
                self.serialize_expression(heap, expr.expression);
 
            },
 
            Expression::Indexing(expr) => {
 
                self.serialize_expression(heap, expr.index);
 
                self.serialize_expression(heap, expr.subject);
 
            },
 
            Expression::Slicing(expr) => {
 
                self.serialize_expression(heap, expr.from_index);
 
                self.serialize_expression(heap, expr.to_index);
 
                self.serialize_expression(heap, expr.subject);
 
            },
 
            Expression::Select(expr) => {
 
                self.serialize_expression(heap, expr.subject);
 
            },
 
            Expression::Literal(expr) => {
 
                // Here we only care about literals that have subexpressions
 
                match &expr.value {
 
                    Literal::Null | Literal::True | Literal::False |
 
                    Literal::Character(_) | Literal::String(_) |
 
                    Literal::Integer(_) | Literal::Enum(_) => {
 
                        // No subexpressions
 
                    },
 
                    Literal::Struct(literal) => {
 
                        // Note: fields expressions are evaluated in programmer-
 
                        // specified order. But struct construction expects them
 
                        // in type-defined order. I might want to come back to
 
                        // this.
 
                        let mut _num_pushed = 0;
 
                        for want_field_idx in 0..literal.fields.len() {
 
                            for field in &literal.fields {
 
                                if field.field_idx == want_field_idx {
 
                                    _num_pushed += 1;
 
                                    self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                                    self.serialize_expression(heap, field.value);
 
                                }
 
                            }
 
                        }
 
                        debug_assert_eq!(_num_pushed, literal.fields.len())
 
                    },
 
                    Literal::Union(literal) => {
 
                        for value_expr_id in &literal.values {
 
                            self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                            self.serialize_expression(heap, *value_expr_id);
 
                        }
 
                    },
 
                    Literal::Array(value_expr_ids) => {
 
                        for value_expr_id in value_expr_ids {
 
                            self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                            self.serialize_expression(heap, *value_expr_id);
 
                        }
 
                    }
 
                }
 
            },
 
            Expression::Cast(expr) => {
 
                self.serialize_expression(heap, expr.subject);
 
            }
 
            Expression::Call(expr) => {
 
                for arg_expr_id in &expr.arguments {
 
                    self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                    self.serialize_expression(heap, *arg_expr_id);
 
                }
 
            },
 
            Expression::Variable(_expr) => {
 
                // No subexpressions
 
            }
 
        }
 
    }
 
}
 

	
 
type EvalResult = Result<EvalContinuation, EvalError>;
 

	
 
pub enum EvalContinuation {
 
    Stepping,
 
    Inconsistent,
 
    Terminal,
 
    SyncBlockStart,
 
    SyncBlockEnd,
 
    NewComponent(DefinitionId, i32, ValueGroup),
 
    NewChannel,
 
    NewFork,
 
    BlockFires(PortId),
 
    BlockGet(PortId),
 
    Put(PortId, Value),
 
}
 

	
 
// Note: cloning is fine, methinks. cloning all values and the heap regions then
 
// we end up with valid "pointers" to heap regions.
 
#[derive(Debug, Clone)]
 
pub struct Prompt {
 
    pub(crate) frames: Vec<Frame>,
 
    pub(crate) store: Store,
 
}
 

	
 
impl Prompt {
 
    pub fn new(_types: &TypeTable, heap: &Heap, def: DefinitionId, monomorph_idx: i32, args: ValueGroup) -> Self {
 
        let mut prompt = Self{
 
            frames: Vec::new(),
 
            store: Store::new(),
 
        };
 

	
 
        // Maybe do typechecking in the future?
 
        debug_assert!((monomorph_idx as usize) < _types.get_base_definition(&def).unwrap().definition.procedure_monomorphs().len());
 
        let new_frame = Frame::new(heap, def, monomorph_idx);
 
        let max_stack_size = new_frame.max_stack_size;
 
        prompt.frames.push(new_frame);
 
        args.into_store(&mut prompt.store);
 
        prompt.store.reserve_stack(max_stack_size);
 

	
 
        prompt
 
    }
 

	
 
    /// Big 'ol function right here. Didn't want to break it up unnecessarily.
 
    /// It consists of, in sequence: executing any expressions that should be
 
    /// executed before the next statement can be evaluated, then a section that
 
    /// performs debug printing, and finally a section that takes the next
 
    /// statement and executes it. If the statement requires any expressions to
 
    /// be evaluated, then they will be added such that the next time `step` is
 
    /// called, all of these expressions are indeed evaluated.
 
    pub(crate) fn step(&mut self, types: &TypeTable, heap: &Heap, modules: &[Module], ctx: &mut impl RunContext) -> EvalResult {
 
        // Helper function to transfer multiple values from the expression value
 
        // array into a heap region (e.g. constructing arrays or structs).
 
        fn transfer_expression_values_front_into_heap(cur_frame: &mut Frame, store: &mut Store, num_values: usize) -> HeapPos {
 
            let heap_pos = store.alloc_heap();
 

	
 
            // Do the transformation first (because Rust...)
 
            for val_idx in 0..num_values {
 
                cur_frame.expr_values[val_idx] = store.read_take_ownership(cur_frame.expr_values[val_idx].clone());
 
            }
 

	
 
            // And now transfer to the heap region
 
            let values = &mut store.heap_regions[heap_pos as usize].values;
 
            debug_assert!(values.is_empty());
 
            values.reserve(num_values);
 
            for _ in 0..num_values {
 
                values.push(cur_frame.expr_values.pop_front().unwrap());
 
            }
 

	
 
            heap_pos
 
        }
 

	
 
        // Helper function to make sure that an index into an aray is valid.
 
        fn array_inclusive_index_is_invalid(store: &Store, array_heap_pos: u32, idx: i64) -> bool {
 
            let array_len = store.heap_regions[array_heap_pos as usize].values.len();
 
            return idx < 0 || idx >= array_len as i64;
 
        }
 

	
 
        fn array_exclusive_index_is_invalid(store: &Store, array_heap_pos: u32, idx: i64) -> bool {
 
            let array_len = store.heap_regions[array_heap_pos as usize].values.len();
 
            return idx < 0 || idx > array_len as i64;
 
        }
 

	
 
        fn construct_array_error(prompt: &Prompt, modules: &[Module], heap: &Heap, expr_id: ExpressionId, heap_pos: u32, idx: i64) -> EvalError {
 
            let array_len = prompt.store.heap_regions[heap_pos as usize].values.len();
 
            return EvalError::new_error_at_expr(
 
                prompt, modules, heap, expr_id,
 
                format!("index {} is out of bounds: array length is {}", idx, array_len)
 
            )
 
        }
 

	
 
        // Checking if we're at the end of execution
 
        let cur_frame = self.frames.last_mut().unwrap();
 
        if cur_frame.position.is_invalid() {
 
            if heap[cur_frame.definition].is_function() {
 
                todo!("End of function without return, return an evaluation error");
 
            }
 
            return Ok(EvalContinuation::Terminal);
 
        }
 

	
 
        debug_log!("Taking step in '{}'", heap[cur_frame.definition].identifier().value.as_str());
 

	
 
        // Execute all pending expressions
 
        while !cur_frame.expr_stack.is_empty() {
 
            let next = cur_frame.expr_stack.pop_back().unwrap();
 
            debug_log!("Expr stack: {:?}", next);
 
            match next {
 
                ExprInstruction::PushValToFront => {
 
@@ -491,494 +492,522 @@ impl Prompt {
 

	
 
                            cur_frame.expr_values.push_back(value_to_push);
 
                            self.store.drop_value(deallocate_heap_pos);
 
                        },
 
                        Expression::Literal(expr) => {
 
                            let value = match &expr.value {
 
                                Literal::Null => Value::Null,
 
                                Literal::True => Value::Bool(true),
 
                                Literal::False => Value::Bool(false),
 
                                Literal::Character(lit_value) => Value::Char(*lit_value),
 
                                Literal::String(lit_value) => {
 
                                    let heap_pos = self.store.alloc_heap();
 
                                    let values = &mut self.store.heap_regions[heap_pos as usize].values;
 
                                    let value = lit_value.as_str();
 
                                    debug_assert!(values.is_empty());
 
                                    values.reserve(value.len());
 
                                    for character in value.as_bytes() {
 
                                        debug_assert!(character.is_ascii());
 
                                        values.push(Value::Char(*character as char));
 
                                    }
 
                                    Value::String(heap_pos)
 
                                }
 
                                Literal::Integer(lit_value) => {
 
                                    use ConcreteTypePart as CTP;
 
                                    let def_types = types.get_procedure_expression_data(&cur_frame.definition, cur_frame.monomorph_idx);
 
                                    let concrete_type = &def_types.expr_data[expr.unique_id_in_definition as usize].expr_type;
 

	
 
                                    debug_assert_eq!(concrete_type.parts.len(), 1);
 
                                    match concrete_type.parts[0] {
 
                                        CTP::UInt8  => Value::UInt8(lit_value.unsigned_value as u8),
 
                                        CTP::UInt16 => Value::UInt16(lit_value.unsigned_value as u16),
 
                                        CTP::UInt32 => Value::UInt32(lit_value.unsigned_value as u32),
 
                                        CTP::UInt64 => Value::UInt64(lit_value.unsigned_value as u64),
 
                                        CTP::SInt8  => Value::SInt8(lit_value.unsigned_value as i8),
 
                                        CTP::SInt16 => Value::SInt16(lit_value.unsigned_value as i16),
 
                                        CTP::SInt32 => Value::SInt32(lit_value.unsigned_value as i32),
 
                                        CTP::SInt64 => Value::SInt64(lit_value.unsigned_value as i64),
 
                                        _ => unreachable!("got concrete type {:?} for integer literal at expr {:?}", concrete_type, expr_id),
 
                                    }
 
                                }
 
                                Literal::Struct(lit_value) => {
 
                                    let heap_pos = transfer_expression_values_front_into_heap(
 
                                        cur_frame, &mut self.store, lit_value.fields.len()
 
                                    );
 
                                    Value::Struct(heap_pos)
 
                                }
 
                                Literal::Enum(lit_value) => {
 
                                    Value::Enum(lit_value.variant_idx as i64)
 
                                }
 
                                Literal::Union(lit_value) => {
 
                                    let heap_pos = transfer_expression_values_front_into_heap(
 
                                        cur_frame, &mut self.store, lit_value.values.len()
 
                                    );
 
                                    Value::Union(lit_value.variant_idx as i64, heap_pos)
 
                                }
 
                                Literal::Array(lit_value) => {
 
                                    let heap_pos = transfer_expression_values_front_into_heap(
 
                                        cur_frame, &mut self.store, lit_value.len()
 
                                    );
 
                                    Value::Array(heap_pos)
 
                                }
 
                            };
 

	
 
                            cur_frame.expr_values.push_back(value);
 
                        },
 
                        Expression::Cast(expr) => {
 
                            let mono_data = types.get_procedure_expression_data(&cur_frame.definition, cur_frame.monomorph_idx);
 
                            let output_type = &mono_data.expr_data[expr.unique_id_in_definition as usize].expr_type;
 

	
 
                            // Typechecking reduced this to two cases: either we
 
                            // have casting noop (same types), or we're casting
 
                            // between integer/bool/char types.
 
                            let subject = cur_frame.expr_values.pop_back().unwrap();
 
                            match apply_casting(&mut self.store, output_type, &subject) {
 
                                Ok(value) => cur_frame.expr_values.push_back(value),
 
                                Err(msg) => {
 
                                    return Err(EvalError::new_error_at_expr(self, modules, heap, expr.this.upcast(), msg));
 
                                }
 
                            }
 

	
 
                            self.store.drop_value(subject.get_heap_pos());
 
                        }
 
                        Expression::Call(expr) => {
 
                            // If we're dealing with a builtin we don't do any
 
                            // fancy shenanigans at all, just push the result.
 
                            match expr.method {
 
                                Method::Get => {
 
                                    let value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let value = self.store.maybe_read_ref(&value).clone();
 

	
 
                                    let port_id = if let Value::Input(port_id) = value {
 
                                        port_id
 
                                    } else {
 
                                        unreachable!("executor calling 'get' on value {:?}", value)
 
                                    };
 

	
 
                                    match ctx.get(port_id) {
 
                                    match ctx.performed_get(port_id) {
 
                                        Some(result) => {
 
                                            // We have the result. Merge the `ValueGroup` with the
 
                                            // stack/heap storage.
 
                                            debug_assert_eq!(result.values.len(), 1);
 
                                            result.into_stack(&mut cur_frame.expr_values, &mut self.store);
 
                                        },
 
                                        None => {
 
                                            // Don't have the result yet, prepare the expression to
 
                                            // get run again after we've received a message.
 
                                            cur_frame.expr_values.push_front(value.clone());
 
                                            cur_frame.expr_stack.push_back(ExprInstruction::EvalExpr(expr_id));
 
                                            return Ok(EvalContinuation::BlockGet(port_id));
 
                                        }
 
                                    }
 
                                },
 
                                Method::Put => {
 
                                    let port_value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let deref_port_value = self.store.maybe_read_ref(&port_value).clone();
 

	
 
                                    let port_id = if let Value::Output(port_id) = deref_port_value {
 
                                        port_id
 
                                    } else {
 
                                        unreachable!("executor calling 'put' on value {:?}", deref_port_value)
 
                                    };
 

	
 
                                    let msg_value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let deref_msg_value = self.store.maybe_read_ref(&msg_value).clone();
 

	
 
                                    if ctx.did_put(port_id) {
 
                                    if ctx.performed_put(port_id) {
 
                                        // We're fine, deallocate in case the expression value stack
 
                                        // held an owned value
 
                                        self.store.drop_value(msg_value.get_heap_pos());
 
                                    } else {
 
                                        // Prepare to execute again
 
                                        cur_frame.expr_values.push_front(msg_value);
 
                                        cur_frame.expr_values.push_front(port_value);
 
                                        cur_frame.expr_stack.push_back(ExprInstruction::EvalExpr(expr_id));
 
                                        return Ok(EvalContinuation::Put(port_id, deref_msg_value));
 
                                    }
 
                                },
 
                                Method::Fires => {
 
                                    let port_value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let port_value_deref = self.store.maybe_read_ref(&port_value).clone();
 

	
 
                                    let port_id = match port_value_deref {
 
                                        Value::Input(port_id) => port_id,
 
                                        Value::Output(port_id) => port_id,
 
                                        _ => unreachable!("executor calling 'fires' on value {:?}", port_value_deref),
 
                                    };
 

	
 
                                    match ctx.fires(port_id) {
 
                                        None => {
 
                                            cur_frame.expr_values.push_front(port_value);
 
                                            cur_frame.expr_stack.push_back(ExprInstruction::EvalExpr(expr_id));
 
                                            return Ok(EvalContinuation::BlockFires(port_id));
 
                                        },
 
                                        Some(value) => {
 
                                            cur_frame.expr_values.push_back(value);
 
                                        }
 
                                    }
 
                                },
 
                                Method::Create => {
 
                                    let length_value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let length_value = self.store.maybe_read_ref(&length_value);
 
                                    let length = if length_value.is_signed_integer() {
 
                                        let length_value = length_value.as_signed_integer();
 
                                        if length_value < 0 {
 
                                            return Err(EvalError::new_error_at_expr(
 
                                                self, modules, heap, expr_id,
 
                                                format!("got length '{}', can only create a message with a non-negative length", length_value)
 
                                            ));
 
                                        }
 

	
 
                                        length_value as u64
 
                                    } else {
 
                                        debug_assert!(length_value.is_unsigned_integer());
 
                                        length_value.as_unsigned_integer()
 
                                    };
 

	
 
                                    let heap_pos = self.store.alloc_heap();
 
                                    let values = &mut self.store.heap_regions[heap_pos as usize].values;
 
                                    debug_assert!(values.is_empty());
 
                                    values.resize(length as usize, Value::UInt8(0));
 
                                    cur_frame.expr_values.push_back(Value::Message(heap_pos));
 
                                },
 
                                Method::Length => {
 
                                    let value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let value_heap_pos = value.get_heap_pos();
 
                                    let value = self.store.maybe_read_ref(&value);
 

	
 
                                    let heap_pos = match value {
 
                                        Value::Array(pos) => *pos,
 
                                        Value::String(pos) => *pos,
 
                                        _ => unreachable!("length(...) on {:?}", value),
 
                                    };
 

	
 
                                    let len = self.store.heap_regions[heap_pos as usize].values.len();
 

	
 
                                    // TODO: @PtrInt
 
                                    cur_frame.expr_values.push_back(Value::UInt32(len as u32));
 
                                    self.store.drop_value(value_heap_pos);
 
                                },
 
                                Method::Assert => {
 
                                    let value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let value = self.store.maybe_read_ref(&value).clone();
 
                                    if !value.as_bool() {
 
                                        return Ok(EvalContinuation::Inconsistent)
 
                                    }
 
                                },
 
                                Method::Print => {
 
                                    // Convert the runtime-variant of a string
 
                                    // into an actual string.
 
                                    let value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let value_heap_pos = value.as_string();
 
                                    let elements = &self.store.heap_regions[value_heap_pos as usize].values;
 

	
 
                                    let mut message = String::with_capacity(elements.len());
 
                                    for element in elements {
 
                                        message.push(element.as_char());
 
                                    }
 

	
 
                                    // Drop the heap-allocated value from the
 
                                    // store
 
                                    self.store.drop_heap_pos(value_heap_pos);
 
                                    println!("{}", message);
 
                                },
 
                                Method::UserComponent => {
 
                                    // This is actually handled by the evaluation
 
                                    // of the statement.
 
                                    debug_assert_eq!(heap[expr.definition].parameters().len(), cur_frame.expr_values.len());
 
                                    debug_assert_eq!(heap[cur_frame.position].as_new().expression, expr.this)
 
                                },
 
                                Method::UserFunction => {
 
                                    // Push a new frame. Note that all expressions have
 
                                    // been pushed to the front, so they're in the order
 
                                    // of the definition.
 
                                    let num_args = expr.arguments.len();
 

	
 
                                    // Determine stack boundaries
 
                                    let cur_stack_boundary = self.store.cur_stack_boundary;
 
                                    let new_stack_boundary = self.store.stack.len();
 

	
 
                                    // Push new boundary and function arguments for new frame
 
                                    self.store.stack.push(Value::PrevStackBoundary(cur_stack_boundary as isize));
 
                                    for _ in 0..num_args {
 
                                        let argument = self.store.read_take_ownership(cur_frame.expr_values.pop_front().unwrap());
 
                                        self.store.stack.push(argument);
 
                                    }
 

	
 
                                    // Determine the monomorph index of the function we're calling
 
                                    let mono_data = types.get_procedure_expression_data(&cur_frame.definition, cur_frame.monomorph_idx);
 
                                    let call_data = &mono_data.expr_data[expr.unique_id_in_definition as usize];
 

	
 
                                    // Push the new frame and reserve its stack size
 
                                    let new_frame = Frame::new(heap, expr.definition, call_data.field_or_monomorph_idx);
 
                                    let new_stack_size = new_frame.max_stack_size;
 
                                    self.frames.push(new_frame);
 
                                    self.store.cur_stack_boundary = new_stack_boundary;
 
                                    self.store.reserve_stack(new_stack_size);
 

	
 
                                    // To simplify the logic a little bit we will now
 
                                    // return and ask our caller to call us again
 
                                    return Ok(EvalContinuation::Stepping);
 
                                },
 
                            }
 
                        },
 
                        Expression::Variable(expr) => {
 
                            let variable = &heap[expr.declaration.unwrap()];
 
                            let ref_value = if expr.used_as_binding_target {
 
                                Value::Binding(variable.unique_id_in_scope as StackPos)
 
                            } else {
 
                                Value::Ref(ValueId::Stack(variable.unique_id_in_scope as StackPos))
 
                            };
 
                            cur_frame.expr_values.push_back(ref_value);
 
                        }
 
                    }
 
                }
 
            }
 
        }
 

	
 
        debug_log!("Frame [{:?}] at {:?}", cur_frame.definition, cur_frame.position);
 
        if debug_enabled!() {
 
            debug_log!("Expression value stack (size = {}):", cur_frame.expr_values.len());
 
            for (_stack_idx, _stack_val) in cur_frame.expr_values.iter().enumerate() {
 
                debug_log!("  [{:03}] {:?}", _stack_idx, _stack_val);
 
            }
 

	
 
            debug_log!("Stack (size = {}):", self.store.stack.len());
 
            for (_stack_idx, _stack_val) in self.store.stack.iter().enumerate() {
 
                debug_log!("  [{:03}] {:?}", _stack_idx, _stack_val);
 
            }
 

	
 
            debug_log!("Heap:");
 
            for (_heap_idx, _heap_region) in self.store.heap_regions.iter().enumerate() {
 
                let _is_free = self.store.free_regions.iter().any(|idx| *idx as usize == _heap_idx);
 
                debug_log!("  [{:03}] in_use: {}, len: {}, vals: {:?}", _heap_idx, !_is_free, _heap_region.values.len(), &_heap_region.values);
 
            }
 
        }
 
        // No (more) expressions to evaluate. So evaluate statement (that may
 
        // depend on the result on the last evaluated expression(s))
 
        let stmt = &heap[cur_frame.position];
 
        let return_value = match stmt {
 
            Statement::Block(stmt) => {
 
                debug_assert!(stmt.statements.is_empty() || stmt.next == stmt.statements[0]);
 
                cur_frame.position = stmt.next;
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::EndBlock(stmt) => {
 
                let block = &heap[stmt.start_block];
 
                self.store.clear_stack(block.first_unique_id_in_scope as usize);
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Local(stmt) => {
 
                match stmt {
 
                    LocalStatement::Memory(stmt) => {
 
                        let variable = &heap[stmt.variable];
 
                        self.store.write(ValueId::Stack(variable.unique_id_in_scope as u32), Value::Unassigned);
 

	
 
                        cur_frame.position = stmt.next;
 
                        Ok(EvalContinuation::Stepping)
 
                    },
 
                    LocalStatement::Channel(stmt) => {
 
                        // Need to create a new channel by requesting it from
 
                        // the runtime.
 
                        match ctx.get_channel() {
 
                        match ctx.created_channel() {
 
                            None => {
 
                                // No channel is pending. So request one
 
                                Ok(EvalContinuation::NewChannel)
 
                            },
 
                            Some((put_port, get_port)) => {
 
                                self.store.write(ValueId::Stack(heap[stmt.from].unique_id_in_scope as u32), put_port);
 
                                self.store.write(ValueId::Stack(heap[stmt.to].unique_id_in_scope as u32), get_port);
 
                                cur_frame.position = stmt.next;
 
                                Ok(EvalContinuation::Stepping)
 
                            }
 
                        }
 
                    }
 
                }
 
            },
 
            Statement::Labeled(stmt) => {
 
                cur_frame.position = stmt.body;
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::If(stmt) => {
 
                debug_assert_eq!(cur_frame.expr_values.len(), 1, "expected one expr value for if statement");
 
                let test_value = cur_frame.expr_values.pop_back().unwrap();
 
                let test_value = self.store.maybe_read_ref(&test_value).as_bool();
 
                if test_value {
 
                    cur_frame.position = stmt.true_body.upcast();
 
                } else if let Some(false_body) = stmt.false_body {
 
                    cur_frame.position = false_body.upcast();
 
                } else {
 
                    // Not true, and no false body
 
                    cur_frame.position = stmt.end_if.upcast();
 
                }
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::EndIf(stmt) => {
 
                cur_frame.position = stmt.next;
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::While(stmt) => {
 
                debug_assert_eq!(cur_frame.expr_values.len(), 1, "expected one expr value for while statement");
 
                let test_value = cur_frame.expr_values.pop_back().unwrap();
 
                let test_value = self.store.maybe_read_ref(&test_value).as_bool();
 
                if test_value {
 
                    cur_frame.position = stmt.body.upcast();
 
                } else {
 
                    cur_frame.position = stmt.end_while.upcast();
 
                }
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::EndWhile(stmt) => {
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Break(stmt) => {
 
                cur_frame.position = stmt.target.unwrap().upcast();
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Continue(stmt) => {
 
                cur_frame.position = stmt.target.unwrap().upcast();
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Synchronous(stmt) => {
 
                cur_frame.position = stmt.body.upcast();
 

	
 
                Ok(EvalContinuation::SyncBlockStart)
 
            },
 
            Statement::EndSynchronous(stmt) => {
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(EvalContinuation::SyncBlockEnd)
 
            },
 
            Statement::Fork(stmt) => {
 
                if stmt.right_body.is_none() {
 
                    // No reason to fork
 
                    cur_frame.position = stmt.left_body.upcast();
 
                } else {
 
                    // Need to fork
 
                    if let Some(go_left) = ctx.performed_fork() {
 
                        // Runtime has created a fork
 
                        if go_left {
 
                            cur_frame.position = stmt.left_body.upcast();
 
                        } else {
 
                            cur_frame.position = stmt.right_body.unwrap().upcast();
 
                        }
 
                    } else {
 
                        // Request the runtime to create a fork of the current
 
                        // branch
 
                        return Ok(EvalContinuation::NewFork);
 
                    }
 
                }
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::EndFork(stmt) => {
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(EvalContinuation::Stepping)
 
            }
 
            Statement::Return(_stmt) => {
 
                debug_assert!(heap[cur_frame.definition].is_function());
 
                debug_assert_eq!(cur_frame.expr_values.len(), 1, "expected one expr value for return statement");
 

	
 
                // The preceding frame has executed a call, so is expecting the
 
                // return expression on its expression value stack. Note that
 
                // we may be returning a reference to something on our stack,
 
                // so we need to read that value and clone it.
 
                let return_value = cur_frame.expr_values.pop_back().unwrap();
 
                let return_value = match return_value {
 
                    Value::Ref(value_id) => self.store.read_copy(value_id),
 
                    _ => return_value,
 
                };
 

	
 
                // Pre-emptively pop our stack frame
 
                self.frames.pop();
 

	
 
                // Clean up our section of the stack
 
                self.store.clear_stack(0);
 
                self.store.stack.truncate(self.store.cur_stack_boundary + 1);
 
                let prev_stack_idx = self.store.stack.pop().unwrap().as_stack_boundary();
 

	
 
                // TODO: Temporary hack for testing, remove at some point
 
                if self.frames.is_empty() {
 
                    debug_assert!(prev_stack_idx == -1);
 
                    debug_assert!(self.store.stack.len() == 0);
 
                    self.store.stack.push(return_value);
 
                    return Ok(EvalContinuation::Terminal);
 
                }
 

	
 
                debug_assert!(prev_stack_idx >= 0);
 
                // Return to original state of stack frame
 
                self.store.cur_stack_boundary = prev_stack_idx as usize;
 
                let cur_frame = self.frames.last_mut().unwrap();
 
                cur_frame.expr_values.push_back(return_value);
 

	
 
                // We just returned to the previous frame, which might be in
 
                // the middle of evaluating expressions for a particular
 
                // statement. So we don't want to enter the code below.
 
                return Ok(EvalContinuation::Stepping);
 
            },
 
            Statement::Goto(stmt) => {
 
                cur_frame.position = stmt.target.unwrap().upcast();
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::New(stmt) => {
 
                let call_expr = &heap[stmt.expression];
 
                debug_assert!(heap[call_expr.definition].is_component());
 
                debug_assert_eq!(
 
                    cur_frame.expr_values.len(), heap[call_expr.definition].parameters().len(),
 
                    "mismatch in expr stack size and number of arguments for new statement"
 
                );
 

	
 
                let mono_data = types.get_procedure_expression_data(&cur_frame.definition, cur_frame.monomorph_idx);
 
                let expr_data = &mono_data.expr_data[call_expr.unique_id_in_definition as usize];
 

	
 
                // Note that due to expression value evaluation they exist in
 
                // reverse order on the stack.
 
                // TODO: Revise this code, keep it as is to be compatible with current runtime
 
                let mut args = Vec::new();
 
                while let Some(value) = cur_frame.expr_values.pop_front() {
 
                    args.push(value);
 
                }
 

	
 
                // Construct argument group, thereby copying heap regions
 
                let argument_group = ValueGroup::from_store(&self.store, &args);
 
                // println!("Creating {} with\n{:#?}", heap[call_expr.definition].identifier().value.as_str(), argument_group);
 

	
 
                // Clear any heap regions
 
                for arg in &args {
 
                    self.store.drop_value(arg.get_heap_pos());
 
                }
 

	
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(EvalContinuation::NewComponent(call_expr.definition, expr_data.field_or_monomorph_idx, argument_group))
 
            },
 
            Statement::Expression(stmt) => {
 
                // The expression has just been completely evaluated. Some
 
                // values might have remained on the expression value stack.
 
                // cur_frame.expr_values.clear(); PROPER CLEARING
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
        };
 

	
 
        assert!(
 
            cur_frame.expr_values.is_empty(),
 
            "This is a debugging assertion that will fail if you perform expressions without \
 
            assigning to anything. This should be completely valid, and this assertion should be \
 
            replaced by something that clears the expression values if needed, but I'll keep this \
 
            in for now for debugging purposes."
 
        );
 

	
src/protocol/mod.rs
Show inline comments
 
mod arena;
 
pub(crate) mod eval;
 
pub(crate) mod input_source;
 
mod parser;
 
#[cfg(test)] mod tests;
 

	
 
pub(crate) mod ast;
 
pub(crate) mod ast_printer;
 

	
 
use std::sync::Mutex;
 

	
 
use crate::collections::{StringPool, StringRef};
 
use crate::common::*;
 
use crate::protocol::ast::*;
 
use crate::protocol::eval::*;
 
use crate::protocol::input_source::*;
 
use crate::protocol::parser::*;
 
use crate::protocol::type_table::*;
 

	
 
/// A protocol description module
 
pub struct Module {
 
    pub(crate) source: InputSource,
 
    pub(crate) root_id: RootId,
 
    pub(crate) name: Option<StringRef<'static>>,
 
}
 
/// Description of a protocol object, used to configure new connectors.
 
#[repr(C)]
 
pub struct ProtocolDescription {
 
    pub(crate) modules: Vec<Module>,
 
    pub(crate) heap: Heap,
 
    pub(crate) types: TypeTable,
 
    pub(crate) pool: Mutex<StringPool>,
 
}
 
#[derive(Debug, Clone)]
 
pub(crate) struct ComponentState {
 
    pub(crate) prompt: Prompt,
 
}
 

	
 
#[allow(dead_code)]
 
pub(crate) enum EvalContext<'a> {
 
    Nonsync(&'a mut NonsyncProtoContext<'a>),
 
    Sync(&'a mut SyncProtoContext<'a>),
 
    None,
 
}
 
//////////////////////////////////////////////
 

	
 
#[derive(Debug)]
 
pub enum ComponentCreationError {
 
    ModuleDoesntExist,
 
    DefinitionDoesntExist,
 
    DefinitionNotComponent,
 
    InvalidNumArguments,
 
    InvalidArgumentType(usize),
 
    UnownedPort,
 
    InSync,
 
}
 

	
 
impl std::fmt::Debug for ProtocolDescription {
 
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
 
        write!(f, "(An opaque protocol description)")
 
    }
 
}
 
impl ProtocolDescription {
 
    // TODO: Allow for multi-file compilation
 
    pub fn parse(buffer: &[u8]) -> Result<Self, String> {
 
        // TODO: @fixme, keep code compilable, but needs support for multiple
 
        //  input files.
 
        let source = InputSource::new(String::new(), Vec::from(buffer));
 
        let mut parser = Parser::new();
 
        parser.feed(source).expect("failed to feed source");
 
        
 
        if let Err(err) = parser.parse() {
 
            println!("ERROR:\n{}", err);
 
            return Err(format!("{}", err))
 
        }
 

	
 
        debug_assert_eq!(parser.modules.len(), 1, "only supporting one module here for now");
 
        let modules: Vec<Module> = parser.modules.into_iter()
 
            .map(|module| Module{
 
                source: module.source,
 
                root_id: module.root_id,
 
                name: module.name.map(|(_, name)| name)
 
            })
 
            .collect();
 

	
 
        return Ok(ProtocolDescription {
 
            modules,
 
            heap: parser.heap,
 
            types: parser.type_table,
 
            pool: Mutex::new(parser.string_pool),
 
        });
 
    }
 

	
 
    #[deprecated]
 
    pub(crate) fn component_polarities(
 
        &self,
 
        module_name: &[u8],
 
        identifier: &[u8],
 
    ) -> Result<Vec<Polarity>, AddComponentError> {
 
        use AddComponentError::*;
 

	
 
        let module_root = self.lookup_module_root(module_name);
 
        if module_root.is_none() {
 
            return Err(AddComponentError::NoSuchModule);
 
        }
 
        let module_root = module_root.unwrap();
 

	
 
        let root = &self.heap[module_root];
 
        let def = root.get_definition_ident(&self.heap, identifier);
 
        if def.is_none() {
 
            return Err(NoSuchComponent);
 
        }
 

	
 
        let def = &self.heap[def.unwrap()];
 
        if !def.is_component() {
 
            return Err(NoSuchComponent);
 
        }
 

	
 
        for &param in def.parameters().iter() {
 
            let param = &self.heap[param];
 
            let first_element = &param.parser_type.elements[0];
 

	
 
            match first_element.variant {
 
                ParserTypeVariant::Input | ParserTypeVariant::Output => continue,
 
                _ => {
 
                    return Err(NonPortTypeParameters);
 
                }
 
            }
 
        }
 

	
 
        let mut result = Vec::new();
 
        for &param in def.parameters().iter() {
 
            let param = &self.heap[param];
 
            let first_element = &param.parser_type.elements[0];
 

	
 
            if first_element.variant == ParserTypeVariant::Input {
 
                result.push(Polarity::Getter)
 
            } else if first_element.variant == ParserTypeVariant::Output {
 
                result.push(Polarity::Putter)
 
            } else {
 
                unreachable!()
 
            }
 
        }
 
        Ok(result)
 
    }
 

	
 
    // expects port polarities to be correct
 
    #[deprecated]
 
    pub(crate) fn new_component(&self, module_name: &[u8], identifier: &[u8], ports: &[PortId]) -> ComponentState {
 
        let mut args = Vec::new();
 
        for (&x, y) in ports.iter().zip(self.component_polarities(module_name, identifier).unwrap()) {
 
@@ -190,415 +191,426 @@ impl ProtocolDescription {
 
        let definition = definition.as_component();
 
        if !definition.poly_vars.is_empty() {
 
            return Err(ComponentCreationError::DefinitionNotComponent);
 
        }
 

	
 
        // - check number of arguments
 
        let expr_data = self.types.get_procedure_expression_data(&definition_id, 0);
 
        if expr_data.arg_types.len() != arguments.values.len() {
 
            return Err(ComponentCreationError::InvalidNumArguments);
 
        }
 

	
 
        // - for each argument try to make sure the types match
 
        for arg_idx in 0..arguments.values.len() {
 
            let expected_type = &expr_data.arg_types[arg_idx];
 
            let provided_value = &arguments.values[arg_idx];
 
            if !self.verify_same_type(expected_type, 0, &arguments, provided_value) {
 
                return Err(ComponentCreationError::InvalidArgumentType(arg_idx));
 
            }
 
        }
 

	
 
        // By now we're sure that all of the arguments are correct. So create
 
        // the connector.
 
        return Ok(ComponentState{
 
            prompt: Prompt::new(&self.types, &self.heap, definition_id, 0, arguments),
 
        });
 
    }
 

	
 
    fn lookup_module_root(&self, module_name: &[u8]) -> Option<RootId> {
 
        for module in self.modules.iter() {
 
            match &module.name {
 
                Some(name) => if name.as_bytes() == module_name {
 
                    return Some(module.root_id);
 
                },
 
                None => if module_name.is_empty() {
 
                    return Some(module.root_id);
 
                }
 
            }
 
        }
 

	
 
        return None;
 
    }
 

	
 
    fn verify_same_type(&self, expected: &ConcreteType, expected_idx: usize, arguments: &ValueGroup, argument: &Value) -> bool {
 
        use ConcreteTypePart as CTP;
 

	
 
        match &expected.parts[expected_idx] {
 
            CTP::Void | CTP::Message | CTP::Slice | CTP::Function(_, _) | CTP::Component(_, _) => unreachable!(),
 
            CTP::Bool => if let Value::Bool(_) = argument { true } else { false },
 
            CTP::UInt8 => if let Value::UInt8(_) = argument { true } else { false },
 
            CTP::UInt16 => if let Value::UInt16(_) = argument { true } else { false },
 
            CTP::UInt32 => if let Value::UInt32(_) = argument { true } else { false },
 
            CTP::UInt64 => if let Value::UInt64(_) = argument { true } else { false },
 
            CTP::SInt8 => if let Value::SInt8(_) = argument { true } else { false },
 
            CTP::SInt16 => if let Value::SInt16(_) = argument { true } else { false },
 
            CTP::SInt32 => if let Value::SInt32(_) = argument { true } else { false },
 
            CTP::SInt64 => if let Value::SInt64(_) = argument { true } else { false },
 
            CTP::Character => if let Value::Char(_) = argument { true } else { false },
 
            CTP::String => {
 
                // Match outer string type and embedded character types
 
                if let Value::String(heap_pos) = argument {
 
                    for element in &arguments.regions[*heap_pos as usize] {
 
                        if let Value::Char(_) = element {} else {
 
                            return false;
 
                        }
 
                    }
 
                } else {
 
                    return false;
 
                }
 

	
 
                return true;
 
            },
 
            CTP::Array => {
 
                if let Value::Array(heap_pos) = argument {
 
                    let heap_pos = *heap_pos;
 
                    for element in &arguments.regions[heap_pos as usize] {
 
                        if !self.verify_same_type(expected, expected_idx + 1, arguments, element) {
 
                            return false;
 
                        }
 
                    }
 
                    return true;
 
                } else {
 
                    return false;
 
                }
 
            },
 
            CTP::Input => if let Value::Input(_) = argument { true } else { false },
 
            CTP::Output => if let Value::Output(_) = argument { true } else { false },
 
            CTP::Instance(_definition_id, _num_embedded) => {
 
                todo!("implement full type checking on user-supplied arguments");
 
                return false;
 
            },
 
        }
 
    }
 
}
 

	
 
// TODO: @temp Should just become a concrete thing that is passed in
 
pub trait RunContext {
 
    fn did_put(&mut self, port: PortId) -> bool;
 
    fn get(&mut self, port: PortId) -> Option<ValueGroup>; // None if still waiting on message
 
    fn performed_put(&mut self, port: PortId) -> bool;
 
    fn performed_get(&mut self, port: PortId) -> Option<ValueGroup>; // None if still waiting on message
 
    fn fires(&mut self, port: PortId) -> Option<Value>; // None if not yet branched
 
    fn get_channel(&mut self) -> Option<(Value, Value)>; // None if not yet prepared
 
    fn performed_fork(&mut self) -> Option<bool>; // None if not yet forked
 
    fn created_channel(&mut self) -> Option<(Value, Value)>; // None if not yet prepared
 
}
 

	
 
#[derive(Debug)]
 
pub enum RunResult {
 
    // Can only occur outside sync blocks
 
    ComponentTerminated, // component has exited its procedure
 
    ComponentAtSyncStart,
 
    NewComponent(DefinitionId, i32, ValueGroup), // should also be possible inside sync
 
    NewChannel, // should also be possible inside sync
 
    // Can only occur inside sync blocks
 
    BranchInconsistent, // branch has inconsistent behaviour
 
    BranchMissingPortState(PortId), // branch doesn't know about port firing
 
    BranchMissingPortValue(PortId), // branch hasn't received message on input port yet
 
    BranchGet(PortId), // branch hasn't received message on input port yet
 
    BranchAtSyncEnd,
 
    BranchFork,
 
    BranchPut(PortId, ValueGroup),
 
}
 

	
 
impl ComponentState {
 
    pub(crate) fn run(&mut self, ctx: &mut impl RunContext, pd: &ProtocolDescription) -> RunResult {
 
        use EvalContinuation as EC;
 
        use RunResult as RR;
 

	
 
        loop {
 
            let step_result = self.prompt.step(&pd.types, &pd.heap, &pd.modules, ctx);
 
            match step_result {
 
                Err(reason) => {
 
                    // TODO: @temp
 
                    println!("Evaluation error:\n{}", reason);
 
                    todo!("proper error handling/bubbling up");
 
                },
 
                Ok(continuation) => match continuation {
 
                    // TODO: Probably want to remove this translation
 
                    EC::Stepping => continue,
 
                    EC::Inconsistent => return RR::BranchInconsistent,
 
                    EC::Terminal => return RR::ComponentTerminated,
 
                    EC::SyncBlockStart => return RR::ComponentAtSyncStart,
 
                    EC::SyncBlockEnd => return RR::BranchAtSyncEnd,
 
                    EC::NewComponent(definition_id, monomorph_idx, args) =>
 
                        return RR::NewComponent(definition_id, monomorph_idx, args),
 
                    EC::NewChannel =>
 
                        return RR::NewChannel,
 
                    EC::NewFork =>
 
                        return RR::BranchFork,
 
                    EC::BlockFires(port_id) => return RR::BranchMissingPortState(port_id),
 
                    EC::BlockGet(port_id) => return RR::BranchMissingPortValue(port_id),
 
                    EC::BlockGet(port_id) => return RR::BranchGet(port_id),
 
                    EC::Put(port_id, value) => {
 
                        let value_group = ValueGroup::from_store(&self.prompt.store, &[value]);
 
                        return RR::BranchPut(port_id, value_group);
 
                    },
 
                }
 
            }
 
        }
 
    }
 
}
 

	
 
// TODO: @remove the old stuff
 
impl ComponentState {
 
    pub(crate) fn nonsync_run<'a: 'b, 'b>(
 
        &'a mut self,
 
        context: &'b mut NonsyncProtoContext<'b>,
 
        pd: &'a ProtocolDescription,
 
    ) -> NonsyncBlocker {
 
        let mut context = EvalContext::Nonsync(context);
 
        loop {
 
            let result = self.prompt.step(&pd.types, &pd.heap, &pd.modules, &mut context);
 
            match result {
 
                Err(err) => {
 
                    println!("Evaluation error:\n{}", err);
 
                    panic!("proper error handling when component fails");
 
                },
 
                Ok(cont) => match cont {
 
                    EvalContinuation::Stepping => continue,
 
                    EvalContinuation::Inconsistent => return NonsyncBlocker::Inconsistent,
 
                    EvalContinuation::Terminal => return NonsyncBlocker::ComponentExit,
 
                    EvalContinuation::SyncBlockStart => return NonsyncBlocker::SyncBlockStart,
 
                    // Not possible to end sync block if never entered one
 
                    EvalContinuation::SyncBlockEnd => unreachable!(),
 
                    EvalContinuation::NewComponent(definition_id, monomorph_idx, args) => {
 
                        // Look up definition (TODO for now, assume it is a definition)
 
                        let mut moved_ports = HashSet::new();
 
                        for arg in args.values.iter() {
 
                            match arg {
 
                                Value::Output(port) => {
 
                                    moved_ports.insert(*port);
 
                                }
 
                                Value::Input(port) => {
 
                                    moved_ports.insert(*port);
 
                                }
 
                                _ => {}
 
                            }
 
                        }
 
                        for region in args.regions.iter() {
 
                            for arg in region {
 
                                match arg {
 
                                    Value::Output(port) => { moved_ports.insert(*port); },
 
                                    Value::Input(port) => { moved_ports.insert(*port); },
 
                                    _ => {},
 
                                }
 
                            }
 
                        }
 
                        let init_state = ComponentState { prompt: Prompt::new(&pd.types, &pd.heap, definition_id, monomorph_idx, args) };
 
                        context.new_component(moved_ports, init_state);
 
                        // Continue stepping
 
                        continue;
 
                    },
 
                    EvalContinuation::NewChannel => {
 
                        // Because of the way we emulate the old context for now, we can safely
 
                        // assume that this will never happen. The old context thingamajig always
 
                        // creates a channel, it never bubbles a "need to create a channel" message
 
                        // to the runtime
 
                        unreachable!();
 
                    },
 
                    EvalContinuation::NewFork => unreachable!(),
 
                    // Outside synchronous blocks, no fires/get/put happens
 
                    EvalContinuation::BlockFires(_) => unreachable!(),
 
                    EvalContinuation::BlockGet(_) => unreachable!(),
 
                    EvalContinuation::Put(_, _) => unreachable!(),
 
                },
 
            }
 
        }
 
    }
 

	
 
    pub(crate) fn sync_run<'a: 'b, 'b>(
 
        &'a mut self,
 
        context: &'b mut SyncProtoContext<'b>,
 
        pd: &'a ProtocolDescription,
 
    ) -> SyncBlocker {
 
        let mut context = EvalContext::Sync(context);
 
        loop {
 
            let result = self.prompt.step(&pd.types, &pd.heap, &pd.modules, &mut context);
 
            match result {
 
                Err(err) => {
 
                    println!("Evaluation error:\n{}", err);
 
                    panic!("proper error handling when component fails");
 
                },
 
                Ok(cont) => match cont {
 
                    EvalContinuation::Stepping => continue,
 
                    EvalContinuation::Inconsistent => return SyncBlocker::Inconsistent,
 
                    // First need to exit synchronous block before definition may end
 
                    EvalContinuation::Terminal => unreachable!(),
 
                    // No nested synchronous blocks
 
                    EvalContinuation::SyncBlockStart => unreachable!(),
 
                    EvalContinuation::SyncBlockEnd => return SyncBlocker::SyncBlockEnd,
 
                    // Not possible to create component in sync block
 
                    EvalContinuation::NewComponent(_, _, _) => unreachable!(),
 
                    EvalContinuation::NewChannel => unreachable!(),
 
                    EvalContinuation::NewFork => unreachable!(),
 
                    EvalContinuation::BlockFires(port) => {
 
                        return SyncBlocker::CouldntCheckFiring(port);
 
                    },
 
                    EvalContinuation::BlockGet(port) => {
 
                        return SyncBlocker::CouldntReadMsg(port);
 
                    },
 
                    EvalContinuation::Put(port, message) => {
 
                        let payload;
 
                        match message {
 
                            Value::Null => {
 
                                return SyncBlocker::Inconsistent;
 
                            },
 
                            Value::Message(heap_pos) => {
 
                                // Create a copy of the payload
 
                                let values = &self.prompt.store.heap_regions[heap_pos as usize].values;
 
                                let mut bytes = Vec::with_capacity(values.len());
 
                                for value in values {
 
                                    bytes.push(value.as_uint8());
 
                                }
 
                                payload = Payload(Arc::new(bytes));
 
                            }
 
                            _ => unreachable!(),
 
                        }
 
                        return SyncBlocker::PutMsg(port, payload);
 
                    }
 
                },
 
            }
 
        }
 
    }
 
}
 

	
 
impl RunContext for EvalContext<'_> {
 
    fn did_put(&mut self, port: PortId) -> bool {
 
    fn performed_put(&mut self, port: PortId) -> bool {
 
        match self {
 
            EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(_) => unreachable!(),
 
            EvalContext::Sync(ctx) => {
 
                ctx.did_put_or_get(port)
 
            }
 
        }
 
    }
 

	
 
    fn get(&mut self, port: PortId) -> Option<ValueGroup> {
 
    fn performed_get(&mut self, port: PortId) -> Option<ValueGroup> {
 
        match self {
 
            EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(_) => unreachable!(),
 
            EvalContext::Sync(ctx) => {
 
                let payload = ctx.read_msg(port);
 
                if payload.is_none() {
 
                    return None;
 
                }
 

	
 
                let payload = payload.unwrap();
 
                let mut transformed = Vec::with_capacity(payload.len());
 
                for byte in payload.0.iter() {
 
                    transformed.push(Value::UInt8(*byte));
 
                }
 

	
 
                let value_group = ValueGroup{
 
                    values: vec![Value::Message(0)],
 
                    regions: vec![transformed],
 
                };
 

	
 
                return Some(value_group);
 
            }
 
        }
 
    }
 

	
 
    fn fires(&mut self, port: PortId) -> Option<Value> {
 
        match self {
 
            EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(_) => unreachable!(),
 
            EvalContext::Sync(context) => {
 
                match context.is_firing(port) {
 
                    Some(did_fire) => Some(Value::Bool(did_fire)),
 
                    None => None,
 
                }
 
            }
 
        }
 
    }
 

	
 
    fn get_channel(&mut self) -> Option<(Value, Value)> {
 
    fn created_channel(&mut self) -> Option<(Value, Value)> {
 
        match self {
 
            EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(context) => {
 
                let [from, to] = context.new_port_pair();
 
                let from = Value::Output(from);
 
                let to = Value::Input(to);
 
                return Some((from, to));
 
            },
 
            EvalContext::Sync(_) => unreachable!(),
 
        }
 
    }
 

	
 
    fn performed_fork(&mut self) -> Option<bool> {
 
        // Never actually used in the old runtime
 
        return None;
 
    }
 
}
 

	
 
// TODO: @remove once old runtime has disappeared
 
impl EvalContext<'_> {
 
    // fn random(&mut self) -> LongValue {
 
    //     match self {
 
    //         // EvalContext::None => unreachable!(),
 
    //         EvalContext::Nonsync(_context) => todo!(),
 
    //         EvalContext::Sync(_) => unreachable!(),
 
    //     }
 
    // }
 
    fn new_component(&mut self, moved_ports: HashSet<PortId>, init_state: ComponentState) -> () {
 
        match self {
 
            EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(context) => {
 
                context.new_component(moved_ports, init_state)
 
            }
 
            EvalContext::Sync(_) => unreachable!(),
 
        }
 
    }
 
    fn new_channel(&mut self) -> [Value; 2] {
 
        match self {
 
            EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(context) => {
 
                let [from, to] = context.new_port_pair();
 
                let from = Value::Output(from);
 
                let to = Value::Input(to);
 
                return [from, to];
 
            }
 
            EvalContext::Sync(_) => unreachable!(),
 
        }
 
    }
 
    fn fires(&mut self, port: Value) -> Option<Value> {
 
        match self {
 
            EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(_) => unreachable!(),
 
            EvalContext::Sync(context) => match port {
 
                Value::Output(port) => context.is_firing(port).map(Value::Bool),
 
                Value::Input(port) => context.is_firing(port).map(Value::Bool),
 
                _ => unreachable!(),
 
            },
 
        }
 
    }
 
    fn get(&mut self, port: Value, store: &mut Store) -> Option<Value> {
 
        match self {
 
            EvalContext::None => unreachable!(),
 
            EvalContext::Nonsync(_) => unreachable!(),
 
            EvalContext::Sync(context) => match port {
 
                Value::Input(port) => {
 
                    let payload = context.read_msg(port);
 
                    if payload.is_none() { return None; }
 

	
 
                    let heap_pos = store.alloc_heap();
 
                    let heap_pos_usize = heap_pos as usize;
 
                    let payload = payload.unwrap();
 
                    store.heap_regions[heap_pos_usize].values.reserve(payload.0.len());
 
                    for value in payload.0.iter() {
 
                        store.heap_regions[heap_pos_usize].values.push(Value::UInt8(*value));
 
                    }
 

	
 
                    return Some(Value::Message(heap_pos));
 
                }
 
                _ => unreachable!(),
 
            },
 
        }
 
    }
 
    fn did_put(&mut self, port: Value) -> bool {
 
        match self {
 
            EvalContext::None => unreachable!("did_put in None context"),
 
            EvalContext::Nonsync(_) => unreachable!("did_put in nonsync context"),
 
            EvalContext::Sync(context) => match port {
 
                Value::Output(port) => {
 
                    context.did_put_or_get(port)
 
                },
 
                _ => unreachable!("did_put on non-output port value")
 
            }
 
        }
 
    }
 
}
src/protocol/parser/pass_definitions.rs
Show inline comments
 
@@ -330,382 +330,420 @@ impl PassDefinitions {
 
        component.parameters = parameters;
 
        component.body = body;
 

	
 
        Ok(())
 
    }
 

	
 
    /// Consumes a block statement. If the resulting statement is not a block
 
    /// (e.g. for a shorthand "if (expr) single_statement") then it will be
 
    /// wrapped in one
 
    fn consume_block_or_wrapped_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<BlockStatementId, ParseError> {
 
        if Some(TokenKind::OpenCurly) == iter.next() {
 
            // This is a block statement
 
            self.consume_block_statement(module, iter, ctx)
 
        } else {
 
            // Not a block statement, so wrap it in one
 
            let mut statements = self.statements.start_section();
 
            let wrap_begin_pos = iter.last_valid_pos();
 
            self.consume_statement(module, iter, ctx, &mut statements)?;
 
            let wrap_end_pos = iter.last_valid_pos();
 

	
 
            let statements = statements.into_vec();
 

	
 
            let id = ctx.heap.alloc_block_statement(|this| BlockStatement{
 
                this,
 
                is_implicit: true,
 
                span: InputSpan::from_positions(wrap_begin_pos, wrap_end_pos),
 
                statements,
 
                end_block: EndBlockStatementId::new_invalid(),
 
                scope_node: ScopeNode::new_invalid(),
 
                first_unique_id_in_scope: -1,
 
                next_unique_id_in_scope: -1,
 
                relative_pos_in_parent: 0,
 
                locals: Vec::new(),
 
                labels: Vec::new(),
 
                next: StatementId::new_invalid(),
 
            });
 

	
 
            let end_block = ctx.heap.alloc_end_block_statement(|this| EndBlockStatement{
 
                this, start_block: id, next: StatementId::new_invalid()
 
            });
 

	
 
            let block_stmt = &mut ctx.heap[id];
 
            block_stmt.end_block = end_block;
 

	
 
            Ok(id)
 
        }
 
    }
 

	
 
    /// Consumes a statement and returns a boolean indicating whether it was a
 
    /// block or not.
 
    fn consume_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx, section: &mut ScopedSection<StatementId>
 
    ) -> Result<(), ParseError> {
 
        let next = iter.next().expect("consume_statement has a next token");
 

	
 
        if next == TokenKind::OpenCurly {
 
            let id = self.consume_block_statement(module, iter, ctx)?;
 
            section.push(id.upcast());
 
        } else if next == TokenKind::Ident {
 
            let ident = peek_ident(&module.source, iter).unwrap();
 
            if ident == KW_STMT_IF {
 
                // Consume if statement and place end-if statement directly
 
                // after it.
 
                let id = self.consume_if_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 

	
 
                let end_if = ctx.heap.alloc_end_if_statement(|this| EndIfStatement{
 
                    this, start_if: id, next: StatementId::new_invalid()
 
                });
 
                section.push(end_if.upcast());
 

	
 
                let if_stmt = &mut ctx.heap[id];
 
                if_stmt.end_if = end_if;
 
            } else if ident == KW_STMT_WHILE {
 
                let id = self.consume_while_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 

	
 
                let end_while = ctx.heap.alloc_end_while_statement(|this| EndWhileStatement{
 
                    this, start_while: id, next: StatementId::new_invalid()
 
                });
 
                section.push(end_while.upcast());
 

	
 
                let while_stmt = &mut ctx.heap[id];
 
                while_stmt.end_while = end_while;
 
            } else if ident == KW_STMT_BREAK {
 
                let id = self.consume_break_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 
            } else if ident == KW_STMT_CONTINUE {
 
                let id = self.consume_continue_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 
            } else if ident == KW_STMT_SYNC {
 
                let id = self.consume_synchronous_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 

	
 
                let end_sync = ctx.heap.alloc_end_synchronous_statement(|this| EndSynchronousStatement{
 
                    this, start_sync: id, next: StatementId::new_invalid()
 
                let end_sync = ctx.heap.alloc_end_synchronous_statement(|this| EndSynchronousStatement {
 
                    this,
 
                    start_sync: id,
 
                    next: StatementId::new_invalid()
 
                });
 
                section.push(end_sync.upcast());
 

	
 
                let sync_stmt = &mut ctx.heap[id];
 
                sync_stmt.end_sync = end_sync;
 
            } else if ident == KW_STMT_FORK {
 
                let id = self.consume_fork_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 

	
 
                let end_fork = ctx.heap.alloc_end_fork_statement(|this| EndForkStatement{
 
                    this,
 
                    start_fork: id,
 
                    next: StatementId::new_invalid(),
 
                });
 
                section.push(end_fork.upcast());
 

	
 
                let fork_stmt = &mut ctx.heap[id];
 
                fork_stmt.end_fork = end_fork;
 
            } else if ident == KW_STMT_RETURN {
 
                let id = self.consume_return_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 
            } else if ident == KW_STMT_GOTO {
 
                let id = self.consume_goto_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 
            } else if ident == KW_STMT_NEW {
 
                let id = self.consume_new_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 
            } else if ident == KW_STMT_CHANNEL {
 
                let id = self.consume_channel_statement(module, iter, ctx)?;
 
                section.push(id.upcast().upcast());
 
            } else if iter.peek() == Some(TokenKind::Colon) {
 
                self.consume_labeled_statement(module, iter, ctx, section)?;
 
            } else {
 
                // Two fallback possibilities: the first one is a memory
 
                // declaration, the other one is to parse it as a regular
 
                // expression. This is a bit ugly
 
                if let Some((memory_stmt_id, assignment_stmt_id)) = self.maybe_consume_memory_statement(module, iter, ctx)? {
 
                    section.push(memory_stmt_id.upcast().upcast());
 
                    section.push(assignment_stmt_id.upcast());
 
                } else {
 
                    let id = self.consume_expression_statement(module, iter, ctx)?;
 
                    section.push(id.upcast());
 
                }
 
            }
 
        } else {
 
            let id = self.consume_expression_statement(module, iter, ctx)?;
 
            section.push(id.upcast());
 
        }
 

	
 
        return Ok(());
 
    }
 

	
 
    fn consume_block_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<BlockStatementId, ParseError> {
 
        let open_span = consume_token(&module.source, iter, TokenKind::OpenCurly)?;
 
        self.consume_block_statement_without_leading_curly(module, iter, ctx, open_span.begin)
 
    }
 

	
 
    fn consume_block_statement_without_leading_curly(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx, open_curly_pos: InputPosition
 
    ) -> Result<BlockStatementId, ParseError> {
 
        let mut stmt_section = self.statements.start_section();
 
        let mut next = iter.next();
 
        while next != Some(TokenKind::CloseCurly) {
 
            if next.is_none() {
 
                return Err(ParseError::new_error_str_at_pos(
 
                    &module.source, iter.last_valid_pos(), "expected a statement or '}'"
 
                ));
 
            }
 
            self.consume_statement(module, iter, ctx, &mut stmt_section)?;
 
            next = iter.next();
 
        }
 

	
 
        let statements = stmt_section.into_vec();
 
        let mut block_span = consume_token(&module.source, iter, TokenKind::CloseCurly)?;
 
        block_span.begin = open_curly_pos;
 

	
 
        let id = ctx.heap.alloc_block_statement(|this| BlockStatement{
 
            this,
 
            is_implicit: false,
 
            span: block_span,
 
            statements,
 
            end_block: EndBlockStatementId::new_invalid(),
 
            scope_node: ScopeNode::new_invalid(),
 
            first_unique_id_in_scope: -1,
 
            next_unique_id_in_scope: -1,
 
            relative_pos_in_parent: 0,
 
            locals: Vec::new(),
 
            labels: Vec::new(),
 
            next: StatementId::new_invalid(),
 
        });
 

	
 
        let end_block = ctx.heap.alloc_end_block_statement(|this| EndBlockStatement{
 
            this, start_block: id, next: StatementId::new_invalid()
 
        });
 

	
 
        let block_stmt = &mut ctx.heap[id];
 
        block_stmt.end_block = end_block;
 

	
 
        Ok(id)
 
    }
 

	
 
    fn consume_if_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<IfStatementId, ParseError> {
 
        let if_span = consume_exact_ident(&module.source, iter, KW_STMT_IF)?;
 
        consume_token(&module.source, iter, TokenKind::OpenParen)?;
 
        let test = self.consume_expression(module, iter, ctx)?;
 
        consume_token(&module.source, iter, TokenKind::CloseParen)?;
 
        let true_body = self.consume_block_or_wrapped_statement(module, iter, ctx)?;
 

	
 
        let false_body = if has_ident(&module.source, iter, KW_STMT_ELSE) {
 
            iter.consume();
 
            let false_body = self.consume_block_or_wrapped_statement(module, iter, ctx)?;
 
            Some(false_body)
 
        } else {
 
            None
 
        };
 

	
 
        Ok(ctx.heap.alloc_if_statement(|this| IfStatement{
 
            this,
 
            span: if_span,
 
            test,
 
            true_body,
 
            false_body,
 
            end_if: EndIfStatementId::new_invalid(),
 
        }))
 
    }
 

	
 
    fn consume_while_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<WhileStatementId, ParseError> {
 
        let while_span = consume_exact_ident(&module.source, iter, KW_STMT_WHILE)?;
 
        consume_token(&module.source, iter, TokenKind::OpenParen)?;
 
        let test = self.consume_expression(module, iter, ctx)?;
 
        consume_token(&module.source, iter, TokenKind::CloseParen)?;
 
        let body = self.consume_block_or_wrapped_statement(module, iter, ctx)?;
 

	
 
        Ok(ctx.heap.alloc_while_statement(|this| WhileStatement{
 
            this,
 
            span: while_span,
 
            test,
 
            body,
 
            end_while: EndWhileStatementId::new_invalid(),
 
            in_sync: SynchronousStatementId::new_invalid(),
 
        }))
 
    }
 

	
 
    fn consume_break_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<BreakStatementId, ParseError> {
 
        let break_span = consume_exact_ident(&module.source, iter, KW_STMT_BREAK)?;
 
        let label = if Some(TokenKind::Ident) == iter.next() {
 
            let label = consume_ident_interned(&module.source, iter, ctx)?;
 
            Some(label)
 
        } else {
 
            None
 
        };
 
        consume_token(&module.source, iter, TokenKind::SemiColon)?;
 
        Ok(ctx.heap.alloc_break_statement(|this| BreakStatement{
 
            this,
 
            span: break_span,
 
            label,
 
            target: None,
 
        }))
 
    }
 

	
 
    fn consume_continue_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<ContinueStatementId, ParseError> {
 
        let continue_span = consume_exact_ident(&module.source, iter, KW_STMT_CONTINUE)?;
 
        let label=  if Some(TokenKind::Ident) == iter.next() {
 
            let label = consume_ident_interned(&module.source, iter, ctx)?;
 
            Some(label)
 
        } else {
 
            None
 
        };
 
        consume_token(&module.source, iter, TokenKind::SemiColon)?;
 
        Ok(ctx.heap.alloc_continue_statement(|this| ContinueStatement{
 
            this,
 
            span: continue_span,
 
            label,
 
            target: None
 
        }))
 
    }
 

	
 
    fn consume_synchronous_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<SynchronousStatementId, ParseError> {
 
        let synchronous_span = consume_exact_ident(&module.source, iter, KW_STMT_SYNC)?;
 
        let body = self.consume_block_or_wrapped_statement(module, iter, ctx)?;
 

	
 
        Ok(ctx.heap.alloc_synchronous_statement(|this| SynchronousStatement{
 
            this,
 
            span: synchronous_span,
 
            body,
 
            end_sync: EndSynchronousStatementId::new_invalid(),
 
        }))
 
    }
 

	
 
    fn consume_fork_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<ForkStatementId, ParseError> {
 
        let fork_span = consume_exact_ident(&module.source, iter, KW_STMT_FORK)?;
 
        let left_body = self.consume_block_or_wrapped_statement(module, iter, ctx)?;
 

	
 
        let right_body = if has_ident(&module.source, iter, KW_STMT_OR) {
 
            iter.consume();
 
            let right_body = self.consume_block_or_wrapped_statement(module, iter, ctx)?;
 
            Some(right_body)
 
        } else {
 
            None
 
        };
 

	
 
        Ok(ctx.heap.alloc_fork_statement(|this| ForkStatement{
 
            this,
 
            span: fork_span,
 
            left_body,
 
            right_body,
 
            end_fork: EndForkStatementId::new_invalid(),
 
        }))
 
    }
 

	
 
    fn consume_return_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<ReturnStatementId, ParseError> {
 
        let return_span = consume_exact_ident(&module.source, iter, KW_STMT_RETURN)?;
 
        let mut scoped_section = self.expressions.start_section();
 

	
 
        consume_comma_separated_until(
 
            TokenKind::SemiColon, &module.source, iter, ctx,
 
            |_source, iter, ctx| self.consume_expression(module, iter, ctx),
 
            &mut scoped_section, "an expression", None
 
        )?;
 
        let expressions = scoped_section.into_vec();
 

	
 
        if expressions.is_empty() {
 
            return Err(ParseError::new_error_str_at_span(&module.source, return_span, "expected at least one return value"));
 
        } else if expressions.len() > 1 {
 
            return Err(ParseError::new_error_str_at_span(&module.source, return_span, "multiple return values are not (yet) supported"))
 
        }
 

	
 
        Ok(ctx.heap.alloc_return_statement(|this| ReturnStatement{
 
            this,
 
            span: return_span,
 
            expressions
 
        }))
 
    }
 

	
 
    fn consume_goto_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<GotoStatementId, ParseError> {
 
        let goto_span = consume_exact_ident(&module.source, iter, KW_STMT_GOTO)?;
 
        let label = consume_ident_interned(&module.source, iter, ctx)?;
 
        consume_token(&module.source, iter, TokenKind::SemiColon)?;
 
        Ok(ctx.heap.alloc_goto_statement(|this| GotoStatement{
 
            this,
 
            span: goto_span,
 
            label,
 
            target: None
 
        }))
 
    }
 

	
 
    fn consume_new_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<NewStatementId, ParseError> {
 
        let new_span = consume_exact_ident(&module.source, iter, KW_STMT_NEW)?;
 

	
 
        let start_pos = iter.last_valid_pos();
 
        let expression_id = self.consume_primary_expression(module, iter, ctx)?;
 
        let expression = &ctx.heap[expression_id];
 
        let mut valid = false;
 

	
 
        let mut call_id = CallExpressionId::new_invalid();
 
        if let Expression::Call(expression) = expression {
 
            // Allow both components and functions, as it makes more sense to
 
            // check their correct use in the validation and linking pass
 
            if expression.method == Method::UserComponent || expression.method == Method::UserFunction {
 
                call_id = expression.this;
 
                valid = true;
 
            }
 
        }
 

	
 
        if !valid {
 
            return Err(ParseError::new_error_str_at_span(
 
                &module.source, InputSpan::from_positions(start_pos, iter.last_valid_pos()), "expected a call expression"
 
            ));
 
        }
 
        consume_token(&module.source, iter, TokenKind::SemiColon)?;
 

	
 
        debug_assert!(!call_id.is_invalid());
 
        Ok(ctx.heap.alloc_new_statement(|this| NewStatement{
 
            this,
 
            span: new_span,
 
            expression: call_id,
 
            next: StatementId::new_invalid(),
 
        }))
 
    }
 

	
 
    fn consume_channel_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<ChannelStatementId, ParseError> {
 
        // Consume channel specification
 
        let channel_span = consume_exact_ident(&module.source, iter, KW_STMT_CHANNEL)?;
 
        let (inner_port_type, end_pos) = if Some(TokenKind::OpenAngle) == iter.next() {
 
            // Retrieve the type of the channel, we're cheating a bit here by
 
            // consuming the first '<' and setting the initial angle depth to 1
 
            // such that our final '>' will be consumed as well.
 
            iter.consume();
 
            let definition_id = self.cur_definition;
 
            let poly_vars = ctx.heap[definition_id].poly_vars();
 
            let parser_type = consume_parser_type(
 
                &module.source, iter, &ctx.symbols, &ctx.heap,
 
                poly_vars, SymbolScope::Module(module.root_id), definition_id,
 
                true, 1
 
            )?;
 

	
 
            (parser_type.elements, parser_type.full_span.end)
 
        } else {
src/protocol/parser/pass_typing.rs
Show inline comments
 
@@ -1049,192 +1049,205 @@ impl Visitor for PassTyping {
 

	
 
        // Reserve data for expression types
 
        debug_assert!(self.expr_types.is_empty());
 
        self.expr_types.resize(func_def.num_expressions_in_body as usize, Default::default());
 

	
 
        // Visit parameters
 
        for param_id in func_def.parameters.clone() {
 
            let param = &ctx.heap[param_id];
 
            let var_type = self.determine_inference_type_from_parser_type_elements(&param.parser_type.elements, true);
 
            debug_assert!(var_type.is_done, "expected function arguments to be concrete types");
 
            self.var_types.insert(param_id, VarData::new_local(var_type));
 
        }
 

	
 
        // Visit all of the expressions within the body
 
        let body_stmt_id = ctx.heap[id].body;
 
        self.visit_block_stmt(ctx, body_stmt_id)
 
    }
 

	
 
    // Statements
 

	
 
    fn visit_block_stmt(&mut self, ctx: &mut Ctx, id: BlockStatementId) -> VisitorResult {
 
        // Transfer statements for traversal
 
        let block = &ctx.heap[id];
 

	
 
        for stmt_id in block.statements.clone() {
 
            self.visit_stmt(ctx, stmt_id)?;
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_local_memory_stmt(&mut self, ctx: &mut Ctx, id: MemoryStatementId) -> VisitorResult {
 
        let memory_stmt = &ctx.heap[id];
 

	
 
        let local = &ctx.heap[memory_stmt.variable];
 
        let var_type = self.determine_inference_type_from_parser_type_elements(&local.parser_type.elements, true);
 
        self.var_types.insert(memory_stmt.variable, VarData::new_local(var_type));
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_local_channel_stmt(&mut self, ctx: &mut Ctx, id: ChannelStatementId) -> VisitorResult {
 
        let channel_stmt = &ctx.heap[id];
 

	
 
        let from_local = &ctx.heap[channel_stmt.from];
 
        let from_var_type = self.determine_inference_type_from_parser_type_elements(&from_local.parser_type.elements, true);
 
        self.var_types.insert(from_local.this, VarData::new_channel(from_var_type, channel_stmt.to));
 

	
 
        let to_local = &ctx.heap[channel_stmt.to];
 
        let to_var_type = self.determine_inference_type_from_parser_type_elements(&to_local.parser_type.elements, true);
 
        self.var_types.insert(to_local.this, VarData::new_channel(to_var_type, channel_stmt.from));
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_labeled_stmt(&mut self, ctx: &mut Ctx, id: LabeledStatementId) -> VisitorResult {
 
        let labeled_stmt = &ctx.heap[id];
 
        let substmt_id = labeled_stmt.body;
 
        self.visit_stmt(ctx, substmt_id)
 
    }
 

	
 
    fn visit_if_stmt(&mut self, ctx: &mut Ctx, id: IfStatementId) -> VisitorResult {
 
        let if_stmt = &ctx.heap[id];
 

	
 
        let true_body_id = if_stmt.true_body;
 
        let false_body_id = if_stmt.false_body;
 
        let test_expr_id = if_stmt.test;
 

	
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.visit_block_stmt(ctx, true_body_id)?;
 
        if let Some(false_body_id) = false_body_id {
 
            self.visit_block_stmt(ctx, false_body_id)?;
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_while_stmt(&mut self, ctx: &mut Ctx, id: WhileStatementId) -> VisitorResult {
 
        let while_stmt = &ctx.heap[id];
 

	
 
        let body_id = while_stmt.body;
 
        let test_expr_id = while_stmt.test;
 

	
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.visit_block_stmt(ctx, body_id)?;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_synchronous_stmt(&mut self, ctx: &mut Ctx, id: SynchronousStatementId) -> VisitorResult {
 
        let sync_stmt = &ctx.heap[id];
 
        let body_id = sync_stmt.body;
 

	
 
        self.visit_block_stmt(ctx, body_id)
 
    }
 

	
 
    fn visit_fork_stmt(&mut self, ctx: &mut Ctx, id: ForkStatementId) -> VisitorResult {
 
        let fork_stmt = &ctx.heap[id];
 
        let left_body_id = fork_stmt.left_body;
 
        let right_body_id = fork_stmt.right_body;
 

	
 
        self.visit_block_stmt(ctx, left_body_id)?;
 
        if let Some(right_body_id) = right_body_id {
 
            self.visit_block_stmt(ctx, right_body_id)?;
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_return_stmt(&mut self, ctx: &mut Ctx, id: ReturnStatementId) -> VisitorResult {
 
        let return_stmt = &ctx.heap[id];
 
        debug_assert_eq!(return_stmt.expressions.len(), 1);
 
        let expr_id = return_stmt.expressions[0];
 

	
 
        self.visit_expr(ctx, expr_id)
 
    }
 

	
 
    fn visit_new_stmt(&mut self, ctx: &mut Ctx, id: NewStatementId) -> VisitorResult {
 
        let new_stmt = &ctx.heap[id];
 
        let call_expr_id = new_stmt.expression;
 

	
 
        self.visit_call_expr(ctx, call_expr_id)
 
    }
 

	
 
    fn visit_expr_stmt(&mut self, ctx: &mut Ctx, id: ExpressionStatementId) -> VisitorResult {
 
        let expr_stmt = &ctx.heap[id];
 
        let subexpr_id = expr_stmt.expression;
 

	
 
        self.visit_expr(ctx, subexpr_id)
 
    }
 

	
 
    // Expressions
 

	
 
    fn visit_assignment_expr(&mut self, ctx: &mut Ctx, id: AssignmentExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let assign_expr = &ctx.heap[id];
 
        let left_expr_id = assign_expr.left;
 
        let right_expr_id = assign_expr.right;
 

	
 
        self.visit_expr(ctx, left_expr_id)?;
 
        self.visit_expr(ctx, right_expr_id)?;
 

	
 
        self.progress_assignment_expr(ctx, id)
 
    }
 

	
 
    fn visit_binding_expr(&mut self, ctx: &mut Ctx, id: BindingExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let binding_expr = &ctx.heap[id];
 
        let bound_to_id = binding_expr.bound_to;
 
        let bound_from_id = binding_expr.bound_from;
 

	
 
        self.visit_expr(ctx, bound_to_id)?;
 
        self.visit_expr(ctx, bound_from_id)?;
 

	
 
        self.progress_binding_expr(ctx, id)
 
    }
 

	
 
    fn visit_conditional_expr(&mut self, ctx: &mut Ctx, id: ConditionalExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let conditional_expr = &ctx.heap[id];
 
        let test_expr_id = conditional_expr.test;
 
        let true_expr_id = conditional_expr.true_expression;
 
        let false_expr_id = conditional_expr.false_expression;
 

	
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.visit_expr(ctx, true_expr_id)?;
 
        self.visit_expr(ctx, false_expr_id)?;
 

	
 
        self.progress_conditional_expr(ctx, id)
 
    }
 

	
 
    fn visit_binary_expr(&mut self, ctx: &mut Ctx, id: BinaryExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let binary_expr = &ctx.heap[id];
 
        let lhs_expr_id = binary_expr.left;
 
        let rhs_expr_id = binary_expr.right;
 

	
 
        self.visit_expr(ctx, lhs_expr_id)?;
 
        self.visit_expr(ctx, rhs_expr_id)?;
 

	
 
        self.progress_binary_expr(ctx, id)
 
    }
 

	
 
    fn visit_unary_expr(&mut self, ctx: &mut Ctx, id: UnaryExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let unary_expr = &ctx.heap[id];
 
        let arg_expr_id = unary_expr.expression;
 

	
 
        self.visit_expr(ctx, arg_expr_id)?;
 

	
 
        self.progress_unary_expr(ctx, id)
 
    }
 

	
 
    fn visit_indexing_expr(&mut self, ctx: &mut Ctx, id: IndexingExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
src/protocol/parser/pass_validation_linking.rs
Show inline comments
 
/*
 
 * pass_validation_linking.rs
 
 *
 
 * The pass that will validate properties of the AST statements (one is not
 
 * allowed to nest synchronous statements, instantiating components occurs in
 
 * the right places, etc.) and expressions (assignments may not occur in
 
 * arbitrary expressions).
 
 *
 
 * Furthermore, this pass will also perform "linking", in the sense of: some AST
 
 * nodes have something to do with one another, so we link them up in this pass
 
 * (e.g. setting the parents of expressions, linking the control flow statements
 
 * like `continue` and `break` up to the respective loop statement, etc.).
 
 *
 
 * There are several "confusing" parts about this pass:
 
 *
 
 * Setting expression parents: this is the simplest one. The pass struct acts
 
 * like a little state machine. When visiting an expression it will set the
 
 * "parent expression" field of the pass to itself, then visit its child. The
 
 * child will look at this "parent expression" field to determine its parent.
 
 *
 
 * Setting the `next` statement: the AST is a tree, but during execution we walk
 
 * a linear path through all statements. So where appropriate a statement may
 
 * set the "previous statement" field of the pass to itself. When visiting the
 
 * subsequent statement it will check this "previous statement", and if set, it
 
 * will link this previous statement up to itself. Not every statement has a
 
 * previous statement. Hence there are two patterns that occur: assigning the
 
 * `next` value, then clearing the "previous statement" field. And assigning the
 
 * `next` value, and then putting the current statement's ID in the "previous
 
 * statement" field. Because it is so common, this file contain two macros that
 
 * perform that operation.
 
 *
 
 * To make storing types for polymorphic procedures simpler and more efficient,
 
 * we assign to each expression in the procedure a unique ID. This is what the
 
 * "next expression index" field achieves. Each expression simply takes the
 
 * current value, and then increments this counter.
 
 */
 

	
 
use crate::collections::{ScopedBuffer};
 
use crate::protocol::ast::*;
 
use crate::protocol::input_source::*;
 
use crate::protocol::parser::symbol_table::*;
 
use crate::protocol::parser::type_table::*;
 

	
 
use super::visitor::{
 
    STMT_BUFFER_INIT_CAPACITY,
 
    EXPR_BUFFER_INIT_CAPACITY,
 
    Ctx,
 
    Visitor,
 
    VisitorResult
 
};
 
use crate::protocol::parser::ModuleCompilationPhase;
 

	
 
#[derive(PartialEq, Eq)]
 
enum DefinitionType {
 
    Primitive(ComponentDefinitionId),
 
    Composite(ComponentDefinitionId),
 
    Function(FunctionDefinitionId)
 
}
 

	
 
impl DefinitionType {
 
    fn is_primitive(&self) -> bool { if let Self::Primitive(_) = self { true } else { false } }
 
    fn is_composite(&self) -> bool { if let Self::Composite(_) = self { true } else { false } }
 
    fn is_function(&self) -> bool { if let Self::Function(_) = self { true } else { false } }
 
    fn definition_id(&self) -> DefinitionId {
 
        match self {
 
            DefinitionType::Primitive(v) => v.upcast(),
 
            DefinitionType::Composite(v) => v.upcast(),
 
            DefinitionType::Function(v) => v.upcast(),
 
        }
 
    }
 
}
 

	
 
/// This particular visitor will go through the entire AST in a recursive manner
 
/// and check if all statements and expressions are legal (e.g. no "return"
 
/// statements in component definitions), and will link certain AST nodes to
 
/// their appropriate targets (e.g. goto statements, or function calls).
 
///
 
/// This visitor will not perform control-flow analysis (e.g. making sure that
 
/// each function actually returns) and will also not perform type checking. So
 
/// the linking of function calls and component instantiations will be checked
 
/// and linked to the appropriate definitions, but the return types and/or
 
/// arguments will not be checked for validity.
 
pub(crate) struct PassValidationLinking {
 
    // Traversal state, all valid IDs if inside a certain AST element. Otherwise
 
    // `id.is_invalid()` returns true.
 
    in_sync: SynchronousStatementId,
 
    in_while: WhileStatementId, // to resolve labeled continue/break
 
    in_test_expr: StatementId, // wrapping if/while stmt id
 
    in_binding_expr: BindingExpressionId, // to resolve variable expressions
 
    in_binding_expr_lhs: bool,
 
    // Traversal state, current scope (which can be used to find the parent
 
    // scope) and the definition variant we are considering.
 
    cur_scope: Scope,
 
    def_type: DefinitionType,
 
    // "Trailing" traversal state, set be child/prev stmt/expr used by next one
 
    prev_stmt: StatementId,
 
    expr_parent: ExpressionParent,
 
    // Set by parent to indicate that child expression must be assignable. The
 
    // child will throw an error if it is not assignable. The stored span is
 
    // used for the error's position
 
    must_be_assignable: Option<InputSpan>,
 
    // Keeping track of relative positions and unique IDs.
 
    relative_pos_in_block: u32, // of statements: to determine when variables are visible
 
    next_expr_index: i32, // to arrive at a unique ID for all expressions within a definition
 
    // Various temporary buffers for traversal. Essentially working around
 
    // Rust's borrowing rules since it cannot understand we're modifying AST
 
    // members but not the AST container.
 
    variable_buffer: ScopedBuffer<VariableId>,
 
    definition_buffer: ScopedBuffer<DefinitionId>,
 
    statement_buffer: ScopedBuffer<StatementId>,
 
    expression_buffer: ScopedBuffer<ExpressionId>,
 
}
 

	
 
impl PassValidationLinking {
 
    pub(crate) fn new() -> Self {
 
        Self{
 
            in_sync: SynchronousStatementId::new_invalid(),
 
            in_while: WhileStatementId::new_invalid(),
 
            in_test_expr: StatementId::new_invalid(),
 
            in_binding_expr: BindingExpressionId::new_invalid(),
 
            in_binding_expr_lhs: false,
 
            cur_scope: Scope::Definition(DefinitionId::new_invalid()),
 
            prev_stmt: StatementId::new_invalid(),
 
            expr_parent: ExpressionParent::None,
 
            def_type: DefinitionType::Function(FunctionDefinitionId::new_invalid()),
 
            must_be_assignable: None,
 
            relative_pos_in_block: 0,
 
            next_expr_index: 0,
 
            variable_buffer: ScopedBuffer::new_reserved(128),
 
            definition_buffer: ScopedBuffer::new_reserved(128),
 
            statement_buffer: ScopedBuffer::new_reserved(STMT_BUFFER_INIT_CAPACITY),
 
            expression_buffer: ScopedBuffer::new_reserved(EXPR_BUFFER_INIT_CAPACITY),
 
        }
 
@@ -162,307 +199,338 @@ impl Visitor for PassValidationLinking {
 
        // Visit parameters and assign a unique scope ID
 
        let definition = &ctx.heap[id];
 
        let body_id = definition.body;
 
        let section = self.variable_buffer.start_section_initialized(&definition.parameters);
 
        for variable_idx in 0..section.len() {
 
            let variable_id = section[variable_idx];
 
            let variable = &mut ctx.heap[variable_id];
 
            variable.unique_id_in_scope = variable_idx as i32;
 
        }
 
        section.forget();
 

	
 
        // Visit statements in component body
 
        self.visit_block_stmt(ctx, body_id)?;
 

	
 
        // Assign total number of expressions and assign an in-block unique ID
 
        // to each of the locals in the procedure.
 
        ctx.heap[id].num_expressions_in_body = self.next_expr_index;
 
        self.visit_definition_and_assign_local_ids(ctx, id.upcast());
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_function_definition(&mut self, ctx: &mut Ctx, id: FunctionDefinitionId) -> VisitorResult {
 
        self.reset_state();
 

	
 
        // Set internal statement indices
 
        self.def_type = DefinitionType::Function(id);
 
        self.cur_scope = Scope::Definition(id.upcast());
 
        self.expr_parent = ExpressionParent::None;
 

	
 
        // Visit parameters and assign a unique scope ID
 
        let definition = &ctx.heap[id];
 
        let body_id = definition.body;
 
        let section = self.variable_buffer.start_section_initialized(&definition.parameters);
 
        for variable_idx in 0..section.len() {
 
            let variable_id = section[variable_idx];
 
            let variable = &mut ctx.heap[variable_id];
 
            variable.unique_id_in_scope = variable_idx as i32;
 
        }
 
        section.forget();
 

	
 
        // Visit statements in function body
 
        self.visit_block_stmt(ctx, body_id)?;
 

	
 
        // Assign total number of expressions and assign an in-block unique ID
 
        // to each of the locals in the procedure.
 
        ctx.heap[id].num_expressions_in_body = self.next_expr_index;
 
        self.visit_definition_and_assign_local_ids(ctx, id.upcast());
 

	
 
        Ok(())
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Statement visitors
 
    //--------------------------------------------------------------------------
 

	
 
    fn visit_block_stmt(&mut self, ctx: &mut Ctx, id: BlockStatementId) -> VisitorResult {
 
        self.visit_block_stmt_with_hint(ctx, id, None)
 
    }
 

	
 
    fn visit_local_memory_stmt(&mut self, ctx: &mut Ctx, id: MemoryStatementId) -> VisitorResult {
 
        assign_and_replace_next_stmt!(self, ctx, id.upcast().upcast());
 
        Ok(())
 
    }
 

	
 
    fn visit_local_channel_stmt(&mut self, ctx: &mut Ctx, id: ChannelStatementId) -> VisitorResult {
 
        assign_and_replace_next_stmt!(self, ctx, id.upcast().upcast());
 
        Ok(())
 
    }
 

	
 
    fn visit_labeled_stmt(&mut self, ctx: &mut Ctx, id: LabeledStatementId) -> VisitorResult {
 
        let body_id = ctx.heap[id].body;
 
        self.visit_stmt(ctx, body_id)?;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_if_stmt(&mut self, ctx: &mut Ctx, id: IfStatementId) -> VisitorResult {
 
        let if_stmt = &ctx.heap[id];
 
        let end_if_id = if_stmt.end_if;
 
        let test_expr_id = if_stmt.test;
 
        let true_stmt_id = if_stmt.true_body;
 
        let false_stmt_id = if_stmt.false_body;
 

	
 
        // Visit test expression
 
        debug_assert_eq!(self.expr_parent, ExpressionParent::None);
 
        debug_assert!(self.in_test_expr.is_invalid());
 

	
 
        self.in_test_expr = id.upcast();
 
        self.expr_parent = ExpressionParent::If(id);
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.in_test_expr = StatementId::new_invalid();
 

	
 
        self.expr_parent = ExpressionParent::None;
 

	
 
        // Visit true and false branch. Executor chooses next statement based on
 
        // test expression, not on if-statement itself.
 
        // test expression, not on if-statement itself. Hence the if statement
 
        // does not have a static subsequent statement.
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 
        self.visit_block_stmt(ctx, true_stmt_id)?;
 
        assign_then_erase_next_stmt!(self, ctx, end_if_id.upcast());
 

	
 
        if let Some(false_id) = false_stmt_id {
 
            self.visit_block_stmt(ctx, false_id)?;
 
            assign_then_erase_next_stmt!(self, ctx, end_if_id.upcast());
 
        }
 

	
 
        self.prev_stmt = end_if_id.upcast();
 
        Ok(())
 
    }
 

	
 
    fn visit_while_stmt(&mut self, ctx: &mut Ctx, id: WhileStatementId) -> VisitorResult {
 
        let stmt = &ctx.heap[id];
 
        let end_while_id = stmt.end_while;
 
        let test_expr_id = stmt.test;
 
        let body_stmt_id = stmt.body;
 

	
 
        let old_while = self.in_while;
 
        self.in_while = id;
 

	
 
        // Visit test expression
 
        debug_assert_eq!(self.expr_parent, ExpressionParent::None);
 
        debug_assert!(self.in_test_expr.is_invalid());
 
        self.in_test_expr = id.upcast();
 
        self.expr_parent = ExpressionParent::While(id);
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.in_test_expr = StatementId::new_invalid();
 

	
 
        // Link up to body statement
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 

	
 
        self.expr_parent = ExpressionParent::None;
 
        self.visit_block_stmt(ctx, body_stmt_id)?;
 
        self.in_while = old_while;
 

	
 
        // Link final entry in while's block statement back to the while. The
 
        // executor will go to the end-while statement if the test expression
 
        // is false, so put that in as the new previous stmt
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 
        self.prev_stmt = end_while_id.upcast();
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_break_stmt(&mut self, ctx: &mut Ctx, id: BreakStatementId) -> VisitorResult {
 
        // Resolve break target
 
        let target_end_while = {
 
            let stmt = &ctx.heap[id];
 
            let target_while_id = self.resolve_break_or_continue_target(ctx, stmt.span, &stmt.label)?;
 
            let target_while = &ctx.heap[target_while_id];
 
            debug_assert!(!target_while.end_while.is_invalid());
 

	
 
            target_while.end_while
 
        };
 

	
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 
        let stmt = &mut ctx.heap[id];
 
        stmt.target = Some(target_end_while);
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_continue_stmt(&mut self, ctx: &mut Ctx, id: ContinueStatementId) -> VisitorResult {
 
        // Resolve continue target
 
        let target_while_id = {
 
            let stmt = &ctx.heap[id];
 
            self.resolve_break_or_continue_target(ctx, stmt.span, &stmt.label)?
 
        };
 

	
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 
        let stmt = &mut ctx.heap[id];
 
        stmt.target = Some(target_while_id);
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_synchronous_stmt(&mut self, ctx: &mut Ctx, id: SynchronousStatementId) -> VisitorResult {
 
        // Check for validity of synchronous statement
 
        let sync_stmt = &ctx.heap[id];
 
        let end_sync_id = sync_stmt.end_sync;
 
        let cur_sync_span = sync_stmt.span;
 
        if !self.in_sync.is_invalid() {
 
            // Nested synchronous statement
 
            let old_sync_span = ctx.heap[self.in_sync].span;
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, cur_sync_span, "Illegal nested synchronous statement"
 
            ).with_info_str_at_span(
 
                &ctx.module().source, old_sync_span, "It is nested in this synchronous statement"
 
            ));
 
        }
 

	
 
        if !self.def_type.is_primitive() {
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, cur_sync_span,
 
                "synchronous statements may only be used in primitive components"
 
            ));
 
        }
 

	
 
        // Synchronous statement implicitly moves to its block
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 

	
 
        let sync_body = ctx.heap[id].body;
 
        debug_assert!(self.in_sync.is_invalid());
 
        self.in_sync = id;
 
        self.visit_block_stmt_with_hint(ctx, sync_body, Some(id))?;
 
        assign_and_replace_next_stmt!(self, ctx, end_sync_id.upcast());
 

	
 
        self.in_sync = SynchronousStatementId::new_invalid();
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_fork_stmt(&mut self, ctx: &mut Ctx, id: ForkStatementId) -> VisitorResult {
 
        let fork_stmt = &ctx.heap[id];
 
        let end_fork_id = fork_stmt.end_fork;
 
        let left_body_id = fork_stmt.left_body;
 
        let right_body_id = fork_stmt.right_body;
 

	
 
        // Fork statements may only occur inside sync blocks
 
        if self.in_sync.is_invalid() {
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, fork_stmt.span,
 
                "Forking may only occur inside sync blocks"
 
            ));
 
        }
 

	
 
        // Visit the respective bodies. Like the if statement, a fork statement
 
        // does not have a single static subsequent statement. It forks and then
 
        // each fork has a different next statement.
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 
        self.visit_block_stmt(ctx, left_body_id)?;
 
        assign_then_erase_next_stmt!(self, ctx, end_fork_id.upcast());
 

	
 
        if let Some(right_body_id) = right_body_id {
 
            self.visit_block_stmt(ctx, right_body_id)?;
 
            assign_then_erase_next_stmt!(self, ctx, end_fork_id.upcast());
 
        }
 

	
 
        self.prev_stmt = end_fork_id.upcast();
 
        Ok(())
 
    }
 

	
 
    fn visit_return_stmt(&mut self, ctx: &mut Ctx, id: ReturnStatementId) -> VisitorResult {
 
        // Check if "return" occurs within a function
 
        let stmt = &ctx.heap[id];
 
        if !self.def_type.is_function() {
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, stmt.span,
 
                "return statements may only appear in function bodies"
 
            ));
 
        }
 

	
 
        // If here then we are within a function
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 
        debug_assert_eq!(self.expr_parent, ExpressionParent::None);
 
        debug_assert_eq!(ctx.heap[id].expressions.len(), 1);
 
        self.expr_parent = ExpressionParent::Return(id);
 
        self.visit_expr(ctx, ctx.heap[id].expressions[0])?;
 
        self.expr_parent = ExpressionParent::None;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_goto_stmt(&mut self, ctx: &mut Ctx, id: GotoStatementId) -> VisitorResult {
 
        let target_id = self.find_label(ctx, &ctx.heap[id].label)?;
 
        ctx.heap[id].target = Some(target_id);
 

	
 
        let target = &ctx.heap[target_id];
 
        if self.in_sync != target.in_sync {
 
            // We can only goto the current scope or outer scopes. Because
 
            // nested sync statements are not allowed we must be inside a sync
 
            // statement.
 
            debug_assert!(!self.in_sync.is_invalid());
 
            let goto_stmt = &ctx.heap[id];
 
            let sync_stmt = &ctx.heap[self.in_sync];
 
            return Err(
 
                ParseError::new_error_str_at_span(&ctx.module().source, goto_stmt.span, "goto may not escape the surrounding synchronous block")
 
                .with_info_str_at_span(&ctx.module().source, target.label.span, "this is the target of the goto statement")
 
                .with_info_str_at_span(&ctx.module().source, sync_stmt.span, "which will jump past this statement")
 
            );
 
        }
 

	
 
        assign_then_erase_next_stmt!(self, ctx, id.upcast());
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_new_stmt(&mut self, ctx: &mut Ctx, id: NewStatementId) -> VisitorResult {
 
        // Make sure the new statement occurs inside a composite component
 
        if !self.def_type.is_composite() {
 
            let new_stmt = &ctx.heap[id];
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module().source, new_stmt.span,
 
                "instantiating components may only be done in composite components"
 
            ));
 
        }
 

	
 
        // Recurse into call expression (which will check the expression parent
 
        // to ensure that the "new" statment instantiates a component)
 
        let call_expr_id = ctx.heap[id].expression;
 

	
 
        assign_and_replace_next_stmt!(self, ctx, id.upcast());
 
        debug_assert_eq!(self.expr_parent, ExpressionParent::None);
 
        self.expr_parent = ExpressionParent::New(id);
 
        self.visit_call_expr(ctx, call_expr_id)?;
 
        self.expr_parent = ExpressionParent::None;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_expr_stmt(&mut self, ctx: &mut Ctx, id: ExpressionStatementId) -> VisitorResult {
 
        let expr_id = ctx.heap[id].expression;
 

	
 
        assign_and_replace_next_stmt!(self, ctx, id.upcast());
 
        debug_assert_eq!(self.expr_parent, ExpressionParent::None);
 
        self.expr_parent = ExpressionParent::ExpressionStmt(id);
 
        self.visit_expr(ctx, expr_id)?;
 
        self.expr_parent = ExpressionParent::None;
 

	
 
        Ok(())
 
    }
 

	
 

	
 
    //--------------------------------------------------------------------------
 
    // Expression visitors
 
    //--------------------------------------------------------------------------
 

	
 
    fn visit_assignment_expr(&mut self, ctx: &mut Ctx, id: AssignmentExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 

	
 
        let assignment_expr = &mut ctx.heap[id];
 

	
 
        // Although we call assignment an expression to simplify the compiler's
 
        // code (mainly typechecking), we disallow nested use in expressions
 
        match self.expr_parent {
 
            // Look at us: lying through our teeth while providing error messages.
 
            ExpressionParent::ExpressionStmt(_) => {},
 
            _ => {
src/protocol/parser/token_parsing.rs
Show inline comments
 
use crate::collections::ScopedSection;
 
use crate::protocol::ast::*;
 
use crate::protocol::input_source::{
 
    InputSource as InputSource,
 
    InputPosition as InputPosition,
 
    InputSpan,
 
    ParseError,
 
};
 
use super::tokens::*;
 
use super::symbol_table::*;
 
use super::{Module, PassCtx};
 

	
 
// Keywords
 
pub(crate) const KW_LET:       &'static [u8] = b"let";
 
pub(crate) const KW_AS:        &'static [u8] = b"as";
 
pub(crate) const KW_STRUCT:    &'static [u8] = b"struct";
 
pub(crate) const KW_ENUM:      &'static [u8] = b"enum";
 
pub(crate) const KW_UNION:     &'static [u8] = b"union";
 
pub(crate) const KW_FUNCTION:  &'static [u8] = b"func";
 
pub(crate) const KW_PRIMITIVE: &'static [u8] = b"primitive";
 
pub(crate) const KW_COMPOSITE: &'static [u8] = b"composite";
 
pub(crate) const KW_IMPORT:    &'static [u8] = b"import";
 

	
 
// Keywords - literals
 
pub(crate) const KW_LIT_TRUE:  &'static [u8] = b"true";
 
pub(crate) const KW_LIT_FALSE: &'static [u8] = b"false";
 
pub(crate) const KW_LIT_NULL:  &'static [u8] = b"null";
 

	
 
// Keywords - function(like)s
 
pub(crate) const KW_CAST:        &'static [u8] = b"cast";
 
pub(crate) const KW_FUNC_GET:    &'static [u8] = b"get";
 
pub(crate) const KW_FUNC_PUT:    &'static [u8] = b"put";
 
pub(crate) const KW_FUNC_FIRES:  &'static [u8] = b"fires";
 
pub(crate) const KW_FUNC_CREATE: &'static [u8] = b"create";
 
pub(crate) const KW_FUNC_LENGTH: &'static [u8] = b"length";
 
pub(crate) const KW_FUNC_ASSERT: &'static [u8] = b"assert";
 
pub(crate) const KW_FUNC_PRINT:  &'static [u8] = b"print";
 

	
 
// Keywords - statements
 
pub(crate) const KW_STMT_CHANNEL:  &'static [u8] = b"channel";
 
pub(crate) const KW_STMT_IF:       &'static [u8] = b"if";
 
pub(crate) const KW_STMT_ELSE:     &'static [u8] = b"else";
 
pub(crate) const KW_STMT_WHILE:    &'static [u8] = b"while";
 
pub(crate) const KW_STMT_BREAK:    &'static [u8] = b"break";
 
pub(crate) const KW_STMT_CONTINUE: &'static [u8] = b"continue";
 
pub(crate) const KW_STMT_GOTO:     &'static [u8] = b"goto";
 
pub(crate) const KW_STMT_RETURN:   &'static [u8] = b"return";
 
pub(crate) const KW_STMT_SYNC:     &'static [u8] = b"synchronous";
 
pub(crate) const KW_STMT_SYNC:     &'static [u8] = b"sync";
 
pub(crate) const KW_STMT_FORK:     &'static [u8] = b"fork";
 
pub(crate) const KW_STMT_OR:       &'static [u8] = b"or";
 
pub(crate) const KW_STMT_NEW:      &'static [u8] = b"new";
 

	
 
// Keywords - types
 
// Since types are needed for returning diagnostic information to the user, the
 
// string variants are put here as well.
 
pub(crate) const KW_TYPE_IN_PORT_STR:  &'static str = "in";
 
pub(crate) const KW_TYPE_OUT_PORT_STR: &'static str = "out";
 
pub(crate) const KW_TYPE_MESSAGE_STR:  &'static str = "msg";
 
pub(crate) const KW_TYPE_BOOL_STR:     &'static str = "bool";
 
pub(crate) const KW_TYPE_UINT8_STR:    &'static str = "u8";
 
pub(crate) const KW_TYPE_UINT16_STR:   &'static str = "u16";
 
pub(crate) const KW_TYPE_UINT32_STR:   &'static str = "u32";
 
pub(crate) const KW_TYPE_UINT64_STR:   &'static str = "u64";
 
pub(crate) const KW_TYPE_SINT8_STR:    &'static str = "s8";
 
pub(crate) const KW_TYPE_SINT16_STR:   &'static str = "s16";
 
pub(crate) const KW_TYPE_SINT32_STR:   &'static str = "s32";
 
pub(crate) const KW_TYPE_SINT64_STR:   &'static str = "s64";
 
pub(crate) const KW_TYPE_CHAR_STR:     &'static str = "char";
 
pub(crate) const KW_TYPE_STRING_STR:   &'static str = "string";
 
pub(crate) const KW_TYPE_INFERRED_STR: &'static str = "auto";
 

	
 
pub(crate) const KW_TYPE_IN_PORT:  &'static [u8] = KW_TYPE_IN_PORT_STR.as_bytes();
 
pub(crate) const KW_TYPE_OUT_PORT: &'static [u8] = KW_TYPE_OUT_PORT_STR.as_bytes();
 
pub(crate) const KW_TYPE_MESSAGE:  &'static [u8] = KW_TYPE_MESSAGE_STR.as_bytes();
 
pub(crate) const KW_TYPE_BOOL:     &'static [u8] = KW_TYPE_BOOL_STR.as_bytes();
 
pub(crate) const KW_TYPE_UINT8:    &'static [u8] = KW_TYPE_UINT8_STR.as_bytes();
 
pub(crate) const KW_TYPE_UINT16:   &'static [u8] = KW_TYPE_UINT16_STR.as_bytes();
 
pub(crate) const KW_TYPE_UINT32:   &'static [u8] = KW_TYPE_UINT32_STR.as_bytes();
 
pub(crate) const KW_TYPE_UINT64:   &'static [u8] = KW_TYPE_UINT64_STR.as_bytes();
 
pub(crate) const KW_TYPE_SINT8:    &'static [u8] = KW_TYPE_SINT8_STR.as_bytes();
 
pub(crate) const KW_TYPE_SINT16:   &'static [u8] = KW_TYPE_SINT16_STR.as_bytes();
 
pub(crate) const KW_TYPE_SINT32:   &'static [u8] = KW_TYPE_SINT32_STR.as_bytes();
 
pub(crate) const KW_TYPE_SINT64:   &'static [u8] = KW_TYPE_SINT64_STR.as_bytes();
 
pub(crate) const KW_TYPE_CHAR:     &'static [u8] = KW_TYPE_CHAR_STR.as_bytes();
 
pub(crate) const KW_TYPE_STRING:   &'static [u8] = KW_TYPE_STRING_STR.as_bytes();
 
pub(crate) const KW_TYPE_INFERRED: &'static [u8] = KW_TYPE_INFERRED_STR.as_bytes();
 

	
 
/// A special trait for when consuming comma-separated things such that we can
 
/// push them onto a `Vec` and onto a `ScopedSection`. As we monomorph for
 
/// very specific comma-separated cases I don't expect polymorph bloat.
 
/// Also, I really don't like this solution.
 
pub(crate) trait Extendable {
 
    type Value;
 

	
 
    fn push(&mut self, v: Self::Value);
 
}
 

	
 
impl<T> Extendable for Vec<T> {
 
    type Value = T;
 

	
 
    #[inline]
 
    fn push(&mut self, v: Self::Value) {
 
        (self as &mut Vec<T>).push(v);
 
    }
 
}
 

	
 
impl<T: Sized> Extendable for ScopedSection<T> {
 
    type Value = T;
 

	
 
    #[inline]
 
    fn push(&mut self, v: Self::Value) {
 
        (self as &mut ScopedSection<T>).push(v);
 
    }
 
}
 

	
 
/// Consumes a domain-name identifier: identifiers separated by a dot. For
 
/// simplification of later parsing and span identification the domain-name may
 
/// contain whitespace, but must reside on the same line.
 
pub(crate) fn consume_domain_ident<'a>(
 
    source: &'a InputSource, iter: &mut TokenIter
 
) -> Result<(&'a [u8], InputSpan), ParseError> {
 
    let (_, mut span) = consume_ident(source, iter)?;
 
    while let Some(TokenKind::Dot) = iter.next() {
 
        iter.consume();
 
        let (_, new_span) = consume_ident(source, iter)?;
 
        span.end = new_span.end;
 
    }
 

	
 
    // Not strictly necessary, but probably a reasonable restriction: this
 
    // simplifies parsing of module naming and imports.
 
    if span.begin.line != span.end.line {
 
        return Err(ParseError::new_error_str_at_span(source, span, "module names may not span multiple lines"));
 
    }
 

	
 
    // If module name consists of a single identifier, then it may not match any
 
    // of the reserved keywords
 
    let section = source.section_at_pos(span.begin, span.end);
 
    if is_reserved_keyword(section) {
 
        return Err(ParseError::new_error_str_at_span(source, span, "encountered reserved keyword"));
 
    }
 

	
 
    Ok((source.section_at_pos(span.begin, span.end), span))
 
}
 

	
 
/// Consumes a specific expected token. Be careful to only call this with tokens
 
/// that do not have a variable length.
 
@@ -434,193 +436,193 @@ fn parse_escaped_character(source: &InputSource, literal_span: InputSpan, v: u8)
 
        b'\'' => '\'',
 
        b'"' => '"',
 
        v => {
 
            let msg = if v.is_ascii_graphic() {
 
                format!("unsupported escape character '{}'", v as char)
 
            } else {
 
                format!("unsupported escape character with (unsigned) byte value {}", v)
 
            };
 
            return Err(ParseError::new_error_at_span(source, literal_span, msg))
 
        },
 
    };
 
    Ok(result)
 
}
 

	
 
pub(crate) fn consume_pragma<'a>(source: &'a InputSource, iter: &mut TokenIter) -> Result<(&'a [u8], InputPosition, InputPosition), ParseError> {
 
    if Some(TokenKind::Pragma) != iter.next() {
 
        return Err(ParseError::new_error_str_at_pos(source, iter.last_valid_pos(), "expected a pragma"));
 
    }
 
    let (pragma_start, pragma_end) = iter.next_positions();
 
    iter.consume();
 
    Ok((source.section_at_pos(pragma_start, pragma_end), pragma_start, pragma_end))
 
}
 

	
 
pub(crate) fn has_ident(source: &InputSource, iter: &mut TokenIter, expected: &[u8]) -> bool {
 
    peek_ident(source, iter).map_or(false, |section| section == expected)
 
}
 

	
 
pub(crate) fn peek_ident<'a>(source: &'a InputSource, iter: &mut TokenIter) -> Option<&'a [u8]> {
 
    if Some(TokenKind::Ident) == iter.next() {
 
        let (start, end) = iter.next_positions();
 
        return Some(source.section_at_pos(start, end))
 
    }
 

	
 
    None
 
}
 

	
 
/// Consumes any identifier and returns it together with its span. Does not
 
/// check if the identifier is a reserved keyword.
 
pub(crate) fn consume_any_ident<'a>(
 
    source: &'a InputSource, iter: &mut TokenIter
 
) -> Result<(&'a [u8], InputSpan), ParseError> {
 
    if Some(TokenKind::Ident) != iter.next() {
 
        return Err(ParseError::new_error_str_at_pos(source, iter.last_valid_pos(), "expected an identifier"));
 
    }
 
    let (ident_start, ident_end) = iter.next_positions();
 
    iter.consume();
 
    Ok((source.section_at_pos(ident_start, ident_end), InputSpan::from_positions(ident_start, ident_end)))
 
}
 

	
 
/// Consumes a specific identifier. May or may not be a reserved keyword.
 
pub(crate) fn consume_exact_ident(source: &InputSource, iter: &mut TokenIter, expected: &[u8]) -> Result<InputSpan, ParseError> {
 
    let (ident, pos) = consume_any_ident(source, iter)?;
 
    if ident != expected {
 
        debug_assert!(expected.is_ascii());
 
        return Err(ParseError::new_error_at_pos(
 
            source, iter.last_valid_pos(),
 
            format!("expected the text '{}'", &String::from_utf8_lossy(expected))
 
        ));
 
    }
 
    Ok(pos)
 
}
 

	
 
/// Consumes an identifier that is not a reserved keyword and returns it
 
/// together with its span.
 
pub(crate) fn consume_ident<'a>(
 
    source: &'a InputSource, iter: &mut TokenIter
 
) -> Result<(&'a [u8], InputSpan), ParseError> {
 
    let (ident, span) = consume_any_ident(source, iter)?;
 
    if is_reserved_keyword(ident) {
 
        return Err(ParseError::new_error_str_at_span(source, span, "encountered reserved keyword"));
 
    }
 

	
 
    Ok((ident, span))
 
}
 

	
 
/// Consumes an identifier and immediately intern it into the `StringPool`
 
pub(crate) fn consume_ident_interned(
 
    source: &InputSource, iter: &mut TokenIter, ctx: &mut PassCtx
 
) -> Result<Identifier, ParseError> {
 
    let (value, span) = consume_ident(source, iter)?;
 
    let value = ctx.pool.intern(value);
 
    Ok(Identifier{ span, value })
 
}
 

	
 
fn is_reserved_definition_keyword(text: &[u8]) -> bool {
 
    match text {
 
        KW_STRUCT | KW_ENUM | KW_UNION | KW_FUNCTION | KW_PRIMITIVE | KW_COMPOSITE => true,
 
        _ => false,
 
    }
 
}
 

	
 
fn is_reserved_statement_keyword(text: &[u8]) -> bool {
 
    match text {
 
        KW_IMPORT | KW_AS |
 
        KW_STMT_CHANNEL | KW_STMT_IF | KW_STMT_WHILE |
 
        KW_STMT_BREAK | KW_STMT_CONTINUE | KW_STMT_GOTO | KW_STMT_RETURN |
 
        KW_STMT_SYNC | KW_STMT_NEW => true,
 
        KW_STMT_SYNC | KW_STMT_FORK | KW_STMT_NEW => true,
 
        _ => false,
 
    }
 
}
 

	
 
fn is_reserved_expression_keyword(text: &[u8]) -> bool {
 
    match text {
 
        KW_LET | KW_CAST |
 
        KW_LIT_TRUE | KW_LIT_FALSE | KW_LIT_NULL |
 
        KW_FUNC_GET | KW_FUNC_PUT | KW_FUNC_FIRES | KW_FUNC_CREATE | KW_FUNC_ASSERT | KW_FUNC_LENGTH | KW_FUNC_PRINT => true,
 
        _ => false,
 
    }
 
}
 

	
 
fn is_reserved_type_keyword(text: &[u8]) -> bool {
 
    match text {
 
        KW_TYPE_IN_PORT | KW_TYPE_OUT_PORT | KW_TYPE_MESSAGE | KW_TYPE_BOOL |
 
        KW_TYPE_UINT8 | KW_TYPE_UINT16 | KW_TYPE_UINT32 | KW_TYPE_UINT64 |
 
        KW_TYPE_SINT8 | KW_TYPE_SINT16 | KW_TYPE_SINT32 | KW_TYPE_SINT64 |
 
        KW_TYPE_CHAR | KW_TYPE_STRING |
 
        KW_TYPE_INFERRED => true,
 
        _ => false,
 
    }
 
}
 

	
 
fn is_reserved_keyword(text: &[u8]) -> bool {
 
    return
 
        is_reserved_definition_keyword(text) ||
 
        is_reserved_statement_keyword(text) ||
 
        is_reserved_expression_keyword(text) ||
 
        is_reserved_type_keyword(text);
 
}
 

	
 
pub(crate) fn seek_module(modules: &[Module], root_id: RootId) -> Option<&Module> {
 
    for module in modules {
 
        if module.root_id == root_id {
 
            return Some(module)
 
        }
 
    }
 

	
 
    return None
 
}
 

	
 
/// Constructs a human-readable message indicating why there is a conflict of
 
/// symbols.
 
// Note: passing the `module_idx` is not strictly necessary, but will prevent
 
// programmer mistakes during development: we get a conflict because we're
 
// currently parsing a particular module.
 
pub(crate) fn construct_symbol_conflict_error(
 
    modules: &[Module], module_idx: usize, ctx: &PassCtx, new_symbol: &Symbol, old_symbol: &Symbol
 
) -> ParseError {
 
    let module = &modules[module_idx];
 
    let get_symbol_span_and_msg = |symbol: &Symbol| -> (String, Option<InputSpan>) {
 
        match &symbol.variant {
 
            SymbolVariant::Module(module) => {
 
                let import = &ctx.heap[module.introduced_at];
 
                return (
 
                    format!("the module aliased as '{}' imported here", symbol.name.as_str()),
 
                    Some(import.as_module().span)
 
                );
 
            },
 
            SymbolVariant::Definition(definition) => {
 
                if definition.defined_in_module.is_invalid() {
 
                    // Must be a builtin thing
 
                    return (format!("the builtin '{}'", symbol.name.as_str()), None)
 
                } else {
 
                    if let Some(import_id) = definition.imported_at {
 
                        let import = &ctx.heap[import_id];
 
                        return (
 
                            format!("the type '{}' imported here", symbol.name.as_str()),
 
                            Some(import.as_symbols().span)
 
                        );
 
                    } else {
 
                        // This is a defined symbol. So this must mean that the
 
                        // error was caused by it being defined.
 
                        debug_assert_eq!(definition.defined_in_module, module.root_id);
 

	
 
                        return (
 
                            format!("the type '{}' defined here", symbol.name.as_str()),
 
                            Some(definition.identifier_span)
 
                        )
 
                    }
 
                }
 
            }
 
        }
 
    };
 

	
 
    let (new_symbol_msg, new_symbol_span) = get_symbol_span_and_msg(new_symbol);
 
    let (old_symbol_msg, old_symbol_span) = get_symbol_span_and_msg(old_symbol);
 
    let new_symbol_span = new_symbol_span.unwrap(); // because new symbols cannot be builtin
 

	
 
    match old_symbol_span {
 
        Some(old_symbol_span) => ParseError::new_error_at_span(
 
            &module.source, new_symbol_span, format!("symbol is defined twice: {}", new_symbol_msg)
 
        ).with_info_at_span(
 
            &module.source, old_symbol_span, format!("it conflicts with {}", old_symbol_msg)
 
        ),
src/protocol/parser/visitor.rs
Show inline comments
 
@@ -40,211 +40,217 @@ impl<'p> Ctx<'p> {
 
/// top-level `visit_definition`, `visit_stmt` and `visit_expr` methods, which
 
/// call the appropriate visitor function.
 
pub(crate) trait Visitor {
 
    // Entry point
 
    fn visit_module(&mut self, ctx: &mut Ctx) -> VisitorResult {
 
        let mut def_index = 0;
 
        let module_root_id = ctx.modules[ctx.module_idx].root_id;
 
        loop {
 
            let definition_id = {
 
                let root = &ctx.heap[module_root_id];
 
                if def_index >= root.definitions.len() {
 
                    return Ok(())
 
                }
 

	
 
                root.definitions[def_index]
 
            };
 

	
 
            self.visit_definition(ctx, definition_id)?;
 
            def_index += 1;
 
        }
 
    }
 

	
 
    // Definitions
 
    // --- enum matching
 
    fn visit_definition(&mut self, ctx: &mut Ctx, id: DefinitionId) -> VisitorResult {
 
        match &ctx.heap[id] {
 
            Definition::Enum(def) => {
 
                let def = def.this;
 
                self.visit_enum_definition(ctx, def)
 
            },
 
            Definition::Union(def) => {
 
                let def = def.this;
 
                self.visit_union_definition(ctx, def)
 
            }
 
            Definition::Struct(def) => {
 
                let def = def.this;
 
                self.visit_struct_definition(ctx, def)
 
            },
 
            Definition::Component(def) => {
 
                let def = def.this;
 
                self.visit_component_definition(ctx, def)
 
            },
 
            Definition::Function(def) => {
 
                let def = def.this;
 
                self.visit_function_definition(ctx, def)
 
            }
 
        }
 
    }
 

	
 
    // --- enum variant handling
 
    fn visit_enum_definition(&mut self, _ctx: &mut Ctx, _id: EnumDefinitionId) -> VisitorResult { Ok(()) }
 
    fn visit_union_definition(&mut self, _ctx: &mut Ctx, _id: UnionDefinitionId) -> VisitorResult{ Ok(()) }
 
    fn visit_struct_definition(&mut self, _ctx: &mut Ctx, _id: StructDefinitionId) -> VisitorResult { Ok(()) }
 
    fn visit_component_definition(&mut self, _ctx: &mut Ctx, _id: ComponentDefinitionId) -> VisitorResult { Ok(()) }
 
    fn visit_function_definition(&mut self, _ctx: &mut Ctx, _id: FunctionDefinitionId) -> VisitorResult { Ok(()) }
 

	
 
    // Statements
 
    // --- enum matching
 
    fn visit_stmt(&mut self, ctx: &mut Ctx, id: StatementId) -> VisitorResult {
 
        match &ctx.heap[id] {
 
            Statement::Block(stmt) => {
 
                let this = stmt.this;
 
                self.visit_block_stmt(ctx, this)
 
            },
 
            Statement::EndBlock(_stmt) => Ok(()),
 
            Statement::Local(stmt) => {
 
                let this = stmt.this();
 
                self.visit_local_stmt(ctx, this)
 
            },
 
            Statement::Labeled(stmt) => {
 
                let this = stmt.this;
 
                self.visit_labeled_stmt(ctx, this)
 
            },
 
            Statement::If(stmt) => {
 
                let this = stmt.this;
 
                self.visit_if_stmt(ctx, this)
 
            },
 
            Statement::EndIf(_stmt) => Ok(()),
 
            Statement::While(stmt) => {
 
                let this = stmt.this;
 
                self.visit_while_stmt(ctx, this)
 
            },
 
            Statement::EndWhile(_stmt) => Ok(()),
 
            Statement::Break(stmt) => {
 
                let this = stmt.this;
 
                self.visit_break_stmt(ctx, this)
 
            },
 
            Statement::Continue(stmt) => {
 
                let this = stmt.this;
 
                self.visit_continue_stmt(ctx, this)
 
            },
 
            Statement::Synchronous(stmt) => {
 
                let this = stmt.this;
 
                self.visit_synchronous_stmt(ctx, this)
 
            },
 
            Statement::EndSynchronous(_stmt) => Ok(()),
 
            Statement::Fork(stmt) => {
 
                let this = stmt.this;
 
                self.visit_fork_stmt(ctx, this)
 
            },
 
            Statement::EndFork(_stmt) => Ok(()),
 
            Statement::Return(stmt) => {
 
                let this = stmt.this;
 
                self.visit_return_stmt(ctx, this)
 
            },
 
            Statement::Goto(stmt) => {
 
                let this = stmt.this;
 
                self.visit_goto_stmt(ctx, this)
 
            },
 
            Statement::New(stmt) => {
 
                let this = stmt.this;
 
                self.visit_new_stmt(ctx, this)
 
            },
 
            Statement::Expression(stmt) => {
 
                let this = stmt.this;
 
                self.visit_expr_stmt(ctx, this)
 
            }
 
        }
 
    }
 

	
 
    fn visit_local_stmt(&mut self, ctx: &mut Ctx, id: LocalStatementId) -> VisitorResult {
 
        match &ctx.heap[id] {
 
            LocalStatement::Channel(stmt) => {
 
                let this = stmt.this;
 
                self.visit_local_channel_stmt(ctx, this)
 
            },
 
            LocalStatement::Memory(stmt) => {
 
                let this = stmt.this;
 
                self.visit_local_memory_stmt(ctx, this)
 
            },
 
        }
 
    }
 

	
 
    // --- enum variant handling
 
    fn visit_block_stmt(&mut self, _ctx: &mut Ctx, _id: BlockStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_local_memory_stmt(&mut self, _ctx: &mut Ctx, _id: MemoryStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_local_channel_stmt(&mut self, _ctx: &mut Ctx, _id: ChannelStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_labeled_stmt(&mut self, _ctx: &mut Ctx, _id: LabeledStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_if_stmt(&mut self, _ctx: &mut Ctx, _id: IfStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_while_stmt(&mut self, _ctx: &mut Ctx, _id: WhileStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_break_stmt(&mut self, _ctx: &mut Ctx, _id: BreakStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_continue_stmt(&mut self, _ctx: &mut Ctx, _id: ContinueStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_synchronous_stmt(&mut self, _ctx: &mut Ctx, _id: SynchronousStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_fork_stmt(&mut self, _ctx: &mut Ctx, _id: ForkStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_return_stmt(&mut self, _ctx: &mut Ctx, _id: ReturnStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_goto_stmt(&mut self, _ctx: &mut Ctx, _id: GotoStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_new_stmt(&mut self, _ctx: &mut Ctx, _id: NewStatementId) -> VisitorResult { Ok(()) }
 
    fn visit_expr_stmt(&mut self, _ctx: &mut Ctx, _id: ExpressionStatementId) -> VisitorResult { Ok(()) }
 

	
 
    // Expressions
 
    // --- enum matching
 
    fn visit_expr(&mut self, ctx: &mut Ctx, id: ExpressionId) -> VisitorResult {
 
        match &ctx.heap[id] {
 
            Expression::Assignment(expr) => {
 
                let this = expr.this;
 
                self.visit_assignment_expr(ctx, this)
 
            },
 
            Expression::Binding(expr) => {
 
                let this = expr.this;
 
                self.visit_binding_expr(ctx, this)
 
            }
 
            Expression::Conditional(expr) => {
 
                let this = expr.this;
 
                self.visit_conditional_expr(ctx, this)
 
            }
 
            Expression::Binary(expr) => {
 
                let this = expr.this;
 
                self.visit_binary_expr(ctx, this)
 
            }
 
            Expression::Unary(expr) => {
 
                let this = expr.this;
 
                self.visit_unary_expr(ctx, this)
 
            }
 
            Expression::Indexing(expr) => {
 
                let this = expr.this;
 
                self.visit_indexing_expr(ctx, this)
 
            }
 
            Expression::Slicing(expr) => {
 
                let this = expr.this;
 
                self.visit_slicing_expr(ctx, this)
 
            }
 
            Expression::Select(expr) => {
 
                let this = expr.this;
 
                self.visit_select_expr(ctx, this)
 
            }
 
            Expression::Literal(expr) => {
 
                let this = expr.this;
 
                self.visit_literal_expr(ctx, this)
 
            }
 
            Expression::Cast(expr) => {
 
                let this = expr.this;
 
                self.visit_cast_expr(ctx, this)
 
            }
 
            Expression::Call(expr) => {
 
                let this = expr.this;
 
                self.visit_call_expr(ctx, this)
 
            }
 
            Expression::Variable(expr) => {
 
                let this = expr.this;
 
                self.visit_variable_expr(ctx, this)
 
            }
 
        }
 
    }
 

	
 
    fn visit_assignment_expr(&mut self, _ctx: &mut Ctx, _id: AssignmentExpressionId) -> VisitorResult { Ok(()) }
 
    fn visit_binding_expr(&mut self, _ctx: &mut Ctx, _id: BindingExpressionId) -> VisitorResult { Ok(()) }
 
    fn visit_conditional_expr(&mut self, _ctx: &mut Ctx, _id: ConditionalExpressionId) -> VisitorResult { Ok(()) }
 
    fn visit_binary_expr(&mut self, _ctx: &mut Ctx, _id: BinaryExpressionId) -> VisitorResult { Ok(()) }
 
    fn visit_unary_expr(&mut self, _ctx: &mut Ctx, _id: UnaryExpressionId) -> VisitorResult { Ok(()) }
 
    fn visit_indexing_expr(&mut self, _ctx: &mut Ctx, _id: IndexingExpressionId) -> VisitorResult { Ok(()) }
 
    fn visit_slicing_expr(&mut self, _ctx: &mut Ctx, _id: SlicingExpressionId) -> VisitorResult { Ok(()) }
 
    fn visit_select_expr(&mut self, _ctx: &mut Ctx, _id: SelectExpressionId) -> VisitorResult { Ok(()) }
 
    fn visit_literal_expr(&mut self, _ctx: &mut Ctx, _id: LiteralExpressionId) -> VisitorResult { Ok(()) }
 
    fn visit_cast_expr(&mut self, _ctx: &mut Ctx, _id: CastExpressionId) -> VisitorResult { Ok(()) }
 
    fn visit_call_expr(&mut self, _ctx: &mut Ctx, _id: CallExpressionId) -> VisitorResult { Ok(()) }
 
    fn visit_variable_expr(&mut self, _ctx: &mut Ctx, _id: VariableExpressionId) -> VisitorResult { Ok(()) }
 
}
 
\ No newline at end of file
src/runtime/tests.rs
Show inline comments
 
use crate as reowolf;
 
use crossbeam_utils::thread::scope;
 
use reowolf::{
 
    error::*,
 
    EndpointPolarity::{Active, Passive},
 
    Polarity::{Getter, Putter},
 
    *,
 
};
 
use std::{fs::File, net::SocketAddr, path::Path, sync::Arc, time::Duration};
 
//////////////////////////////////////////
 
const MS100: Option<Duration> = Some(Duration::from_millis(100));
 
const MS300: Option<Duration> = Some(Duration::from_millis(300));
 
const SEC1: Option<Duration> = Some(Duration::from_secs(1));
 
const SEC5: Option<Duration> = Some(Duration::from_secs(5));
 
const SEC15: Option<Duration> = Some(Duration::from_secs(15));
 
fn next_test_addr() -> SocketAddr {
 
    use std::{
 
        net::{Ipv4Addr, SocketAddrV4},
 
        sync::atomic::{AtomicU16, Ordering::SeqCst},
 
    };
 
    static TEST_PORT: AtomicU16 = AtomicU16::new(5_000);
 
    let port = TEST_PORT.fetch_add(1, SeqCst);
 
    SocketAddrV4::new(Ipv4Addr::LOCALHOST, port).into()
 
}
 
fn file_logged_connector(connector_id: ConnectorId, dir_path: &Path) -> Connector {
 
    file_logged_configured_connector(connector_id, dir_path, MINIMAL_PROTO.clone())
 
}
 
fn file_logged_configured_connector(
 
    connector_id: ConnectorId,
 
    dir_path: &Path,
 
    pd: Arc<ProtocolDescription>,
 
) -> Connector {
 
    let _ = std::fs::create_dir_all(dir_path).expect("Failed to create log output dir");
 
    let path = dir_path.join(format!("cid_{:?}.txt", connector_id));
 
    let file = File::create(path).expect("Failed to create log output file!");
 
    let file_logger = Box::new(FileLogger::new(connector_id, file));
 
    Connector::new(file_logger, pd, connector_id)
 
}
 
static MINIMAL_PDL: &'static [u8] = b"
 
primitive sync(in<msg> a, out<msg> b) {
 
primitive sync_component(in<msg> a, out<msg> b) {
 
    while (true) {
 
        synchronous {
 
        sync {
 
            if (fires(a) && fires(b)) {
 
            	msg x = get(a);
 
            	put(b, x);
 
            } else {
 
                assert(!fires(a) && !fires(b));
 
            }
 
        }
 
    }
 
}
 

	
 
primitive together(in<msg> ia, in<msg> ib, out<msg> oa, out<msg> ob){
 
  while(true) synchronous {
 
  while(true) sync {
 
    if(fires(ia)) {
 
      put(oa, get(ia));
 
      put(ob, get(ib));
 
    }
 
  } 
 
}
 
";
 
lazy_static::lazy_static! {
 
    static ref MINIMAL_PROTO: Arc<ProtocolDescription> = {
 
        Arc::new(reowolf::ProtocolDescription::parse(MINIMAL_PDL).unwrap())
 
    };
 
}
 
static TEST_MSG_BYTES: &'static [u8] = b"hello";
 
lazy_static::lazy_static! {
 
    static ref TEST_MSG: Payload = {
 
        Payload::from(TEST_MSG_BYTES)
 
    };
 
}
 
fn new_u8_buffer(cap: usize) -> Vec<u8> {
 
    let mut v = Vec::with_capacity(cap);
 
    // Safe! len will cover owned bytes in valid state
 
    unsafe { v.set_len(cap) }
 
    v
 
}
 
//////////////////////////////////////////
 

	
 
#[test]
 
fn basic_connector() {
 
    Connector::new(Box::new(DummyLogger), MINIMAL_PROTO.clone(), 0);
 
}
 

	
 
#[test]
 
fn basic_logged_connector() {
 
    let test_log_path = Path::new("./logs/basic_logged_connector");
 
    file_logged_connector(0, test_log_path);
 
}
 

	
 
#[test]
 
fn new_port_pair() {
 
    let test_log_path = Path::new("./logs/new_port_pair");
 
    let mut c = file_logged_connector(0, test_log_path);
 
    let [_, _] = c.new_port_pair();
 
    let [_, _] = c.new_port_pair();
 
}
 

	
 
#[test]
 
fn new_sync() {
 
    let test_log_path = Path::new("./logs/new_sync");
 
    let mut c = file_logged_connector(0, test_log_path);
 
    let [o, i] = c.new_port_pair();
 
    c.add_component(b"", b"sync", &[i, o]).unwrap();
 
    c.add_component(b"", b"sync_component", &[i, o]).unwrap();
 
}
 

	
 
#[test]
 
fn new_net_port() {
 
    let test_log_path = Path::new("./logs/new_net_port");
 
    let mut c = file_logged_connector(0, test_log_path);
 
    let sock_addrs = [next_test_addr()];
 
    let _ = c.new_net_port(Getter, sock_addrs[0], Passive).unwrap();
 
    let _ = c.new_net_port(Putter, sock_addrs[0], Active).unwrap();
 
}
 

	
 
#[test]
 
fn trivial_connect() {
 
    let test_log_path = Path::new("./logs/trivial_connect");
 
    let mut c = file_logged_connector(0, test_log_path);
 
    c.connect(SEC1).unwrap();
 
}
 

	
 
#[test]
 
fn single_node_connect() {
 
    let test_log_path = Path::new("./logs/single_node_connect");
 
    let sock_addrs = [next_test_addr()];
 
    let mut c = file_logged_connector(0, test_log_path);
 
    let _ = c.new_net_port(Getter, sock_addrs[0], Passive).unwrap();
 
    let _ = c.new_net_port(Putter, sock_addrs[0], Active).unwrap();
 
    c.connect(SEC1).unwrap();
 
}
 

	
 
#[test]
 
fn minimal_net_connect() {
 
    let test_log_path = Path::new("./logs/minimal_net_connect");
 
    let sock_addrs = [next_test_addr()];
 
    scope(|s| {
 
        s.spawn(|_| {
 
            let mut c = file_logged_connector(0, test_log_path);
 
            let _ = c.new_net_port(Getter, sock_addrs[0], Active).unwrap();
 
            c.connect(SEC1).unwrap();
 
        });
 
        s.spawn(|_| {
 
            let mut c = file_logged_connector(1, test_log_path);
 
            let _ = c.new_net_port(Putter, sock_addrs[0], Passive).unwrap();
 
            c.connect(SEC1).unwrap();
 
        });
 
    })
 
    .unwrap();
 
}
 

	
 
#[test]
 
fn put_no_sync() {
 
    let test_log_path = Path::new("./logs/put_no_sync");
 
    let mut c = file_logged_connector(0, test_log_path);
 
    let [o, _] = c.new_port_pair();
 
    c.connect(SEC1).unwrap();
 
    c.put(o, TEST_MSG.clone()).unwrap();
 
}
 

	
 
#[test]
 
fn wrong_polarity_bad() {
 
    let test_log_path = Path::new("./logs/wrong_polarity_bad");
 
    let mut c = file_logged_connector(0, test_log_path);
 
    let [_, i] = c.new_port_pair();
 
    c.connect(SEC1).unwrap();
 
    c.put(i, TEST_MSG.clone()).unwrap_err();
 
}
 

	
 
#[test]
 
fn dup_put_bad() {
 
    let test_log_path = Path::new("./logs/dup_put_bad");
 
    let mut c = file_logged_connector(0, test_log_path);
 
    let [o, _] = c.new_port_pair();
 
    c.connect(SEC1).unwrap();
 
    c.put(o, TEST_MSG.clone()).unwrap();
 
    c.put(o, TEST_MSG.clone()).unwrap_err();
 
}
 

	
 
#[test]
 
fn trivial_sync() {
 
    let test_log_path = Path::new("./logs/trivial_sync");
 
    let mut c = file_logged_connector(0, test_log_path);
 
    c.connect(SEC1).unwrap();
 
    c.sync(SEC1).unwrap();
 
}
 

	
 
#[test]
 
fn unconnected_gotten_err() {
 
    let test_log_path = Path::new("./logs/unconnected_gotten_err");
 
    let mut c = file_logged_connector(0, test_log_path);
 
    let [_, i] = c.new_port_pair();
 
    assert_eq!(reowolf::error::GottenError::NoPreviousRound, c.gotten(i).unwrap_err());
 
}
 

	
 
#[test]
 
fn connected_gotten_err_no_round() {
 
    let test_log_path = Path::new("./logs/connected_gotten_err_no_round");
 
    let mut c = file_logged_connector(0, test_log_path);
 
    let [_, i] = c.new_port_pair();
 
@@ -260,261 +260,261 @@ fn native_self_msg() {
 
}
 

	
 
#[test]
 
fn two_natives_msg() {
 
    let test_log_path = Path::new("./logs/two_natives_msg");
 
    let sock_addrs = [next_test_addr()];
 
    scope(|s| {
 
        s.spawn(|_| {
 
            let mut c = file_logged_connector(0, test_log_path);
 
            let g = c.new_net_port(Getter, sock_addrs[0], Active).unwrap();
 
            c.connect(SEC1).unwrap();
 
            c.get(g).unwrap();
 
            c.sync(SEC1).unwrap();
 
            c.gotten(g).unwrap();
 
        });
 
        s.spawn(|_| {
 
            let mut c = file_logged_connector(1, test_log_path);
 
            let p = c.new_net_port(Putter, sock_addrs[0], Passive).unwrap();
 
            c.connect(SEC1).unwrap();
 
            c.put(p, TEST_MSG.clone()).unwrap();
 
            c.sync(SEC1).unwrap();
 
        });
 
    })
 
    .unwrap();
 
}
 

	
 
#[test]
 
fn trivial_nondet() {
 
    let test_log_path = Path::new("./logs/trivial_nondet");
 
    let mut c = file_logged_connector(0, test_log_path);
 
    let [_, i] = c.new_port_pair();
 
    c.connect(SEC1).unwrap();
 
    c.get(i).unwrap();
 
    // getting 0 batch
 
    c.next_batch().unwrap();
 
    // silent 1 batch
 
    assert_eq!(1, c.sync(SEC1).unwrap());
 
    c.gotten(i).unwrap_err();
 
}
 

	
 
#[test]
 
fn connector_pair_nondet() {
 
    let test_log_path = Path::new("./logs/connector_pair_nondet");
 
    let sock_addrs = [next_test_addr()];
 
    scope(|s| {
 
        s.spawn(|_| {
 
            let mut c = file_logged_connector(0, test_log_path);
 
            let g = c.new_net_port(Getter, sock_addrs[0], Active).unwrap();
 
            c.connect(SEC1).unwrap();
 
            c.next_batch().unwrap();
 
            c.get(g).unwrap();
 
            assert_eq!(1, c.sync(SEC1).unwrap());
 
            c.gotten(g).unwrap();
 
        });
 
        s.spawn(|_| {
 
            let mut c = file_logged_connector(1, test_log_path);
 
            let p = c.new_net_port(Putter, sock_addrs[0], Passive).unwrap();
 
            c.connect(SEC1).unwrap();
 
            c.put(p, TEST_MSG.clone()).unwrap();
 
            c.sync(SEC1).unwrap();
 
        });
 
    })
 
    .unwrap();
 
}
 

	
 
#[test]
 
fn native_immediately_inconsistent() {
 
    let test_log_path = Path::new("./logs/native_immediately_inconsistent");
 
    let mut c = file_logged_connector(0, test_log_path);
 
    let [_, g] = c.new_port_pair();
 
    c.connect(SEC1).unwrap();
 
    c.get(g).unwrap();
 
    c.sync(SEC15).unwrap_err();
 
}
 

	
 
#[test]
 
fn native_recovers() {
 
    let test_log_path = Path::new("./logs/native_recovers");
 
    let mut c = file_logged_connector(0, test_log_path);
 
    let [p, g] = c.new_port_pair();
 
    c.connect(SEC1).unwrap();
 
    c.get(g).unwrap();
 
    c.sync(SEC15).unwrap_err();
 
    c.put(p, TEST_MSG.clone()).unwrap();
 
    c.get(g).unwrap();
 
    c.sync(SEC15).unwrap();
 
}
 

	
 
#[test]
 
fn cannot_use_moved_ports() {
 
    /*
 
    native p|-->|g sync
 
    */
 
    let test_log_path = Path::new("./logs/cannot_use_moved_ports");
 
    let mut c = file_logged_connector(0, test_log_path);
 
    let [p, g] = c.new_port_pair();
 
    c.add_component(b"", b"sync", &[g, p]).unwrap();
 
    c.add_component(b"", b"sync_component", &[g, p]).unwrap();
 
    c.connect(SEC1).unwrap();
 
    c.put(p, TEST_MSG.clone()).unwrap_err();
 
    c.get(g).unwrap_err();
 
}
 

	
 
#[test]
 
fn sync_sync() {
 
    /*
 
    native p0|-->|g0 sync
 
           g1|<--|p1
 
    */
 
    let test_log_path = Path::new("./logs/sync_sync");
 
    let mut c = file_logged_connector(0, test_log_path);
 
    let [p0, g0] = c.new_port_pair();
 
    let [p1, g1] = c.new_port_pair();
 
    c.add_component(b"", b"sync", &[g0, p1]).unwrap();
 
    c.add_component(b"", b"sync_component", &[g0, p1]).unwrap();
 
    c.connect(SEC1).unwrap();
 
    c.put(p0, TEST_MSG.clone()).unwrap();
 
    c.get(g1).unwrap();
 
    c.sync(SEC1).unwrap();
 
    c.gotten(g1).unwrap();
 
}
 

	
 
#[test]
 
fn double_net_connect() {
 
    let test_log_path = Path::new("./logs/double_net_connect");
 
    let sock_addrs = [next_test_addr(), next_test_addr()];
 
    scope(|s| {
 
        s.spawn(|_| {
 
            let mut c = file_logged_connector(0, test_log_path);
 
            let [_p, _g] = [
 
                c.new_net_port(Putter, sock_addrs[0], Active).unwrap(),
 
                c.new_net_port(Getter, sock_addrs[1], Active).unwrap(),
 
            ];
 
            c.connect(SEC1).unwrap();
 
        });
 
        s.spawn(|_| {
 
            let mut c = file_logged_connector(1, test_log_path);
 
            let [_g, _p] = [
 
                c.new_net_port(Getter, sock_addrs[0], Passive).unwrap(),
 
                c.new_net_port(Putter, sock_addrs[1], Passive).unwrap(),
 
            ];
 
            c.connect(SEC1).unwrap();
 
        });
 
    })
 
    .unwrap();
 
}
 

	
 
#[test]
 
fn distributed_msg_bounce() {
 
    /*
 
    native[0] | sync 0.p|-->|1.p native[1]
 
                     0.g|<--|1.g
 
    */
 
    let test_log_path = Path::new("./logs/distributed_msg_bounce");
 
    let sock_addrs = [next_test_addr(), next_test_addr()];
 
    scope(|s| {
 
        s.spawn(|_| {
 
            /*
 
            native | sync p|-->
 
                   |      g|<--
 
            */
 
            let mut c = file_logged_connector(0, test_log_path);
 
            let [p, g] = [
 
                c.new_net_port(Putter, sock_addrs[0], Active).unwrap(),
 
                c.new_net_port(Getter, sock_addrs[1], Active).unwrap(),
 
            ];
 
            c.add_component(b"", b"sync", &[g, p]).unwrap();
 
            c.add_component(b"", b"sync_component", &[g, p]).unwrap();
 
            c.connect(SEC1).unwrap();
 
            c.sync(SEC1).unwrap();
 
        });
 
        s.spawn(|_| {
 
            /*
 
            native p|-->
 
                   g|<--
 
            */
 
            let mut c = file_logged_connector(1, test_log_path);
 
            let [g, p] = [
 
                c.new_net_port(Getter, sock_addrs[0], Passive).unwrap(),
 
                c.new_net_port(Putter, sock_addrs[1], Passive).unwrap(),
 
            ];
 
            c.connect(SEC1).unwrap();
 
            c.put(p, TEST_MSG.clone()).unwrap();
 
            c.get(g).unwrap();
 
            c.sync(SEC1).unwrap();
 
            c.gotten(g).unwrap();
 
        });
 
    })
 
    .unwrap();
 
}
 

	
 
#[test]
 
fn local_timeout() {
 
    let test_log_path = Path::new("./logs/local_timeout");
 
    let mut c = file_logged_connector(0, test_log_path);
 
    let [_, g] = c.new_port_pair();
 
    c.connect(SEC1).unwrap();
 
    c.get(g).unwrap();
 
    match c.sync(MS300) {
 
        Err(SyncError::RoundFailure) => {}
 
        res => panic!("expeted timeout. but got {:?}", res),
 
    }
 
}
 

	
 
#[test]
 
fn parent_timeout() {
 
    let test_log_path = Path::new("./logs/parent_timeout");
 
    let sock_addrs = [next_test_addr()];
 
    scope(|s| {
 
        s.spawn(|_| {
 
            // parent; times out
 
            let mut c = file_logged_connector(999, test_log_path);
 
            let _ = c.new_net_port(Putter, sock_addrs[0], Active).unwrap();
 
            c.connect(SEC1).unwrap();
 
            c.sync(MS300).unwrap_err(); // timeout
 
        });
 
        s.spawn(|_| {
 
            // child
 
            let mut c = file_logged_connector(000, test_log_path);
 
            let g = c.new_net_port(Getter, sock_addrs[0], Passive).unwrap();
 
            c.connect(SEC1).unwrap();
 
            c.get(g).unwrap(); // not matched by put
 
            c.sync(None).unwrap_err(); // no timeout
 
        });
 
    })
 
    .unwrap();
 
}
 

	
 
#[test]
 
fn child_timeout() {
 
    let test_log_path = Path::new("./logs/child_timeout");
 
    let sock_addrs = [next_test_addr()];
 
    scope(|s| {
 
        s.spawn(|_| {
 
            // child; times out
 
            let mut c = file_logged_connector(000, test_log_path);
 
            let _ = c.new_net_port(Putter, sock_addrs[0], Active).unwrap();
 
            c.connect(SEC1).unwrap();
 
            c.sync(MS300).unwrap_err(); // timeout
 
        });
 
        s.spawn(|_| {
 
            // parent
 
            let mut c = file_logged_connector(999, test_log_path);
 
            let g = c.new_net_port(Getter, sock_addrs[0], Passive).unwrap();
 
            c.connect(SEC1).unwrap();
 
            c.get(g).unwrap(); // not matched by put
 
            c.sync(None).unwrap_err(); // no timeout
 
        });
 
    })
 
    .unwrap();
 
}
 

	
 
#[test]
 
fn chain_connect() {
 
    let test_log_path = Path::new("./logs/chain_connect");
 
    let sock_addrs = [next_test_addr(), next_test_addr(), next_test_addr(), next_test_addr()];
 
    scope(|s| {
 
        s.spawn(|_| {
 
            let mut c = file_logged_connector(0, test_log_path);
 
            c.new_net_port(Putter, sock_addrs[0], Passive).unwrap();
 
            c.connect(SEC5).unwrap();
 
        });
 
        s.spawn(|_| {
 
            let mut c = file_logged_connector(10, test_log_path);
 
@@ -789,703 +789,703 @@ fn udp_reowolf_swap() {
 
    scope(|s| {
 
        s.spawn(|_| {
 
            barrier.wait();
 
            // reowolf thread
 
            let mut c = file_logged_connector(0, test_log_path);
 
            let [p0, p1] = c.new_udp_mediator_component(sock_addrs[0], sock_addrs[1]).unwrap();
 
            c.connect(SEC1).unwrap();
 
            c.put(p0, TEST_MSG.clone()).unwrap();
 
            c.get(p1).unwrap();
 
            c.sync(SEC5).unwrap();
 
            assert_eq!(c.gotten(p1).unwrap().as_slice(), TEST_MSG_BYTES);
 
            barrier.wait();
 
        });
 
        s.spawn(|_| {
 
            barrier.wait();
 
            // udp thread
 
            let udp = std::net::UdpSocket::bind(sock_addrs[1]).unwrap();
 
            udp.connect(sock_addrs[0]).unwrap();
 
            let mut buf = new_u8_buffer(256);
 
            for _ in 0..5 {
 
                std::thread::sleep(Duration::from_millis(60));
 
                udp.send(TEST_MSG_BYTES).unwrap();
 
            }
 
            let len = udp.recv(&mut buf).unwrap();
 
            assert_eq!(TEST_MSG_BYTES, &buf[0..len]);
 
            barrier.wait();
 
        });
 
    })
 
    .unwrap();
 
}
 

	
 
#[test]
 
fn example_pres_3() {
 
    let test_log_path = Path::new("./logs/example_pres_3");
 
    let sock_addrs = [next_test_addr(), next_test_addr()];
 
    scope(|s| {
 
        s.spawn(|_| {
 
            // "amy"
 
            let mut c = file_logged_connector(0, test_log_path);
 
            let p0 = c.new_net_port(Putter, sock_addrs[0], Active).unwrap();
 
            let p1 = c.new_net_port(Putter, sock_addrs[1], Active).unwrap();
 
            c.connect(SEC1).unwrap();
 
            // put {A} and FAIL
 
            c.put(p0, TEST_MSG.clone()).unwrap();
 
            c.sync(SEC1).unwrap_err();
 
            // put {B} and FAIL
 
            c.put(p1, TEST_MSG.clone()).unwrap();
 
            c.sync(SEC1).unwrap_err();
 
            // put {A, B} and SUCCEED
 
            c.put(p0, TEST_MSG.clone()).unwrap();
 
            c.put(p1, TEST_MSG.clone()).unwrap();
 
            c.sync(SEC1).unwrap();
 
        });
 
        s.spawn(|_| {
 
            // "bob"
 
            let mut c = file_logged_connector(1, test_log_path);
 
            let p0 = c.new_net_port(Getter, sock_addrs[0], Passive).unwrap();
 
            let p1 = c.new_net_port(Getter, sock_addrs[1], Passive).unwrap();
 
            c.connect(SEC1).unwrap();
 
            for _ in 0..2 {
 
                // get {A, B} and FAIL
 
                c.get(p0).unwrap();
 
                c.get(p1).unwrap();
 
                c.sync(SEC1).unwrap_err();
 
            }
 
            // get {A, B} and SUCCEED
 
            c.get(p0).unwrap();
 
            c.get(p1).unwrap();
 
            c.sync(SEC1).unwrap();
 
        });
 
    })
 
    .unwrap();
 
}
 

	
 
#[test]
 
fn ac_not_b() {
 
    let test_log_path = Path::new("./logs/ac_not_b");
 
    let sock_addrs = [next_test_addr(), next_test_addr()];
 
    scope(|s| {
 
        s.spawn(|_| {
 
            // "amy"
 
            let mut c = file_logged_connector(0, test_log_path);
 
            let p0 = c.new_net_port(Putter, sock_addrs[0], Active).unwrap();
 
            let p1 = c.new_net_port(Putter, sock_addrs[1], Active).unwrap();
 
            c.connect(SEC5).unwrap();
 

	
 
            // put both A and B
 
            c.put(p0, TEST_MSG.clone()).unwrap();
 
            c.put(p1, TEST_MSG.clone()).unwrap();
 
            c.sync(SEC1).unwrap_err();
 
        });
 
        s.spawn(|_| {
 
            // "bob"
 
            let pdl = b"
 
            primitive ac_not_b(in<msg> a, in<msg> b, out<msg> c){
 
                // forward A to C but keep B silent
 
                synchronous{ put(c, get(a)); }
 
                sync { put(c, get(a)); }
 
            }";
 
            let pd = Arc::new(reowolf::ProtocolDescription::parse(pdl).unwrap());
 
            let mut c = file_logged_configured_connector(1, test_log_path, pd);
 
            let p0 = c.new_net_port(Getter, sock_addrs[0], Passive).unwrap();
 
            let p1 = c.new_net_port(Getter, sock_addrs[1], Passive).unwrap();
 
            let [a, b] = c.new_port_pair();
 

	
 
            c.add_component(b"", b"ac_not_b", &[p0, p1, a]).unwrap();
 

	
 
            c.connect(SEC1).unwrap();
 

	
 
            c.get(b).unwrap();
 
            c.sync(SEC1).unwrap_err();
 
        });
 
    })
 
    .unwrap();
 
}
 

	
 
#[test]
 
fn many_rounds_net() {
 
    let test_log_path = Path::new("./logs/many_rounds_net");
 
    let sock_addrs = [next_test_addr()];
 
    const NUM_ROUNDS: usize = 1_000;
 
    scope(|s| {
 
        s.spawn(|_| {
 
            let mut c = file_logged_connector(0, test_log_path);
 
            let p0 = c.new_net_port(Putter, sock_addrs[0], Active).unwrap();
 
            c.connect(SEC1).unwrap();
 
            for _ in 0..NUM_ROUNDS {
 
                c.put(p0, TEST_MSG.clone()).unwrap();
 
                c.sync(SEC1).unwrap();
 
            }
 
        });
 
        s.spawn(|_| {
 
            let mut c = file_logged_connector(1, test_log_path);
 
            let p0 = c.new_net_port(Getter, sock_addrs[0], Passive).unwrap();
 
            c.connect(SEC1).unwrap();
 
            for _ in 0..NUM_ROUNDS {
 
                c.get(p0).unwrap();
 
                c.sync(SEC1).unwrap();
 
            }
 
        });
 
    })
 
    .unwrap();
 
}
 
#[test]
 
fn many_rounds_mem() {
 
    let test_log_path = Path::new("./logs/many_rounds_mem");
 
    const NUM_ROUNDS: usize = 1_000;
 
    let mut c = file_logged_connector(0, test_log_path);
 
    let [p0, p1] = c.new_port_pair();
 
    c.connect(SEC1).unwrap();
 
    for _ in 0..NUM_ROUNDS {
 
        c.put(p0, TEST_MSG.clone()).unwrap();
 
        c.get(p1).unwrap();
 
        c.sync(SEC1).unwrap();
 
    }
 
}
 

	
 
#[test]
 
fn pdl_reo_lossy() {
 
    let pdl = b"
 
    primitive lossy(in<msg> a, out<msg> b) {
 
        while(true) synchronous {
 
        while(true) sync {
 
            msg m = null;
 
            if(fires(a)) {
 
                m = get(a);
 
                if(fires(b)) {
 
                    put(b, m);
 
                }
 
            }
 
        }
 
    }
 
    ";
 
    reowolf::ProtocolDescription::parse(pdl).unwrap();
 
}
 

	
 
#[test]
 
fn pdl_reo_fifo1() {
 
    let pdl = b"
 
    primitive fifo1(in<msg> a, out<msg> b) {
 
        msg m = null;
 
        while(true) synchronous {
 
        while(true) sync {
 
            if(m == null) {
 
                if(fires(a)) m=get(a);
 
            } else {
 
                if(fires(b)) put(b, m);
 
                m = null;
 
            }
 
        }
 
    }
 
    ";
 
    reowolf::ProtocolDescription::parse(pdl).unwrap();
 
}
 

	
 
#[test]
 
fn pdl_reo_fifo1full() {
 
    let test_log_path = Path::new("./logs/pdl_reo_fifo1full");
 
    let pdl = b"
 
    primitive fifo1full(in<msg> a, out<msg> b) {
 
        bool is_set = true;
 
        msg m = create(0);
 
        while(true) synchronous {
 
        while(true) sync {
 
            if(!is_set) {
 
                if(fires(a)) m=get(a);
 
                is_set = false;
 
            } else {
 
                if(fires(b)) put(b, m);
 
                is_set = true;
 
            }
 
        }
 
    }
 
    ";
 
    let pd = reowolf::ProtocolDescription::parse(pdl).unwrap();
 
    let mut c = file_logged_configured_connector(0, test_log_path, Arc::new(pd));
 
    let [_p0, g0] = c.new_port_pair();
 
    let [p1, g1] = c.new_port_pair();
 
    c.add_component(b"", b"fifo1full", &[g0, p1]).unwrap();
 
    c.connect(None).unwrap();
 
    c.get(g1).unwrap();
 
    c.sync(None).unwrap();
 
    assert_eq!(0, c.gotten(g1).unwrap().len());
 
}
 

	
 
#[test]
 
fn pdl_msg_consensus() {
 
    let test_log_path = Path::new("./logs/pdl_msg_consensus");
 
    let pdl = b"
 
    primitive msgconsensus(in<msg> a, in<msg> b) {
 
        while(true) synchronous {
 
        while(true) sync {
 
            msg x = get(a);
 
            msg y = get(b);
 
            assert(x == y);
 
        }
 
    }
 
    ";
 
    let pd = reowolf::ProtocolDescription::parse(pdl).unwrap();
 
    let mut c = file_logged_configured_connector(0, test_log_path, Arc::new(pd));
 
    let [p0, g0] = c.new_port_pair();
 
    let [p1, g1] = c.new_port_pair();
 
    c.add_component(b"", b"msgconsensus", &[g0, g1]).unwrap();
 
    c.connect(None).unwrap();
 
    c.put(p0, Payload::from(b"HELLO" as &[_])).unwrap();
 
    c.put(p1, Payload::from(b"HELLO" as &[_])).unwrap();
 
    c.sync(SEC1).unwrap();
 

	
 
    c.put(p0, Payload::from(b"HEY" as &[_])).unwrap();
 
    c.put(p1, Payload::from(b"HELLO" as &[_])).unwrap();
 
    c.sync(SEC1).unwrap_err();
 
}
 

	
 
#[test]
 
fn sequencer3_prim() {
 
    let test_log_path = Path::new("./logs/sequencer3_prim");
 
    let pdl = b"
 
    primitive sequencer3(out<msg> a, out<msg> b, out<msg> c) {
 
        u32 i = 0;
 
        while(true) synchronous {
 
        while(true) sync {
 
            out to = a;
 
            if     (i==1) to = b;
 
            else if(i==2) to = c;
 
            if(fires(to)) {
 
                put(to, create(0));
 
                i = (i + 1)%3;
 
            }
 
        }
 
    }
 
    ";
 
    let pd = reowolf::ProtocolDescription::parse(pdl).unwrap();
 
    let mut c = file_logged_configured_connector(0, test_log_path, Arc::new(pd));
 

	
 
    // setup a session between (a) native, and (b) sequencer3, connected by 3 ports.
 
    let [p0, g0] = c.new_port_pair();
 
    let [p1, g1] = c.new_port_pair();
 
    let [p2, g2] = c.new_port_pair();
 
    c.add_component(b"", b"sequencer3", &[p0, p1, p2]).unwrap();
 
    c.connect(None).unwrap();
 

	
 
    let which_of_three = move |c: &mut Connector| {
 
        // setup three sync batches. sync. return which succeeded
 
        c.get(g0).unwrap();
 
        c.next_batch().unwrap();
 
        c.get(g1).unwrap();
 
        c.next_batch().unwrap();
 
        c.get(g2).unwrap();
 
        c.sync(None).unwrap()
 
    };
 

	
 
    const TEST_ROUNDS: usize = 50;
 
    // check that the batch index for rounds 0..TEST_ROUNDS are [0, 1, 2, 0, 1, 2, ...]
 
    for expected_batch_idx in (0..=2).cycle().take(TEST_ROUNDS) {
 
        // silent round
 
        assert_eq!(0, c.sync(None).unwrap());
 
        // non silent round
 
        assert_eq!(expected_batch_idx, which_of_three(&mut c));
 
    }
 
}
 

	
 
#[test]
 
fn sequencer3_comp() {
 
    let test_log_path = Path::new("./logs/sequencer3_comp");
 
    let pdl = b"
 
    primitive replicator<T>(in<T> a, out<T> b, out<T> c) {
 
        while (true) {
 
            synchronous {
 
            sync {
 
                if (fires(a) && fires(b) && fires(c)) {
 
                    msg x = get(a);
 
                    put(b, x);
 
                    put(c, x);
 
                } else {
 
                    assert(!fires(a) && !fires(b) && !fires(c));
 
                }
 
            }
 
        }
 
    }
 
    primitive fifo1_init<T>(bool has_value, T m, in<T> a, out<T> b) {
 
        while(true) synchronous {
 
        while(true) sync {
 
            if(has_value && fires(b)) {
 
                put(b, m);
 
                has_value = false;
 
            } else if (!has_value && fires(a)) {
 
                m = get(a);
 
                has_value = true;
 
            }
 
        }
 
    }
 
    composite fifo1_full<T>(in<T> a, out<T> b) {
 
        new fifo1_init(true, create(0), a, b);
 
    }
 
    composite fifo1<T>(in<T> a, out<T> b) {
 
        new fifo1_init(false, create(0), a, b);
 
    }
 
    composite sequencer3(out<msg> a, out<msg> b, out<msg> c) {
 
        channel d -> e;
 
        channel f -> g;
 
        channel h -> i;
 
        channel j -> k;
 
        channel l -> m;
 
        channel n -> o;
 

	
 
        new fifo1_full(o, d);
 
        new replicator(e, f, a);
 
        new fifo1(g, h);
 
        new replicator(i, j, b);
 
        new fifo1(k, l);
 
        new replicator(m, n, c);
 
    }
 
    ";
 
    let pd = reowolf::ProtocolDescription::parse(pdl).unwrap();
 
    let mut c = file_logged_configured_connector(0, test_log_path, Arc::new(pd));
 

	
 
    // setup a session between (a) native, and (b) sequencer3, connected by 3 ports.
 
    let [p0, g0] = c.new_port_pair();
 
    let [p1, g1] = c.new_port_pair();
 
    let [p2, g2] = c.new_port_pair();
 
    c.add_component(b"", b"sequencer3", &[p0, p1, p2]).unwrap();
 
    c.connect(None).unwrap();
 

	
 
    let which_of_three = move |c: &mut Connector| {
 
        // setup three sync batches. sync. return which succeeded
 
        c.get(g0).unwrap();
 
        c.next_batch().unwrap();
 
        c.get(g1).unwrap();
 
        c.next_batch().unwrap();
 
        c.get(g2).unwrap();
 
        c.sync(SEC1).unwrap()
 
    };
 

	
 
    const TEST_ROUNDS: usize = 50;
 
    // check that the batch index for rounds 0..TEST_ROUNDS are [0, 1, 2, 0, 1, 2, ...]
 
    for expected_batch_idx in (0..=2).cycle().take(TEST_ROUNDS) {
 
        // silent round
 
        assert_eq!(0, c.sync(SEC1).unwrap());
 
        // non silent round
 
        assert_eq!(expected_batch_idx, which_of_three(&mut c));
 
    }
 
}
 

	
 
enum XRouterItem {
 
    Silent,
 
    GetA,
 
    GetB,
 
}
 
// Hardcoded pseudo-random sequence of round behaviors for the native component
 
const XROUTER_ITEMS: &[XRouterItem] = {
 
    use XRouterItem::{GetA as A, GetB as B, Silent as S};
 
    &[
 
        B, A, S, B, A, A, B, S, B, S, A, A, S, B, B, S, B, S, B, B, S, B, B, A, B, B, A, B, A, B,
 
        S, B, S, B, S, A, S, B, A, S, B, A, B, S, B, S, B, S, S, B, B, A, A, A, S, S, S, B, A, A,
 
        A, S, S, B, B, B, A, B, S, S, A, A, B, A, B, B, A, A, A, B, A, B, S, A, B, S, A, A, B, S,
 
    ]
 
};
 

	
 
#[test]
 
fn xrouter_prim() {
 
    let test_log_path = Path::new("./logs/xrouter_prim");
 
    let pdl = b"
 
    primitive xrouter(in<msg> a, out<msg> b, out<msg> c) {
 
        while(true) synchronous {
 
        while(true) sync {
 
            if(fires(a)) {
 
                if(fires(b)) put(b, get(a));
 
                else         put(c, get(a));
 
            }
 
        }
 
    }
 
    ";
 
    let pd = reowolf::ProtocolDescription::parse(pdl).unwrap();
 
    let mut c = file_logged_configured_connector(0, test_log_path, Arc::new(pd));
 

	
 
    // setup a session between (a) native, and (b) xrouter2, connected by 3 ports.
 
    let [p0, g0] = c.new_port_pair();
 
    let [p1, g1] = c.new_port_pair();
 
    let [p2, g2] = c.new_port_pair();
 
    c.add_component(b"", b"xrouter", &[g0, p1, p2]).unwrap();
 
    c.connect(None).unwrap();
 

	
 
    let now = std::time::Instant::now();
 
    for item in XROUTER_ITEMS.iter() {
 
        match item {
 
            XRouterItem::Silent => {}
 
            XRouterItem::GetA => {
 
                c.put(p0, TEST_MSG.clone()).unwrap();
 
                c.get(g1).unwrap();
 
            }
 
            XRouterItem::GetB => {
 
                c.put(p0, TEST_MSG.clone()).unwrap();
 
                c.get(g2).unwrap();
 
            }
 
        }
 
        assert_eq!(0, c.sync(SEC1).unwrap());
 
    }
 
    println!("PRIM {:?}", now.elapsed());
 
}
 
#[test]
 
fn xrouter_comp() {
 
    let test_log_path = Path::new("./logs/xrouter_comp");
 
    let pdl = b"
 
    primitive replicator<T>(in<T> a, out<T> b, out<T> c) {
 
        while (true) {
 
            synchronous {
 
            sync {
 
                if (fires(a) && fires(b) && fires(c)) {
 
                    msg x = get(a);
 
                    put(b, x);
 
                    put(c, x);
 
                } else {
 
                    assert(!fires(a) && !fires(b) && !fires(c));
 
                }
 
            }
 
        }
 
    }
 

	
 
    primitive merger(in<msg> a, in<msg> b, out<msg> c) {
 
        while (true) {
 
            synchronous {
 
            sync {
 
                if (fires(a) && !fires(b) && fires(c)) {
 
                    put(c, get(a));
 
                } else if (!fires(a) && fires(b) && fires(c)) {
 
                    put(c, get(b));
 
                } else {
 
                    assert(!fires(a) && !fires(b) && !fires(c));
 
                }
 
            }
 
        }
 
    }
 

	
 
    primitive lossy<T>(in<T> a, out<T> b) {
 
        while(true) synchronous {
 
        while(true) sync {
 
            if(fires(a)) {
 
                auto m = get(a);
 
                if(fires(b)) put(b, m);
 
            }
 
        }
 
    }
 
    primitive sync_drain<T>(in<T> a, in<T> b) {
 
        while(true) synchronous {
 
        while(true) sync {
 
            if(fires(a)) {
 
                msg drop_it = get(a);
 
                msg on_the_floor = get(b);
 
            }
 
        }
 
    }
 
    composite xrouter(in<msg> a, out<msg> b, out<msg> c) {
 
        channel d -> e;
 
        channel f -> g;
 
        channel h -> i;
 
        channel j -> k;
 
        channel l -> m;
 
        channel n -> o;
 
        channel p -> q;
 
        channel r -> s;
 
        channel t -> u;
 

	
 
        new replicator(a, d, f);
 
        new replicator(g, t, h);
 
        new lossy(e, l);
 
        new lossy(i, j);
 
        new replicator(m, b, p);
 
        new replicator(k, n, c);
 
        new merger(q, o, r);
 
        new sync_drain(u, s);
 
    }
 
    ";
 
    let pd = reowolf::ProtocolDescription::parse(pdl).unwrap();
 
    let mut c = file_logged_configured_connector(0, test_log_path, Arc::new(pd));
 

	
 
    // setup a session between (a) native, and (b) xrouter2, connected by 3 ports.
 
    let [p0, g0] = c.new_port_pair();
 
    let [p1, g1] = c.new_port_pair();
 
    let [p2, g2] = c.new_port_pair();
 
    c.add_component(b"", b"xrouter", &[g0, p1, p2]).unwrap();
 
    c.connect(None).unwrap();
 

	
 
    let now = std::time::Instant::now();
 
    for item in XROUTER_ITEMS.iter() {
 
        match item {
 
            XRouterItem::Silent => {}
 
            XRouterItem::GetA => {
 
                c.put(p0, TEST_MSG.clone()).unwrap();
 
                c.get(g1).unwrap();
 
            }
 
            XRouterItem::GetB => {
 
                c.put(p0, TEST_MSG.clone()).unwrap();
 
                c.get(g2).unwrap();
 
            }
 
        }
 
        assert_eq!(0, c.sync(SEC1).unwrap());
 
    }
 
    println!("COMP {:?}", now.elapsed());
 
}
 

	
 
#[test]
 
fn count_stream() {
 
    let test_log_path = Path::new("./logs/count_stream");
 
    let pdl = b"
 
    primitive count_stream(out<msg> o) {
 
        msg m = create(1);
 
        m[0] = 0;
 
        while(true) synchronous {
 
        while(true) sync {
 
            put(o, m);
 
            m[0] += 1;
 
        }
 
    }
 
    ";
 
    let pd = reowolf::ProtocolDescription::parse(pdl).unwrap();
 
    let mut c = file_logged_configured_connector(0, test_log_path, Arc::new(pd));
 

	
 
    // setup a session between (a) native, and (b) sequencer3, connected by 3 ports.
 
    let [p0, g0] = c.new_port_pair();
 
    c.add_component(b"", b"count_stream", &[p0]).unwrap();
 
    c.connect(None).unwrap();
 

	
 
    for expecting in 0u8..16 {
 
        c.get(g0).unwrap();
 
        c.sync(None).unwrap();
 
        assert_eq!(&[expecting], c.gotten(g0).unwrap().as_slice());
 
    }
 
}
 

	
 
#[test]
 
fn for_msg_byte() {
 
    let test_log_path = Path::new("./logs/for_msg_byte");
 
    let pdl = b"
 
    primitive for_msg_byte(out<msg> o) {
 
        u8 i = 0;
 
        u32 idx = 0;
 
        while(i<8) {
 
            msg m = create(1);
 
            m[idx] = i;
 
            synchronous put(o, m);
 
            sync put(o, m);
 
            i += 1;
 
        }
 
    }
 
    ";
 
    let pd = reowolf::ProtocolDescription::parse(pdl).unwrap();
 
    let mut c = file_logged_configured_connector(0, test_log_path, Arc::new(pd));
 

	
 
    // setup a session between (a) native, and (b) sequencer3, connected by 3 ports.
 
    let [p0, g0] = c.new_port_pair();
 
    c.add_component(b"", b"for_msg_byte", &[p0]).unwrap();
 
    c.connect(None).unwrap();
 

	
 
    for expecting in 0u8..8 {
 
        c.get(g0).unwrap();
 
        c.sync(None).unwrap();
 
        assert_eq!(&[expecting], c.gotten(g0).unwrap().as_slice());
 
    }
 
    c.sync(None).unwrap();
 
}
 

	
 
#[test]
 
fn eq_causality() {
 
    let test_log_path = Path::new("./logs/eq_causality");
 
    let pdl = b"
 
    primitive eq(in<msg> a, in<msg> b, out<msg> c) {
 
        msg ma = create(0);
 
        msg mb = create(0);
 
        while(true) synchronous {
 
        while(true) sync {
 
            if(fires(a)) {
 
                // b and c also fire!
 
                // left first!
 
                ma = get(a);
 
                put(c, ma);
 
                mb = get(b);
 
                assert(ma == mb);
 
            }
 
        }
 
    }
 
    ";
 
    let pd = reowolf::ProtocolDescription::parse(pdl).unwrap();
 
    let mut c = file_logged_configured_connector(0, test_log_path, Arc::new(pd));
 

	
 
    /*
 
    [native]p0-->g0[eq]p1--.
 
                 g1        |
 
                 ^---------`
 
    */
 
    let [p0, g0] = c.new_port_pair();
 
    let [p1, g1] = c.new_port_pair();
 
    c.add_component(b"", b"eq", &[g0, g1, p1]).unwrap();
 

	
 
    /*
 
                  V--------.
 
                 g2        |
 
    [native]p2-->g3[eq]p3--`
 
    */
 
    let [p2, g2] = c.new_port_pair();
 
    let [p3, g3] = c.new_port_pair();
 
    c.add_component(b"", b"eq", &[g3, g2, p3]).unwrap();
 
    c.connect(None).unwrap();
 

	
 
    for _ in 0..4 {
 
        // everything is fine with LEFT FIRST
 
        c.put(p0, TEST_MSG.clone()).unwrap();
 
        c.sync(MS100).unwrap();
 

	
 
        // no solution when left is NOT FIRST
 
        c.put(p2, TEST_MSG.clone()).unwrap();
 
        c.sync(MS100).unwrap_err();
 
    }
 
}
 

	
 
#[test]
 
fn eq_no_causality() {
 
    let test_log_path = Path::new("./logs/eq_no_causality");
 
    let pdl = b"
 
    composite eq(in<msg> a, in<msg> b, out<msg> c) {
 
        channel leftfirsto -> leftfirsti;
 
        new eqinner(a, b, c, leftfirsto, leftfirsti);
 
    }
 
    primitive eqinner(in<msg> a, in<msg> b, out<msg> c, out<msg> leftfirsto, in<msg> leftfirsti) {
 
        msg ma = create(0);
 
        msg mb = create(0);
 
        while(true) synchronous {
 
        while(true) sync {
 
            if(fires(a)) {
 
                // b and c also fire!
 
                if(fires(leftfirsti)) {
 
                    // left first! DO USE DUMMY
 
                    ma = get(a);
 
                    put(c, ma);
 
                    mb = get(b);
 

	
 
                    // using dummy!
 
                    put(leftfirsto, ma);
 
                    auto drop_it = get(leftfirsti);
 
                } else {
 
                    // right first! DON'T USE DUMMY
 
                    mb = get(b);
 
                    put(c, mb);
 
                    ma = get(a);
 
                }
 
                assert(ma == mb);
 
            }
 
        }
 
    }
 
    ";
 
    let pd = reowolf::ProtocolDescription::parse(pdl).unwrap();
 
    let mut c = file_logged_configured_connector(0, test_log_path, Arc::new(pd));
 

	
 
    /*
 
    [native]p0-->g0[eq]p1--.
 
                 g1        |
 
                 ^---------`
 
    */
 
    let [p0, g0] = c.new_port_pair();
 
    let [p1, g1] = c.new_port_pair();
 
    c.add_component(b"", b"eq", &[g0, g1, p1]).unwrap();
 

	
 
    /*
 
                  V--------.
 
                 g2        |
 
    [native]p2-->g3[eq]p3--`
 
    */
 
    let [p2, g2] = c.new_port_pair();
 
    let [p3, g3] = c.new_port_pair();
 
    c.add_component(b"", b"eq", &[g3, g2, p3]).unwrap();
 
    c.connect(None).unwrap();
 

	
 
    for _ in 0..32 {
 
        // ok when they send
 
        c.put(p0, TEST_MSG.clone()).unwrap();
 
        c.put(p2, TEST_MSG.clone()).unwrap();
 
        c.sync(SEC1).unwrap();
 
        // ok when they don't
 
        c.sync(SEC1).unwrap();
 
    }
 
}

Changeset was too big and was cut off... Show full diff anyway

0 comments (0 inline, 0 general)