Changeset - 435cb6e4699f
[Not reviewed]
mh - 3 years ago 2022-02-08 15:11:11
contact@maxhenger.nl
Add (defaultly disabled) flag for debug logging
7 files changed with 25 insertions and 12 deletions:
0 comments (0 inline, 0 general)
bin-compiler/src/main.rs
Show inline comments
 
use std::fs::File;
 
use std::io::Read;
 

	
 
use clap::{App, Arg};
 
use reowolf_rs as rw;
 

	
 
fn main() {
 
    let app = App::new("rwc")
 
        .author("Henger, M.")
 
        .version(env!("CARGO_PKG_VERSION"))
 
        .about("Reowolf compiler")
 
        .arg(
 
            Arg::new("input")
 
                .long("input")
 
                .short('i')
 
                .help("input files")
 
                .required(true)
 
                .takes_value(true)
 
                .multiple_occurrences(true)
 
        )
 
        .arg(
 
            Arg::new("threads")
 
                .long("threads")
 
                .short('t')
 
                .help("number of runtime threads")
 
                .default_value("1")
 
                .takes_value(true)
 
        )
 
        .arg(
 
            Arg::new("debug")
 
                .long("debug")
 
                .short('d')
 
                .help("enable debug logging")
 
        );
 

	
 
    // Retrieve arguments and convert
 
    let app = app.get_matches();
 
    let input_files = app.values_of("input");
 
    if input_files.is_none() {
 
        println!("ERROR: Expected at least one input file");
 
        return;
 
    }
 

	
 
    let num_threads = app.value_of("threads").unwrap();
 
    let num_threads = match num_threads.parse::<i32>() {
 
        Ok(num_threads) => {
 
            if num_threads < 0 || num_threads > 255 {
 
                println!("ERROR: Number of threads must be a number between 0 and 256");
 
                return;
 
            }
 

	
 
            num_threads as u32
 
        },
 
        Err(err) => {
 
            println!("ERROR: Failed to parse number of threads\nbecause: {}", err);
 
            return;
 
        }
 
    };
 

	
 
    let debug_enabled = app.is_present("debug");
 

	
 
    // Add input files to file buffer
 
    let input_files = input_files.unwrap();
 
    assert!(input_files.len() > 0); // because arg is required
 

	
 
    let mut builder = rw::ProtocolDescriptionBuilder::new();
 
    let mut file_buffer = Vec::with_capacity(4096);
 

	
 
    for input_file in input_files {
 
        print!("Adding file: {} ... ", input_file);
 
        let mut file = match File::open(input_file) {
 
            Ok(file) => file,
 
            Err(err) => {
 
                println!("FAILED (to open file)\nbecause:\n{}", err);
 
                return;
 
            }
 
        };
 

	
 
        file_buffer.clear();
 
        if let Err(err) = file.read_to_end(&mut file_buffer) {
 
            println!("FAILED (to read file)\nbecause:\n{}", err);
 
            return;
 
        }
 

	
 
        if let Err(err) = builder.add(input_file.to_string(), file_buffer.clone()) {
 
            println!("FAILED (to tokenize file)\nbecause:\n{}", err);
 
        }
 

	
 
        println!("Success");
 
    }
 

	
 
    // Compile the program
 
    print!("Compiling program ... ");
 
    let protocol_description = match builder.compile() {
 
        Ok(pd) => pd,
 
        Err(err) => {
 
            println!("FAILED\nbecause:\n{}", err);
 
            return;
 
        }
 
    };
 

	
 
    println!("Success");
 

	
 
    // Make sure there is a nameless module with a main component
 
    print!("Creating main component ... ");
 
    let runtime = rw::runtime2::Runtime::new(num_threads, protocol_description);
 
    let runtime = rw::runtime2::Runtime::new(num_threads, debug_enabled, protocol_description);
 
    if let Err(err) = runtime.create_component(b"", b"main") {
 
        use rw::ComponentCreationError as CCE;
 
        let reason = match err {
 
            CCE::ModuleDoesntExist => "Input files did not contain a nameless module (that should contain the 'main' component)",
 
            CCE::DefinitionDoesntExist => "Input files did not contain a component called 'main'",
 
            CCE::DefinitionNotComponent => "Input file contained a 'main' function, but not a 'main' component",
 
            _ => "Unexpected error"
 
        };
 
        println!("FAILED\nbecause:\n{} (raw error: {:?})", reason, err);
 
        return;
 
    }
 

	
 
    println!("Success");
 
    println!("Now running until all components have exited");
 
    println!("--------------------------------------------\n\n");
 
}
 
\ No newline at end of file
src/runtime2/component/component_pdl.rs
Show inline comments
 
@@ -579,193 +579,192 @@ impl CompPDL {
 
    fn handle_unblock_port_instruction(&mut self, sched_ctx: &SchedulerCtx, comp_ctx: &mut CompCtx, port_handle: LocalPortHandle) {
 
        let port_info = comp_ctx.get_port_mut(port_handle);
 
        let port_id = port_info.self_id;
 
        debug_assert!(port_info.state.is_blocked());
 
        port_info.state = PortState::Open;
 

	
 
        if self.mode == Mode::BlockedPut && port_id == self.mode_port {
 
            // We were blocked on the port that just became unblocked, so
 
            // send the message.
 
            debug_assert_eq!(port_info.kind, PortKind::Putter);
 
            let mut replacement = ValueGroup::default();
 
            std::mem::swap(&mut replacement, &mut self.mode_value);
 
            self.send_data_message_and_wake_up(sched_ctx, comp_ctx, port_handle, replacement);
 

	
 
            self.mode = Mode::Sync;
 
            self.mode_port = PortId::new_invalid();
 
        }
 
    }
 

	
 
    fn create_component_and_transfer_ports(
 
        &mut self,
 
        sched_ctx: &SchedulerCtx, creator_ctx: &mut CompCtx,
 
        definition_id: DefinitionId, monomorph_index: i32, mut arguments: ValueGroup
 
    ) {
 
        struct PortPair{
 
            creator_handle: LocalPortHandle,
 
            creator_id: PortId,
 
            created_handle: LocalPortHandle,
 
            created_id: PortId,
 
        }
 
        let mut port_id_pairs = Vec::new();
 

	
 
        let reservation = sched_ctx.runtime.start_create_pdl_component();
 
        let mut created_ctx = CompCtx::new(&reservation);
 

	
 
        // Take all the ports ID that are in the `args` (and currently belong to
 
        // the creator component) and translate them into new IDs that are
 
        // associated with the component we're about to create
 
        let mut arg_iter = ValueGroupIter::new(&mut arguments);
 
        while let Some(port_reference) = arg_iter.next() {
 
            // Create port entry for new component
 
            let creator_port_id = port_reference.id;
 
            let creator_port_handle = creator_ctx.get_port_handle(creator_port_id);
 
            let creator_port = creator_ctx.get_port(creator_port_handle);
 
            let created_port_handle = created_ctx.add_port(
 
                creator_port.peer_comp_id, creator_port.peer_port_id,
 
                creator_port.kind, creator_port.state
 
            );
 
            let created_port = created_ctx.get_port(created_port_handle);
 
            let created_port_id = created_port.self_id;
 

	
 
            port_id_pairs.push(PortPair{
 
                creator_handle: creator_port_handle,
 
                creator_id: creator_port_id,
 
                created_handle: created_port_handle,
 
                created_id: created_port_id,
 
            });
 

	
 
            // Modify value in arguments (bit dirty, but double vec in ValueGroup causes lifetime issues)
 
            let arg_value = if let Some(heap_pos) = port_reference.heap_pos {
 
                &mut arg_iter.group.regions[heap_pos][port_reference.index]
 
            } else {
 
                &mut arg_iter.group.values[port_reference.index]
 
            };
 
            match arg_value {
 
                Value::Input(id) => *id = port_id_to_eval(created_port_id),
 
                Value::Output(id) => *id = port_id_to_eval(created_port_id),
 
                _ => unreachable!(),
 
            }
 
        }
 

	
 
        // For each transferred port pair set their peer components to the
 
        // correct values. This will only change the values for the ports of
 
        // the new component.
 
        let mut created_component_has_remote_peers = false;
 

	
 
        for pair in port_id_pairs.iter() {
 
            let creator_port_info = creator_ctx.get_port(pair.creator_handle);
 
            let created_port_info = created_ctx.get_port_mut(pair.created_handle);
 

	
 
            if created_port_info.peer_comp_id == creator_ctx.id {
 
                // Port peer is owned by the creator as well
 
                let created_peer_port_index = port_id_pairs
 
                    .iter()
 
                    .position(|v| v.creator_id == creator_port_info.peer_port_id);
 
                match created_peer_port_index {
 
                    Some(created_peer_port_index) => {
 
                        // Peer port moved to the new component as well. So
 
                        // adjust IDs appropriately.
 
                        let peer_pair = &port_id_pairs[created_peer_port_index];
 
                        created_port_info.peer_port_id = peer_pair.created_id;
 
                        created_port_info.peer_comp_id = reservation.id();
 
                        todo!("either add 'self peer', or remove that idea from Ctx altogether")
 
                    },
 
                    None => {
 
                        // Peer port remains with creator component.
 
                        println!("DEBUG: Setting peer for port {:?} of component {:?} to {:?}", created_port_info.self_id, reservation.id(), creator_ctx.id);
 
                        created_port_info.peer_comp_id = creator_ctx.id;
 
                        created_ctx.add_peer(pair.created_handle, sched_ctx, creator_ctx.id, None);
 
                    }
 
                }
 
            } else {
 
                // Peer is a different component. We'll deal with sending the
 
                // appropriate messages later
 
                let peer_handle = creator_ctx.get_peer_handle(created_port_info.peer_comp_id);
 
                let peer_info = creator_ctx.get_peer(peer_handle);
 
                created_ctx.add_peer(pair.created_handle, sched_ctx, peer_info.id, Some(&peer_info.handle));
 
                created_component_has_remote_peers = true;
 
            }
 
        }
 

	
 
        // We'll now actually turn our reservation for a new component into an
 
        // actual component. Note that we initialize it as "not sleeping" as
 
        // its initial scheduling might be performed based on `Ack`s in response
 
        // to message exchanges between remote peers.
 
        let prompt = Prompt::new(
 
            &sched_ctx.runtime.protocol.types, &sched_ctx.runtime.protocol.heap,
 
            definition_id, monomorph_index, arguments,
 
        );
 
        let component = CompPDL::new(prompt, port_id_pairs.len());
 
        let (created_key, component) = sched_ctx.runtime.finish_create_pdl_component(
 
            reservation, component, created_ctx, false,
 
        );
 
        let created_ctx = &component.ctx;
 

	
 
        // Now modify the creator's ports: remove every transferred port and
 
        // potentially remove the peer component. Here is also where we will
 
        // transfer messages in the main inbox.
 
        for pair in port_id_pairs.iter() {
 
            // Remove peer if appropriate
 
            let creator_port_info = creator_ctx.get_port(pair.creator_handle);
 
            let creator_port_index = creator_ctx.get_port_index(pair.creator_handle);
 
            let creator_peer_comp_id = creator_port_info.peer_comp_id;
 
            creator_ctx.remove_peer(sched_ctx, pair.creator_handle, creator_peer_comp_id, false);
 
            creator_ctx.remove_port(pair.creator_handle);
 

	
 
            // Transfer any messages
 
            let created_port_index = created_ctx.get_port_index(pair.created_handle);
 
            let created_port_info = created_ctx.get_port(pair.created_handle);
 
            debug_assert!(component.code.inbox_main[created_port_index].is_none());
 
            if let Some(mut message) = self.inbox_main.remove(creator_port_index) {
 
                message.data_header.target_port = pair.created_id;
 
                component.code.inbox_main[created_port_index] = Some(message);
 
            }
 

	
 
            let mut message_index = 0;
 
            while message_index < self.inbox_backup.len() {
 
                let message = &self.inbox_backup[message_index];
 
                if message.data_header.target_port == pair.creator_id {
 
                    // transfer message
 
                    let mut message = self.inbox_backup.remove(message_index);
 
                    message.data_header.target_port = pair.created_id;
 
                    component.code.inbox_backup.push(message);
 
                } else {
 
                    message_index += 1;
 
                }
 
            }
 

	
 
            // Handle potential channel between creator and created component
 
            if created_port_info.peer_comp_id == creator_ctx.id {
 
                let peer_port_handle = creator_ctx.get_port_handle(created_port_info.peer_port_id);
 
                let peer_port_info = creator_ctx.get_port_mut(peer_port_handle);
 
                peer_port_info.peer_comp_id = created_ctx.id;
 
                peer_port_info.peer_port_id = created_port_info.self_id;
 
                creator_ctx.add_peer(peer_port_handle, sched_ctx, created_ctx.id, None);
 
            }
 
        }
 

	
 
        // By now all ports have been transferred. We'll now do any of the setup
 
        // for rerouting/messaging
 
        if created_component_has_remote_peers {
 
            let schedule_entry_id = self.control.add_schedule_entry(created_ctx.id);
 
            for pair in port_id_pairs.iter() {
 
                let port_info = created_ctx.get_port(pair.created_handle);
 
                if port_info.peer_comp_id != creator_ctx.id && port_info.peer_comp_id != created_ctx.id {
 
                    let message = self.control.add_reroute_entry(
 
                        creator_ctx.id, port_info.peer_port_id, port_info.peer_comp_id,
 
                        pair.creator_id, pair.created_id, created_ctx.id,
 
                        schedule_entry_id
 
                    );
 
                    let peer_handle = created_ctx.get_peer_handle(port_info.peer_comp_id);
 
                    let peer_info = created_ctx.get_peer(peer_handle);
 
                    peer_info.handle.send_message(sched_ctx, message, true);
 
                }
 
            }
 
        } else {
 
            // Peer can be scheduled immediately
 
            sched_ctx.runtime.enqueue_work(created_key);
 
        }
 
    }
 
}
 

	
 
#[inline]
src/runtime2/runtime.rs
Show inline comments
 
@@ -65,208 +65,209 @@ pub(crate) struct RuntimeComp {
 

	
 
/// Should contain everything that is accessible in a thread-safe manner
 
// TODO: Do something about the `num_handles` thing. This needs to be a bit more
 
//  "foolproof" to lighten the mental burden of using the `num_handles`
 
//  variable.
 
pub(crate) struct CompPublic {
 
    pub sleeping: AtomicBool,
 
    pub num_handles: AtomicU32, // manually modified (!)
 
    inbox: QueueDynProducer<Message>,
 
}
 

	
 
/// Handle to public part of a component. Would be nice if we could
 
/// automagically manage the `num_handles` counter. But when it reaches zero we
 
/// need to manually remove the handle from the runtime. So we just have debug
 
/// code to make sure this actually happens.
 
pub(crate) struct CompHandle {
 
    target: *const CompPublic,
 
    id: CompId, // TODO: @Remove after debugging
 
    #[cfg(debug_assertions)] decremented: bool,
 
}
 

	
 
impl CompHandle {
 
    fn new(id: CompId, public: &CompPublic) -> CompHandle {
 
        let handle = CompHandle{
 
            target: public,
 
            id,
 
            #[cfg(debug_assertions)] decremented: false,
 
        };
 
        handle.increment_users();
 
        return handle;
 
    }
 

	
 
    pub(crate) fn send_message(&self, sched_ctx: &SchedulerCtx, message: Message, try_wake_up: bool) {
 
        sched_ctx.log(&format!("Sending message to [c:{:03}, wakeup:{}]: {:?}", self.id.0, try_wake_up, message));
 
        self.inbox.push(message);
 
        if try_wake_up {
 
            wake_up_if_sleeping(sched_ctx, self.id, self);
 
        }
 
    }
 

	
 
    fn increment_users(&self) {
 
        let old_count = self.num_handles.fetch_add(1, Ordering::AcqRel);
 
        debug_assert!(old_count > 0); // because we should never be able to retrieve a handle when the component is (being) destroyed
 
    }
 

	
 
    /// Returns the `CompKey` to the component if it should be destroyed
 
    pub(crate) fn decrement_users(&mut self) -> Option<CompKey> {
 
        debug_assert!(!self.decremented, "illegal to 'decrement_users' twice");
 
        let old_count = self.num_handles.fetch_sub(1, Ordering::AcqRel);
 
        let new_count = old_count - 1;
 
        dbg_code!(self.decremented = true);
 
        if new_count == 0 {
 
            return Some(unsafe{ self.id.upgrade() });
 
        }
 

	
 
        return None;
 
    }
 
}
 

	
 
impl Clone for CompHandle {
 
    fn clone(&self) -> Self {
 
        debug_assert!(!self.decremented, "illegal to clone after 'decrement_users'");
 
        self.increment_users();
 
        return CompHandle{
 
            target: self.target,
 
            id: self.id,
 
            #[cfg(debug_assertions)] decremented: false,
 
        };
 
    }
 
}
 

	
 
impl std::ops::Deref for CompHandle {
 
    type Target = CompPublic;
 

	
 
    fn deref(&self) -> &Self::Target {
 
        debug_assert!(!self.decremented); // cannot access if control is relinquished
 
        return unsafe{ &*self.target };
 
    }
 
}
 

	
 
impl Drop for CompHandle {
 
    fn drop(&mut self) {
 
        debug_assert!(self.decremented, "need call to 'decrement_users' before dropping");
 
    }
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// Runtime
 
// -----------------------------------------------------------------------------
 

	
 
pub struct Runtime {
 
    pub(crate) inner: Arc<RuntimeInner>,
 
    threads: Vec<std::thread::JoinHandle<()>>,
 
}
 

	
 
impl Runtime {
 
    pub fn new(num_threads: u32, protocol_description: ProtocolDescription) -> Runtime {
 
    // TODO: debug_logging should be removed at some point
 
    pub fn new(num_threads: u32, debug_logging: bool, protocol_description: ProtocolDescription) -> Runtime {
 
        assert!(num_threads > 0, "need a thread to perform work");
 
        let runtime_inner = Arc::new(RuntimeInner {
 
            protocol: protocol_description,
 
            components: ComponentStore::new(128),
 
            work_queue: Mutex::new(VecDeque::with_capacity(128)),
 
            work_condvar: Condvar::new(),
 
            active_elements: AtomicU32::new(1),
 
        });
 
        let mut runtime = Runtime {
 
            inner: runtime_inner,
 
            threads: Vec::with_capacity(num_threads as usize),
 
        };
 

	
 
        for thread_index in 0..num_threads {
 
            let mut scheduler = Scheduler::new(runtime.inner.clone(), thread_index);
 
            let mut scheduler = Scheduler::new(runtime.inner.clone(), thread_index, debug_logging);
 
            let thread_handle = std::thread::spawn(move || {
 
                scheduler.run();
 
            });
 

	
 
            runtime.threads.push(thread_handle);
 
        }
 

	
 
        return runtime;
 
    }
 

	
 
    pub fn create_component(&self, module_name: &[u8], routine_name: &[u8]) -> Result<(), ComponentCreationError> {
 
        use crate::protocol::eval::ValueGroup;
 
        let prompt = self.inner.protocol.new_component(
 
            module_name, routine_name,
 
            ValueGroup::new_stack(Vec::new())
 
        )?;
 
        let reserved = self.inner.start_create_pdl_component();
 
        let ctx = CompCtx::new(&reserved);
 
        let (key, _) = self.inner.finish_create_pdl_component(reserved, CompPDL::new(prompt, 0), ctx, false);
 
        self.inner.enqueue_work(key);
 

	
 
        return Ok(())
 
    }
 
}
 

	
 
impl Drop for Runtime {
 
    fn drop(&mut self) {
 
        self.inner.decrement_active_components();
 
        for handle in self.threads.drain(..) {
 
            handle.join().expect("join scheduler thread");
 
        }
 
    }
 
}
 

	
 
/// Memory that is maintained by "the runtime". In practice it is maintained by
 
/// multiple schedulers, and this serves as the common interface to that memory.
 
pub(crate) struct RuntimeInner {
 
    pub protocol: ProtocolDescription,
 
    components: ComponentStore<RuntimeComp>,
 
    work_queue: Mutex<VecDeque<CompKey>>,
 
    work_condvar: Condvar,
 
    active_elements: AtomicU32, // active components and APIs (i.e. component creators)
 
}
 

	
 
impl RuntimeInner {
 
    // Scheduling and retrieving work
 

	
 
    pub(crate) fn take_work(&self) -> Option<CompKey> {
 
        let mut lock = self.work_queue.lock().unwrap();
 
        while lock.is_empty() && self.active_elements.load(Ordering::Acquire) != 0 {
 
            lock = self.work_condvar.wait(lock).unwrap();
 
        }
 

	
 
        // We have work, or the schedulers should exit.
 
        return lock.pop_front();
 
    }
 

	
 
    pub(crate) fn enqueue_work(&self, key: CompKey) {
 
        let mut lock = self.work_queue.lock().unwrap();
 
        lock.push_back(key);
 
        self.work_condvar.notify_one();
 
    }
 

	
 
    // Creating/destroying components
 

	
 
    pub(crate) fn start_create_pdl_component(&self) -> CompReserved {
 
        self.increment_active_components();
 
        let reservation = self.components.reserve();
 
        return CompReserved{ reservation };
 
    }
 

	
 
    pub(crate) fn finish_create_pdl_component(
 
        &self, reserved: CompReserved,
 
        component: CompPDL, mut context: CompCtx, initially_sleeping: bool,
 
    ) -> (CompKey, &mut RuntimeComp) {
 
        let inbox_queue = QueueDynMpsc::new(16);
 
        let inbox_producer = inbox_queue.producer();
 

	
 
        let _id = reserved.id();
 
        context.id = reserved.id();
 
        let component = RuntimeComp {
 
            public: CompPublic{
 
                sleeping: AtomicBool::new(initially_sleeping),
 
                num_handles: AtomicU32::new(1), // the component itself acts like a handle
 
                inbox: inbox_producer,
 
            },
 
            code: component,
 
            ctx: context,
 
            inbox: inbox_queue,
 
            exiting: false,
 
        };
 

	
 
        let index = self.components.submit(reserved.reservation, component);
 
        debug_assert_eq!(index, _id.0);
 
        let component = self.components.get_mut(index);
 

	
src/runtime2/scheduler.rs
Show inline comments
 
use std::sync::Arc;
 
use std::sync::atomic::Ordering;
 

	
 
use super::component::*;
 
use super::runtime::*;
 

	
 
/// Data associated with a scheduler thread
 
pub(crate) struct Scheduler {
 
    runtime: Arc<RuntimeInner>,
 
    scheduler_id: u32,
 
    debug_logging: bool,
 
}
 

	
 
pub(crate) struct SchedulerCtx<'a> {
 
    pub runtime: &'a RuntimeInner,
 
    pub id: u32,
 
    pub comp: u32,
 
    pub logging_enabled: bool,
 
}
 

	
 
impl<'a> SchedulerCtx<'a> {
 
    pub fn new(runtime: &'a RuntimeInner, id: u32) -> Self {
 
    pub fn new(runtime: &'a RuntimeInner, id: u32, logging_enabled: bool) -> Self {
 
        return Self {
 
            runtime,
 
            id,
 
            comp: 0,
 
            logging_enabled,
 
        }
 
    }
 

	
 
    pub(crate) fn log(&self, text: &str) {
 
        if self.logging_enabled {
 
            println!("[s:{:02}, c:{:03}] {}", self.id, self.comp, text);
 
        }
 
    }
 

	
 
    // TODO: Obviously remove, but useful for testing
 
    pub(crate) fn log_special(&self, text: &str) {
 
        if self.logging_enabled {
 
            println!("[s:{:02}, c:{:03}] *** *** {}", self.id, self.comp, text);
 
        }
 
    }
 
}
 

	
 
impl Scheduler {
 
    // public interface to thread
 

	
 
    pub fn new(runtime: Arc<RuntimeInner>, scheduler_id: u32) -> Self {
 
        return Scheduler{ runtime, scheduler_id }
 
    pub fn new(runtime: Arc<RuntimeInner>, scheduler_id: u32, debug_logging: bool) -> Self {
 
        return Scheduler{ runtime, scheduler_id, debug_logging }
 
    }
 

	
 
    pub fn run(&mut self) {
 
        let mut scheduler_ctx = SchedulerCtx::new(&*self.runtime, self.scheduler_id);
 
        let mut scheduler_ctx = SchedulerCtx::new(&*self.runtime, self.scheduler_id, self.debug_logging);
 

	
 
        'run_loop: loop {
 
            // Wait until we have something to do (or need to quit)
 
            let comp_key = self.runtime.take_work();
 
            if comp_key.is_none() {
 
                break 'run_loop;
 
            }
 

	
 
            let comp_key = comp_key.unwrap();
 
            let component = self.runtime.get_component(comp_key);
 
            scheduler_ctx.comp = comp_key.0;
 

	
 
            // Run the component until it no longer indicates that it needs to
 
            // be re-executed immediately.
 
            let mut new_scheduling = CompScheduling::Immediate;
 
            while let CompScheduling::Immediate = new_scheduling {
 
                while let Some(message) = component.inbox.pop() {
 
                    component.code.handle_message(&mut scheduler_ctx, &mut component.ctx, message);
 
                }
 
                new_scheduling = component.code.run(&mut scheduler_ctx, &mut component.ctx).expect("TODO: Handle error");
 
            }
 

	
 
            // Handle the new scheduling
 
            match new_scheduling {
 
                CompScheduling::Immediate => unreachable!(),
 
                CompScheduling::Requeue => { self.runtime.enqueue_work(comp_key); },
 
                CompScheduling::Sleep => { self.mark_component_as_sleeping(comp_key, component); },
 
                CompScheduling::Exit => { self.mark_component_as_exiting(&scheduler_ctx, component); }
 
            }
 
        }
 
    }
 

	
 
    // local utilities
 

	
 
    /// Marks component as sleeping, if after marking itself as sleeping the
 
    /// inbox contains messages then the component will be immediately
 
    /// rescheduled. After calling this function the component should not be
 
    /// executed anymore.
 
    fn mark_component_as_sleeping(&self, key: CompKey, component: &mut RuntimeComp) {
 
        debug_assert_eq!(key.downgrade(), component.ctx.id); // make sure component matches key
 
        debug_assert_eq!(component.public.sleeping.load(Ordering::Acquire), false); // we're executing it, so it cannot be sleeping
 

	
 
        component.public.sleeping.store(true, Ordering::Release);
 
        if component.inbox.can_pop() {
 
            let should_reschedule = component.public.sleeping
 
                .compare_exchange(true, false, Ordering::AcqRel, Ordering::Relaxed)
 
                .is_ok();
 

	
 
            if should_reschedule {
 
                self.runtime.enqueue_work(key);
 
            }
 
        }
 
    }
 

	
 
    /// Marks the component as exiting by removing the reference it holds to
 
    /// itself. Afterward the component will enter "normal" sleeping mode (if it
 
    /// has not yet been destroyed)
 
    fn mark_component_as_exiting(&self, sched_ctx: &SchedulerCtx, component: &mut RuntimeComp) {
 
        // If we didn't yet decrement our reference count, do so now
 
        let comp_key = unsafe{ component.ctx.id.upgrade() };
 

	
 
        if !component.exiting {
 
            component.exiting = true;
 

	
 
            let old_count = component.public.num_handles.fetch_sub(1, Ordering::AcqRel);
 
            let new_count = old_count - 1;
 
            if new_count == 0 {
 
                sched_ctx.runtime.destroy_component(comp_key);
 
                return;
 
            }
 
        }
 

	
 
        // Enter "regular" sleeping mode
 
        self.mark_component_as_sleeping(comp_key, component);
 
    }
 
}
 
\ No newline at end of file
src/runtime2/tests/mod.rs
Show inline comments
 
use crate::protocol::*;
 
use crate::protocol::eval::*;
 
use crate::runtime2::runtime::*;
 
use crate::runtime2::component::{CompCtx, CompPDL};
 

	
 
fn create_component(rt: &Runtime, module_name: &str, routine_name: &str, args: ValueGroup) {
 
    let prompt = rt.inner.protocol.new_component(
 
        module_name.as_bytes(), routine_name.as_bytes(), args
 
    ).expect("create prompt");
 
    let reserved = rt.inner.start_create_pdl_component();
 
    let ctx = CompCtx::new(&reserved);
 
    let (key, _) = rt.inner.finish_create_pdl_component(reserved, CompPDL::new(prompt, 0), ctx, false);
 
    rt.inner.enqueue_work(key);
 
}
 

	
 
fn no_args() -> ValueGroup { ValueGroup::new_stack(Vec::new()) }
 

	
 
#[test]
 
fn test_component_creation() {
 
    let pd = ProtocolDescription::parse(b"
 
    primitive nothing_at_all() {
 
        s32 a = 5;
 
        auto b = 5 + a;
 
    }
 
    ").expect("compilation");
 
    let rt = Runtime::new(1, pd);
 
    let rt = Runtime::new(1, true, pd);
 

	
 
    for i in 0..20 {
 
        create_component(&rt, "", "nothing_at_all", no_args());
 
    }
 
}
 

	
 
#[test]
 
fn test_component_communication() {
 
    let pd = ProtocolDescription::parse(b"
 
    primitive sender(out<u32> o, u32 outside_loops, u32 inside_loops) {
 
        u32 outside_index = 0;
 
        while (outside_index < outside_loops) {
 
            u32 inside_index = 0;
 
            sync while (inside_index < inside_loops) {
 
                put(o, inside_index);
 
                inside_index += 1;
 
            }
 
            outside_index += 1;
 
        }
 
    }
 

	
 
    primitive receiver(in<u32> i, u32 outside_loops, u32 inside_loops) {
 
        u32 outside_index = 0;
 
        while (outside_index < outside_loops) {
 
            u32 inside_index = 0;
 
            sync while (inside_index < inside_loops) {
 
                auto val = get(i);
 
                while (val != inside_index) {} // infinite loop if incorrect value is received
 
                inside_index += 1;
 
            }
 
            outside_index += 1;
 
        }
 
    }
 

	
 
    composite constructor() {
 
        channel o_orom -> i_orom;
 
        channel o_mrom -> i_mrom;
 
        channel o_ormm -> i_ormm;
 
        channel o_mrmm -> i_mrmm;
 

	
 
        // one round, one message per round
 
        new sender(o_orom, 1, 1);
 
        new receiver(i_orom, 1, 1);
 

	
 
        // multiple rounds, one message per round
 
        new sender(o_mrom, 5, 1);
 
        new receiver(i_mrom, 5, 1);
 

	
 
        // one round, multiple messages per round
 
        new sender(o_ormm, 1, 5);
 
        new receiver(i_ormm, 1, 5);
 

	
 
        // multiple rounds, multiple messages per round
 
        new sender(o_mrmm, 5, 5);
 
        new receiver(i_mrmm, 5, 5);
 
    }").expect("compilation");
 
    let rt = Runtime::new(3, pd);
 
    let rt = Runtime::new(3, true, pd);
 
    create_component(&rt, "", "constructor", no_args());
 
}
 
\ No newline at end of file
testdata/basic-modules/producer.pdl
Show inline comments
 
#module producer
 

	
 
primitive producer(out<u32> output) {
 
    print("P: Going to send a value");
 
    sync {
 
        print("P: Going to send a value!");
 
        put(output, 1337);
 
        print("P: I just sent a value!");
 
    }
 
    print("P: I am exiting");
 
}
 
\ No newline at end of file
testdata/basic/testing.pdl
Show inline comments
 
primitive consumer(in<u32> input) {
 
    sync {
 
        print("C: going to receive a value");
 
        auto v = get(input);
 
        print("C: I have received a value");
 
    }
 
    print("C: I am now exiting");
 
}
 

	
 
primitive producer(out<u32> output) {
 
    print("P: Going to send a value");
 
    sync {
 
        print("P: Going to send a value!");
 
        put(output, 1337);
 
        print("P: I just sent a value!");
 
    }
 
    print("P: I am exiting");
 
}
 

	
 
composite main() {
 
    channel output -> input;
 
    new consumer(input);
 
    new producer(output);
 
}
 
\ No newline at end of file
0 comments (0 inline, 0 general)