Changeset - 43f31542f6db
[Not reviewed]
0 3 0
Christopher Esterhuyse - 5 years ago 2020-02-04 16:08:29
christopheresterhuyse@gmail.com
more debug prints on branch predicates
3 files changed with 44 insertions and 46 deletions:
0 comments (0 inline, 0 general)
src/runtime/actors.rs
Show inline comments
 
use crate::common::*;
 
use crate::runtime::{endpoint::*, *};
 

	
 
#[derive(Debug)]
 
pub(crate) struct MonoN {
 
    pub ekeys: HashSet<Key>,
 
    pub result: Option<(usize, HashMap<Key, Payload>)>,
 
}
 
#[derive(Debug)]
 
pub(crate) struct PolyN {
 
    pub ekeys: HashSet<Key>,
 
    pub branches: HashMap<Predicate, BranchN>,
 
}
 
#[derive(Debug, Clone)]
 
pub(crate) struct BranchN {
 
    pub to_get: HashSet<Key>,
 
    pub gotten: HashMap<Key, Payload>,
 
    pub sync_batch_index: usize,
 
}
 

	
 
#[derive(Debug)]
 
pub struct MonoP {
 
    pub state: ProtocolS,
 
    pub ekeys: HashSet<Key>,
 
}
 
#[derive(Debug)]
 
pub(crate) struct PolyP {
 
    pub incomplete: HashMap<Predicate, BranchP>,
 
    pub complete: HashMap<Predicate, BranchP>,
 
    pub ekeys: HashSet<Key>,
 
}
 
#[derive(Debug, Clone)]
 
pub(crate) struct BranchP {
 
    pub outbox: HashMap<Key, Payload>,
 
    pub inbox: HashMap<Key, Payload>,
 
    pub state: ProtocolS,
 
}
 

	
 
//////////////////////////////////////////////////////////////////
 

	
 
impl PolyP {
 
    pub(crate) fn poly_run(
 
        &mut self,
 
        m_ctx: PolyPContext,
 
        protocol_description: &ProtocolD,
 
    ) -> Result<SyncRunResult, EndpointErr> {
 
        let to_run: Vec<_> = self.incomplete.drain().collect();
 
        self.poly_run_these_branches(m_ctx, protocol_description, to_run)
 
    }
 

	
 
    pub(crate) fn poly_run_these_branches(
 
        &mut self,
 
        mut m_ctx: PolyPContext,
 
        protocol_description: &ProtocolD,
 
        mut to_run: Vec<(Predicate, BranchP)>,
 
    ) -> Result<SyncRunResult, EndpointErr> {
 
        use SyncRunResult as Srr;
 
        let cid = m_ctx.inner.channel_id_stream.controller_id;
 
        lockprintln!("{:?}: ~ Running branches for PolyP {:?}!", cid, m_ctx.my_subtree_id,);
 
        while let Some((mut predicate, mut branch)) = to_run.pop() {
 
            let mut r_ctx = BranchPContext {
 
                m_ctx: m_ctx.reborrow(),
 
                ekeys: &self.ekeys,
 
                predicate: &predicate,
 
                inbox: &branch.inbox,
 
            };
 
            use PolyBlocker as Sb;
 
            let blocker = branch.state.sync_run(&mut r_ctx, protocol_description);
 
            lockprintln!(
 
                "{:?}: ~ ... ran PolyP {:?} with branch pred {:?} to blocker {:?}",
 
                cid,
 
                r_ctx.m_ctx.my_subtree_id,
 
                &predicate,
 
                &blocker
 
            );
 
            match blocker {
 
                Sb::Inconsistent => {} // DROP
 
                Sb::CouldntReadMsg(ekey) => {
 
                    assert!(self.ekeys.contains(&ekey));
 
                    let channel_id =
 
                        r_ctx.m_ctx.inner.endpoint_exts.get(ekey).unwrap().info.channel_id;
 
                    if predicate.replace_assignment(channel_id, true) != Some(false) {
 
                        // don't rerun now. Rerun at next `sync_run`
 
                        self.incomplete.insert(predicate, branch);
 
                    }
 
                    // ELSE DROP
 
                }
 
                Sb::CouldntCheckFiring(ekey) => {
 
                    assert!(self.ekeys.contains(&ekey));
 
                    let channel_id =
 
                        r_ctx.m_ctx.inner.endpoint_exts.get(ekey).unwrap().info.channel_id;
 
                    // split the branch!
 
                    let branch_f = branch.clone();
 
                    let mut predicate_f = predicate.clone();
 
                    if predicate_f.replace_assignment(channel_id, false).is_some() {
 
                        panic!("OI HANS QUERY FIRST!");
 
                    }
 
                    assert!(predicate.replace_assignment(channel_id, true).is_none());
 
                    to_run.push((predicate, branch));
 
                    to_run.push((predicate_f, branch_f));
 
                }
 
                Sb::SyncBlockEnd => {
 
                    // come up with the predicate for this local solution
 
                    let lookup =
 
                        |&ekey| m_ctx.inner.endpoint_exts.get(ekey).unwrap().info.channel_id;
 
                    let ekeys_channel_id_iter = self.ekeys.iter().map(lookup);
 
                    predicate.batch_assign_nones(ekeys_channel_id_iter, false);
 

	
 
                    lockprintln!(
 
                        "{:?}: ~ ... ran PolyP {:?} with branch pred {:?} to blocker {:?}",
 
                        cid,
 
                        m_ctx.my_subtree_id,
 
                        &predicate,
 
                        &blocker
 
                    );
 

	
 
                    // OK now check we really received all the messages we expected to
 
                    if predicate.iter_true().count() == branch.inbox.keys().map(lookup).count() {
 
                        lockprintln!(
 
                            "{:?}: {:?} with pred {:?} finished! Storing this solution locally.",
 
                    let num_fired = predicate.iter_matching(true).count();
 
                    let num_msgs =
 
                        branch.inbox.keys().chain(branch.outbox.keys()).map(lookup).count();
 
                    match num_fired.cmp(&num_msgs) {
 
                        Ordering::Less => unreachable!(),
 
                        Ordering::Greater => lockprintln!(
 
                            "{:?}: {:?} with pred {:?} finished but |inbox|+|outbox| < .",
 
                            cid,
 
                            m_ctx.my_subtree_id,
 
                            &predicate,
 
                        );
 
                        m_ctx.solution_storage.submit_and_digest_subtree_solution(
 
                            m_ctx.my_subtree_id,
 
                            predicate.clone(),
 
                        );
 
                        // store the solution for recovering later
 
                        self.complete.insert(predicate, branch);
 
                    } else {
 
                        lockprintln!(
 
                            "{:?}: {:?} with pred {:?} finished but was missing a GET. Pruning.",
 
                            cid,
 
                            m_ctx.my_subtree_id,
 
                            &predicate,
 
                        );
 
                        ),
 
                        Ordering::Equal => {
 
                            lockprintln!(
 
                                "{:?}: {:?} with pred {:?} finished! Storing this solution locally.",
 
                                cid,
 
                                m_ctx.my_subtree_id,
 
                                &predicate,
 
                            );
 
                            m_ctx.solution_storage.submit_and_digest_subtree_solution(
 
                                m_ctx.my_subtree_id,
 
                                predicate.clone(),
 
                            );
 
                            // store the solution for recovering later
 
                            self.complete.insert(predicate, branch);
 
                        }
 
                    }
 
                }
 
                Sb::PutMsg(ekey, payload) => {
 
                    assert!(self.ekeys.contains(&ekey));
 
                    let EndpointExt { info, endpoint } =
 
                        m_ctx.inner.endpoint_exts.get_mut(ekey).unwrap();
 
                    if predicate.replace_assignment(info.channel_id, true) != Some(false) {
 
                        branch.outbox.insert(ekey, payload.clone());
 
                        let msg = CommMsgContents::SendPayload {
 
                            payload_predicate: predicate.clone(),
 
                            payload,
 
                        }
 
                        .into_msg(m_ctx.inner.round_index);
 
                        endpoint.send(msg)?;
 
                        to_run.push((predicate, branch));
 
                    }
 
                    // ELSE DROP
 
                }
 
            }
 
        }
 
        // all in self.incomplete most recently returned Blocker::CouldntReadMsg
 
        Ok(if self.incomplete.is_empty() {
 
            if self.complete.is_empty() {
 
                Srr::NoBranches
 
            } else {
 
                Srr::AllBranchesComplete
 
            }
 
        } else {
 
            Srr::BlockingForRecv
 
        })
 
    }
 

	
 
    pub(crate) fn poly_recv_run(
 
        &mut self,
 
        m_ctx: PolyPContext,
 
        protocol_description: &ProtocolD,
 
        ekey: Key,
 
        payload_predicate: Predicate,
 
        payload: Payload,
 
    ) -> Result<SyncRunResult, EndpointErr> {
 
        // try exact match
 
        let cid = m_ctx.inner.channel_id_stream.controller_id;
 

	
 
        let to_run = if self.complete.contains_key(&payload_predicate) {
 
            // exact match with stopped machine
 

	
 
            lockprintln!(
 
                "{:?}: ... poly_recv_run matched stopped machine exactly! nothing to do here",
 
                cid,
 
            );
 
            vec![]
 
        } else if let Some(mut branch) = self.incomplete.remove(&payload_predicate) {
 
            // exact match with running machine
 

	
 
            lockprintln!(
 
                "{:?}: ... poly_recv_run matched running machine exactly! pred is {:?}",
 
                cid,
 
                &payload_predicate
 
            );
 
            branch.inbox.insert(ekey, payload);
 
            vec![(payload_predicate, branch)]
 
        } else {
 
            lockprintln!(
 
                "{:?}: ... poly_recv_run didn't have any exact matches... Let's try feed it to all branches",
 
                cid,
 
            );
 
            let mut incomplete2 = HashMap::<_, _>::default();
 
            let to_run = self
 
                .incomplete
 
                .drain()
 
                .filter_map(|(old_predicate, mut branch)| {
 
                    use CommonSatResult as Csr;
 
                    match old_predicate.common_satisfier(&payload_predicate) {
 
                        Csr::FormerNotLatter | Csr::Equivalent => {
 
                            lockprintln!(
 
                                "{:?}: ... poly_recv_run This branch is compatible unaltered! branch pred: {:?}",
 
                                cid,
 
                                &old_predicate
 
                            );
 
                            // old_predicate COVERS the assumptions of payload_predicate
 
                            let was = branch.inbox.insert(ekey, payload.clone());
 
                            assert!(was.is_none()); // INBOX MUST BE EMPTY!
 
                            Some((old_predicate, branch))
 
                        }
 
                        Csr::New(new) => {
 

	
 
                            lockprintln!(
 
                                "{:?}: ... poly_recv_run payloadpred {:?} and branchpred {:?} satisfied by new pred {:?}. FORKING",
 
                                cid,
 
                                &payload_predicate,
 
                                &old_predicate,
 
                                &new,
 
                            );
 
                            // payload_predicate has new assumptions. FORK!
 
                            let mut payload_branch = branch.clone();
 
                            let was = payload_branch.inbox.insert(ekey, payload.clone());
 
                            assert!(was.is_none()); // INBOX MUST BE EMPTY!
 

	
 
                            // put the original back untouched
 
                            incomplete2.insert(old_predicate, branch);
 
                            Some((new, payload_branch))
 
                        }
 
                        Csr::LatterNotFormer => {
 

	
 
                            lockprintln!(
 
                                "{:?}: ... poly_recv_run payloadpred {:?} subsumes branch pred {:?}. FORKING",
 
                                cid,
 
                                &old_predicate,
 
                                &payload_predicate,
 
                            );
 
                            // payload_predicate has new assumptions. FORK!
 
                            let mut payload_branch = branch.clone();
 
                            let was = payload_branch.inbox.insert(ekey, payload.clone());
 
                            assert!(was.is_none()); // INBOX MUST BE EMPTY!
 

	
 
                            // put the original back untouched
 
                            incomplete2.insert(old_predicate, branch);
 
                            Some((payload_predicate.clone(), payload_branch))
 
                        }
 
                        Csr::Nonexistant => {
 
                            lockprintln!(
 
                                "{:?}: ... poly_recv_run SKIPPING because branchpred={:?}. payloadpred={:?}",
 
                                cid,
 
                                &old_predicate,
 
                                &payload_predicate,
 
                            );
 
                            // predicates contradict
 
                            incomplete2.insert(old_predicate, branch);
 
                            None
 
                        }
 
                    }
 
                })
 
                .collect();
 
            std::mem::swap(&mut self.incomplete, &mut incomplete2);
 
            to_run
 
        };
 
        lockprintln!("{:?}: ... DONE FEEDING BRANCHES. {} branches to run!", cid, to_run.len(),);
 
        self.poly_run_these_branches(m_ctx, protocol_description, to_run)
 
    }
 

	
 
    pub(crate) fn become_mono(
 
        mut self,
 
        decision: &Predicate,
 
        all_inboxes: &mut HashMap<Key, Payload>,
 
        table_row: &mut HashMap<Key, Payload>,
 
    ) -> MonoP {
 
        if let Some((_, branch)) = self.complete.drain().find(|(p, _)| decision.satisfies(p)) {
 
            let BranchP { inbox, state } = branch;
 
            for (key, payload) in inbox {
 
                assert!(all_inboxes.insert(key, payload).is_none());
 
            let BranchP { inbox, state, outbox } = branch;
 
            for (key, payload) in inbox.into_iter().chain(outbox.into_iter()) {
 
                table_row.insert(key, payload);
 
            }
 
            self.incomplete.clear();
 
            MonoP { state, ekeys: self.ekeys }
 
        } else {
 
            panic!("No such solution!")
 
        }
 
    }
 
}
 

	
 
impl PolyN {
 
    pub fn sync_recv(
 
        &mut self,
 
        ekey: Key,
 
        payload: Payload,
 
        solution_storage: &mut SolutionStorage,
 
    ) {
 
        for (predicate, branch) in self.branches.iter_mut() {
 
            if branch.to_get.remove(&ekey) {
 
                branch.gotten.insert(ekey, payload.clone());
 
                if branch.to_get.is_empty() {
 
                    solution_storage
 
                        .submit_and_digest_subtree_solution(SubtreeId::PolyN, predicate.clone());
 
                }
 
            }
 
        }
 
    }
 

	
 
    pub fn become_mono(
 
        mut self,
 
        decision: &Predicate,
 
        all_inboxes: &mut HashMap<Key, Payload>,
 
        table_row: &mut HashMap<Key, Payload>,
 
    ) -> MonoN {
 
        if let Some((_, branch)) = self.branches.drain().find(|(p, _)| decision.satisfies(p)) {
 
            let BranchN { gotten, sync_batch_index, .. } = branch;
 
            for (&key, payload) in gotten.iter() {
 
                assert!(all_inboxes.insert(key, payload.clone()).is_none());
 
                assert!(table_row.insert(key, payload.clone()).is_none());
 
            }
 
            MonoN { ekeys: self.ekeys, result: Some((sync_batch_index, gotten)) }
 
        } else {
 
            panic!("No such solution!")
 
        }
 
    }
 
}
src/runtime/communication.rs
Show inline comments
 
use crate::common::*;
 
use crate::runtime::{actors::*, endpoint::*, errors::*, *};
 

	
 
impl Controller {
 
    fn end_round_with_decision(&mut self, decision: Predicate) -> Result<(), SyncErr> {
 
        let cid = self.inner.channel_id_stream.controller_id;
 
        lockprintln!("{:?}: ENDING ROUND WITH DECISION! {:?}", cid, &decision);
 

	
 
        let mut all_inboxes = HashMap::default();
 
        let mut table_row = HashMap::default();
 
        self.inner.mono_n = self
 
            .ephemeral
 
            .poly_n
 
            .take()
 
            .map(|poly_n| poly_n.become_mono(&decision, &mut all_inboxes));
 
            .map(|poly_n| poly_n.become_mono(&decision, &mut table_row));
 
        self.inner.mono_ps.extend(
 
            self.ephemeral.poly_ps.drain(..).map(|m| m.become_mono(&decision, &mut all_inboxes)),
 
            self.ephemeral.poly_ps.drain(..).map(|m| m.become_mono(&decision, &mut table_row)),
 
        );
 
        let valuations: HashMap<_, _> = all_inboxes
 
            .drain()
 
            .map(|(ekey, payload)| {
 
                let channel_id = self.inner.endpoint_exts.get(ekey).unwrap().info.channel_id;
 
                (channel_id, Some(payload))
 
            })
 
            .collect();
 
        for (channel_id, value) in decision.assigned.iter() {
 
            if !value {
 
                lockprintln!("{:?}: VALUE {:?} => *", cid, channel_id);
 
            } else if let Some(payload) = valuations.get(channel_id) {
 
                lockprintln!("{:?}: VALUE {:?} => Message({:?})", cid, channel_id, payload);
 
            } else {
 
                lockprintln!("{:?}: VALUE {:?} => Message(?)", cid, channel_id);
 
            }
 
        for (ekey, payload) in table_row {
 
            let channel_id = self.inner.endpoint_exts.get(ekey).unwrap().info.channel_id;
 
            lockprintln!("{:?}: VALUE {:?} => Message({:?})", cid, channel_id, payload);
 
        }
 
        for channel_id in decision.iter_matching(false) {
 
            lockprintln!("{:?}: VALUE {:?} => *", cid, channel_id);
 
        }
 
        let announcement =
 
            CommMsgContents::Announce { oracle: decision }.into_msg(self.inner.round_index);
 
        for &child_ekey in self.inner.family.children_ekeys.iter() {
 
            lockprintln!(
 
                "{:?}: Forwarding {:?} to child with ekey {:?}",
 
                cid,
 
                &announcement,
 
                child_ekey
 
            );
 
            self.inner
 
                .endpoint_exts
 
                .get_mut(child_ekey)
 
                .expect("eefef")
 
                .endpoint
 
                .send(announcement.clone())?;
 
        }
 
        self.inner.round_index += 1;
 
        self.ephemeral.clear();
 
        Ok(())
 
    }
 

	
 
    // Drain self.ephemeral.solution_storage and handle the new locals. Return decision if one is found
 
    fn handle_locals_maybe_decide(&mut self) -> Result<bool, SyncErr> {
 
        let cid = self.inner.channel_id_stream.controller_id;
 
        if let Some(parent_ekey) = self.inner.family.parent_ekey {
 
            // I have a parent -> I'm not the leader
 
            let parent_endpoint =
 
                &mut self.inner.endpoint_exts.get_mut(parent_ekey).expect("huu").endpoint;
 
            for partial_oracle in self.ephemeral.solution_storage.iter_new_local_make_old() {
 
                let msg =
 
                    CommMsgContents::Elaborate { partial_oracle }.into_msg(self.inner.round_index);
 
                lockprintln!("{:?}: Sending {:?} to parent {:?}", cid, &msg, parent_ekey);
 
                parent_endpoint.send(msg)?;
 
            }
 
            Ok(false)
 
        } else {
 
            // I have no parent -> I'm the leader
 
            assert!(self.inner.family.parent_ekey.is_none());
 
            let maybe_decision = self.ephemeral.solution_storage.iter_new_local_make_old().next();
 
            Ok(if let Some(decision) = maybe_decision {
 
                lockprintln!("{:?}: DECIDE ON {:?} AS LEADER!", cid, &decision);
 
                self.end_round_with_decision(decision)?;
 
                true
 
            } else {
 
                false
 
            })
 
        }
 
    }
 

	
 
    fn kick_off_native(
 
        &mut self,
 
        sync_batches: impl Iterator<Item = SyncBatch>,
 
    ) -> Result<PolyN, EndpointErr> {
 
        let MonoN { ekeys, .. } = self.inner.mono_n.take().unwrap();
 
        let Self { inner: ControllerInner { endpoint_exts, round_index, .. }, .. } = self;
 
        let mut branches = HashMap::<_, _>::default();
 
        for (sync_batch_index, SyncBatch { puts, gets }) in sync_batches.enumerate() {
 
            let ekey_to_channel_id = |ekey| endpoint_exts.get(ekey).unwrap().info.channel_id;
 
            let all_ekeys = ekeys.iter().copied();
 
            let all_channel_ids = all_ekeys.map(ekey_to_channel_id);
 

	
 
            let mut predicate = Predicate::new_trivial();
 

	
 
            // assign TRUE for puts and gets
 
            let true_ekeys = puts.keys().chain(gets.iter()).copied();
 
            let true_channel_ids = true_ekeys.clone().map(ekey_to_channel_id);
 
            predicate.batch_assign_nones(true_channel_ids, true);
 

	
 
            // assign FALSE for all in interface not assigned true
 
            predicate.batch_assign_nones(all_channel_ids.clone(), false);
 

	
 
            if branches.contains_key(&predicate) {
 
                // TODO what do I do with redundant predicates?
 
                unimplemented!(
 
                    "Having multiple batches with the same
 
                    predicate requires the support of oracle boolean variables"
 
                )
 
            }
 
            let branch = BranchN {
 
                to_get: true_ekeys.collect(),
 
                gotten: Default::default(),
 
                sync_batch_index,
 
            };
 
            for (ekey, payload) in puts {
 
                let msg =
 
                    CommMsgContents::SendPayload { payload_predicate: predicate.clone(), payload }
 
                        .into_msg(*round_index);
 
                endpoint_exts.get_mut(ekey).unwrap().endpoint.send(msg)?;
 
            }
 
            if branch.to_get.is_empty() {
 
                self.ephemeral
 
                    .solution_storage
 
                    .submit_and_digest_subtree_solution(SubtreeId::PolyN, predicate.clone());
 
            }
 
            branches.insert(predicate, branch);
 
        }
 
        Ok(PolyN { ekeys, branches })
 
    }
 

	
 
    // Runs a synchronous round until all the actors are in decided state OR 1+ are inconsistent.
 
    // If a native requires setting up, arg `sync_batches` is Some, and those are used as the sync batches.
 
    pub fn sync_round(
 
        &mut self,
 
        deadline: Instant,
 
        sync_batches: Option<impl Iterator<Item = SyncBatch>>,
 
    ) -> Result<(), SyncErr> {
 
        // TODO! fuse handle_locals_return_decision and end_round_return_decision
 

	
 
        assert!(self.ephemeral.is_clear());
 

	
 
        let cid = self.inner.channel_id_stream.controller_id;
 
        lockprintln!();
 
        lockprintln!("~~~~~~ {:?}: SYNC ROUND STARTS! ROUND={}", cid, self.inner.round_index);
 

	
 
        // 1. Run the Mono for each Mono actor (stored in `self.mono_ps`).
 
        //    Some actors are dropped. some new actors are created.
 
        //    Ultimately, we have 0 Mono actors and a list of unnamed sync_actors
 
        lockprintln!("{:?}: Got {} MonoP's to run!", cid, self.inner.mono_ps.len());
 
        self.ephemeral.poly_ps.clear();
 
        // let mut poly_ps: Vec<PolyP> = vec![];
 
        while let Some(mut mono_p) = self.inner.mono_ps.pop() {
 
            let mut m_ctx = MonoPContext {
 
                ekeys: &mut mono_p.ekeys,
 
                inner: &mut self.inner,
 
                // endpoint_exts: &mut self.endpoint_exts,
 
                // mono_ps: &mut self.mono_ps,
 
                // channel_id_stream: &mut self.channel_id_stream,
 
            };
 
            // cross boundary into crate::protocol
 
            let blocker = mono_p.state.pre_sync_run(&mut m_ctx, &self.protocol_description);
 
            lockprintln!("{:?}: ... MonoP's pre_sync_run got blocker {:?}", cid, &blocker);
 
            match blocker {
 
                MonoBlocker::Inconsistent => return Err(SyncErr::Inconsistent),
 
                MonoBlocker::ComponentExit => drop(mono_p),
 
                MonoBlocker::SyncBlockStart => self.ephemeral.poly_ps.push(mono_p.into()),
 
            }
 
        }
 
        lockprintln!(
 
            "{:?}: Finished running all MonoPs! Have {} PolyPs waiting",
 
            cid,
 
            self.ephemeral.poly_ps.len()
 
        );
 

	
 
        // 3. define the mapping from ekey -> actor
 
        //    this is needed during the event loop to determine which actor
 
        //    should receive the incoming message.
 
        //    TODO: store and update this mapping rather than rebuilding it each round.
 
        let ekey_to_holder: HashMap<Key, PolyId> = {
 
            use PolyId::*;
 
            let n = self.inner.mono_n.iter().flat_map(|m| m.ekeys.iter().map(move |&e| (e, N)));
 
            let p = self
 
                .ephemeral
 
                .poly_ps
 
                .iter()
 
                .enumerate()
 
                .flat_map(|(index, m)| m.ekeys.iter().map(move |&e| (e, P { index })));
 
            n.chain(p).collect()
 
        };
 
        lockprintln!(
 
            "{:?}: SET OF PolyPs and MonoPs final! ekey lookup map is {:?}",
 
            cid,
 
            &ekey_to_holder
 
        );
 

	
 
        // 4. Create the solution storage. it tracks the solutions of "subtrees"
 
        //    of the controller in the overlay tree.
 
        self.ephemeral.solution_storage.reset({
 
            let n = self.inner.mono_n.iter().map(|_| SubtreeId::PolyN);
 
            let m = (0..self.ephemeral.poly_ps.len()).map(|index| SubtreeId::PolyP { index });
 
            let c = self
 
                .inner
 
                .family
 
                .children_ekeys
 
                .iter()
 
                .map(|&ekey| SubtreeId::ChildController { ekey });
 
            let subtree_id_iter = n.chain(m).chain(c);
 
            lockprintln!(
 
                "{:?}: Solution Storage has subtree Ids: {:?}",
 
                cid,
 
                &subtree_id_iter.clone().collect::<Vec<_>>()
 
            );
 
            subtree_id_iter
 
        });
 

	
 
        // 5. kick off the synchronous round of the native actor if it exists
 

	
 
        lockprintln!("{:?}: Kicking off native's synchronous round...", cid);
 
        assert_eq!(sync_batches.is_some(), self.inner.mono_n.is_some()); // TODO better err
 
        self.ephemeral.poly_n = if let Some(sync_batches) = sync_batches {
 
            // using if let because of nested ? operator
 
            // TODO check that there are 1+ branches or NO SOLUTION
 
            let poly_n = self.kick_off_native(sync_batches)?;
 
            lockprintln!(
 
                "{:?}: PolyN kicked off, and has branches with predicates... {:?}",
 
                cid,
 
                poly_n.branches.keys().collect::<Vec<_>>()
 
            );
 
            Some(poly_n)
 
        } else {
 
            lockprintln!("{:?}: NO NATIVE COMPONENT", cid);
 
            None
 
        };
 

	
 
        // 6. Kick off the synchronous round of each protocol actor
 
        //    If just one actor becomes inconsistent now, there can be no solution!
 
        //    TODO distinguish between completed and not completed poly_p's?
 
        lockprintln!("{:?}: Kicking off {} PolyP's.", cid, self.ephemeral.poly_ps.len());
 
        for (index, poly_p) in self.ephemeral.poly_ps.iter_mut().enumerate() {
 
            let my_subtree_id = SubtreeId::PolyP { index };
 
            let m_ctx = PolyPContext {
 
                my_subtree_id,
 
                inner: &mut self.inner,
 
                solution_storage: &mut self.ephemeral.solution_storage,
 
            };
 
            use SyncRunResult as Srr;
 
            let blocker = poly_p.poly_run(m_ctx, &self.protocol_description)?;
 
            lockprintln!("{:?}: ... PolyP's poly_run got blocker {:?}", cid, &blocker);
 
            match blocker {
 
                Srr::NoBranches => return Err(SyncErr::Inconsistent),
 
                Srr::AllBranchesComplete | Srr::BlockingForRecv => (),
 
            }
 
        }
 
        lockprintln!("{:?}: All Poly machines have been kicked off!", cid);
 

	
 
        // 7. `solution_storage` may have new solutions for this controller
 
        //    handle their discovery. LEADER => announce, otherwise => send to parent
 
        {
 
            let peeked = self.ephemeral.solution_storage.peek_new_locals().collect::<Vec<_>>();
 
            lockprintln!(
 
                "{:?}: Got {} controller-local solutions before a single RECV: {:?}",
 
                cid,
 
                peeked.len(),
 
                peeked
 
            );
 
        }
 
        if self.handle_locals_maybe_decide()? {
 
            return Ok(());
 
        }
 

	
 
        // 4. Receive incoming messages until the DECISION is made
 
        lockprintln!("{:?}: No decision yet. Time to recv messages", cid);
 
        self.undelay_all();
 
        'recv_loop: loop {
 
            let received = self.recv(deadline)?.ok_or(SyncErr::Timeout)?;
 
            let current_content = match received.msg {
 
                Msg::SetupMsg(_) => {
 
                    lockprintln!("{:?}: recvd message {:?} and its SETUP :(", cid, &received);
 
                    // This occurs in the event the connector was malformed during connect()
 
                    return Err(SyncErr::UnexpectedSetupMsg);
 
                }
 
                Msg::CommMsg(CommMsg { round_index, .. })
 
                    if round_index < self.inner.round_index =>
 
                {
 
                    // Old message! Can safely discard
 
                    lockprintln!("{:?}: recvd message {:?} and its OLD! :(", cid, &received);
 
                    drop(received);
 
                    continue 'recv_loop;
 
                }
 
                Msg::CommMsg(CommMsg { round_index, .. })
 
                    if round_index > self.inner.round_index =>
 
                {
 
                    // Message from a next round. Keep for later!
 
                    lockprintln!(
 
                        "{:?}: recvd message {:?} and its for later. DELAY! :(",
 
                        cid,
 
                        &received
 
                    );
 
                    self.delay(received);
 
                    continue 'recv_loop;
 
                }
 
                Msg::CommMsg(CommMsg { contents, round_index }) => {
 
                    lockprintln!("{:?}: recvd a round-appropriate CommMsg {:?}", cid, &contents);
 
                    assert_eq!(round_index, self.inner.round_index);
 
                    contents
 
                }
 
            };
 
            match current_content {
 
                CommMsgContents::Elaborate { partial_oracle } => {
 
                    // Child controller submitted a subtree solution.
 
                    if !self.inner.family.children_ekeys.contains(&received.recipient) {
 
                        return Err(SyncErr::ElaborateFromNonChild);
 
                    }
 
                    let subtree_id = SubtreeId::ChildController { ekey: received.recipient };
 
                    lockprintln!(
 
                        "{:?}: Received elaboration from child for subtree {:?}: {:?}",
 
                        cid,
 
                        subtree_id,
 
                        &partial_oracle
 
                    );
 
                    self.ephemeral
 
                        .solution_storage
 
                        .submit_and_digest_subtree_solution(subtree_id, partial_oracle);
 

	
 
                    if self.handle_locals_maybe_decide()? {
 
                        return Ok(());
 
                    }
 
                }
 
                CommMsgContents::Announce { oracle } => {
 
                    if self.inner.family.parent_ekey != Some(received.recipient) {
 
                        return Err(SyncErr::AnnounceFromNonParent);
 
                    }
 
                    lockprintln!(
 
                        "{:?}: Received ANNOUNCEMENT from from parent {:?}: {:?}",
 
                        cid,
 
                        received.recipient,
 
                        &oracle
 
                    );
 
                    return self.end_round_with_decision(oracle);
 
                }
 
                CommMsgContents::SendPayload { payload_predicate, payload } => {
 
                    // message for some actor. Feed it to the appropriate actor
 
                    // and then give them another chance to run.
 
                    let subtree_id = ekey_to_holder.get(&received.recipient);
 
                    lockprintln!(
 
                        "{:?}: Received SendPayload for subtree {:?} with pred {:?} and payload {:?}",
 
                        cid, subtree_id, &payload_predicate, &payload
 
                    );
 
                    match subtree_id {
 
                        None => {
 
                            // this happens when a message is sent to a component that has exited.
 
                            // It's safe to drop this message;
 
                            // The sender branch will certainly not be part of the solution
 
                            continue 'recv_loop;
 
                        }
 
                        Some(PolyId::N) => {
 
                            // Message for NativeMachine
 
                            self.ephemeral.poly_n.as_mut().unwrap().sync_recv(
 
                                received.recipient,
 
                                payload,
 
                                &mut self.ephemeral.solution_storage,
 
                            );
 
                        }
 
                        Some(PolyId::P { index }) => {
 
                            // Message for protocol actor
 
                            let channel_id = self
 
                                .inner
 
                                .endpoint_exts
 
                                .get(received.recipient)
 
                                .expect("UEHFU")
 
                                .info
 
                                .channel_id;
 
                            if payload_predicate.query(channel_id) != Some(true) {
 
                                // sender didn't preserve the invariant
 
                                return Err(SyncErr::PayloadPremiseExcludesTheChannel(channel_id));
 
                            }
 
                            let poly_p = &mut self.ephemeral.poly_ps[*index];
 

	
 
                            let m_ctx = PolyPContext {
 
                                my_subtree_id: SubtreeId::PolyP { index: *index },
 
                                inner: &mut self.inner,
 
                                solution_storage: &mut self.ephemeral.solution_storage,
 
                            };
 
                            use SyncRunResult as Srr;
 
                            let blocker = poly_p.poly_recv_run(
 
                                m_ctx,
 
                                &self.protocol_description,
 
                                received.recipient,
 
                                payload_predicate,
 
                                payload,
 
                            )?;
 
                            lockprintln!(
 
                                "{:?}: ... Fed the msg to PolyP {:?} and ran it to blocker {:?}",
 
                                cid,
 
                                subtree_id,
 
                                blocker
 
                            );
 
                            match blocker {
 
                                Srr::NoBranches => return Err(SyncErr::Inconsistent),
 
                                Srr::BlockingForRecv | Srr::AllBranchesComplete => {
 
                                    continue 'recv_loop
 
                                }
 
                            }
 
                        }
 
                    };
 
                    {
 
                        let peeked =
 
                            self.ephemeral.solution_storage.peek_new_locals().collect::<Vec<_>>();
 
                        lockprintln!(
 
                            "{:?}: Got {} new controller-local solutions from RECV: {:?}",
 
                            cid,
 
                            peeked.len(),
 
                            peeked
 
                        );
 
                    }
 
                    if self.handle_locals_maybe_decide()? {
 
                        return Ok(());
 
                    }
 
                }
 
            }
 
        }
 
    }
 
}
 
impl ControllerEphemeral {
 
    fn is_clear(&self) -> bool {
 
        self.solution_storage.is_clear()
 
            && self.poly_n.is_none()
 
            && self.poly_ps.is_empty()
 
            && self.ekey_to_holder.is_empty()
 
    }
 
    fn clear(&mut self) {
 
        self.solution_storage.clear();
 
        self.poly_n.take();
 
        self.poly_ps.clear();
 
        self.ekey_to_holder.clear();
 
    }
 
}
 
impl Into<PolyP> for MonoP {
 
    fn into(self) -> PolyP {
 
        PolyP {
 
            complete: Default::default(),
 
            incomplete: hashmap! {
 
                Predicate::new_trivial() =>
 
                BranchP {
 
                    state: self.state,
 
                    inbox: Default::default(),
 
                    outbox: Default::default(),
 
                }
 
            },
 
            ekeys: self.ekeys,
 
        }
 
    }
 
}
 

	
 
impl From<EndpointErr> for SyncErr {
 
    fn from(e: EndpointErr) -> SyncErr {
 
        SyncErr::EndpointErr(e)
 
    }
 
}
 

	
 
impl MonoContext for MonoPContext<'_> {
 
    type D = ProtocolD;
 
    type S = ProtocolS;
 
    fn new_component(&mut self, moved_ekeys: HashSet<Key>, init_state: Self::S) {
 
        lockprintln!(
 
            "{:?}: !! MonoContext callback to new_component with ekeys {:?}!",
 
            self.inner.channel_id_stream.controller_id,
 
            &moved_ekeys,
 
        );
 
        if moved_ekeys.is_subset(self.ekeys) {
 
            self.ekeys.retain(|x| !moved_ekeys.contains(x));
 
            self.inner.mono_ps.push(MonoP { state: init_state, ekeys: moved_ekeys });
 
        } else {
 
            panic!("MachineP attempting to move alien ekey!");
 
        }
 
    }
 
    fn new_channel(&mut self) -> [Key; 2] {
 
        let [a, b] = Endpoint::new_memory_pair();
 
        let channel_id = self.inner.channel_id_stream.next();
 
        let kp = self.inner.endpoint_exts.alloc(EndpointExt {
 
            info: EndpointInfo { polarity: Putter, channel_id },
 
            endpoint: a,
 
        });
 
        let kg = self.inner.endpoint_exts.alloc(EndpointExt {
 
            info: EndpointInfo { polarity: Putter, channel_id },
 
            endpoint: b,
 
        });
 
        lockprintln!(
 
            "{:?}: !! MonoContext callback to new_channel. returning ekeys {:?}!",
 
            self.inner.channel_id_stream.controller_id,
 
            [kp, kg],
 
        );
 
        [kp, kg]
 
    }
 
    fn new_random(&self) -> u64 {
 
        type Bytes8 = [u8; std::mem::size_of::<u64>()];
 
        let mut bytes = Bytes8::default();
 
        getrandom::getrandom(&mut bytes).unwrap();
 
        let val = unsafe { std::mem::transmute::<Bytes8, _>(bytes) };
 
        lockprintln!(
 
            "{:?}: !! MonoContext callback to new_random. returning val {:?}!",
 
            self.inner.channel_id_stream.controller_id,
 
            val,
 
        );
 
        val
 
    }
 
}
 

	
 
impl SolutionStorage {
 
    fn is_clear(&self) -> bool {
 
        self.subtree_id_to_index.is_empty()
 
            && self.subtree_solutions.is_empty()
 
            && self.old_local.is_empty()
 
            && self.new_local.is_empty()
 
    }
 
    fn clear(&mut self) {
 
        self.subtree_id_to_index.clear();
 
        self.subtree_solutions.clear();
 
        self.old_local.clear();
 
        self.new_local.clear();
 
    }
 
    pub(crate) fn reset(&mut self, subtree_ids: impl Iterator<Item = SubtreeId>) {
 
        self.subtree_id_to_index.clear();
 
        self.subtree_solutions.clear();
 
        self.old_local.clear();
 
        self.new_local.clear();
 
        for key in subtree_ids {
 
            self.subtree_id_to_index.insert(key, self.subtree_solutions.len());
 
            self.subtree_solutions.push(Default::default())
 
        }
 
    }
 

	
 
    pub(crate) fn peek_new_locals(&self) -> impl Iterator<Item = &Predicate> + '_ {
 
        self.new_local.iter()
 
    }
 

	
 
    pub(crate) fn iter_new_local_make_old(&mut self) -> impl Iterator<Item = Predicate> + '_ {
 
        let Self { old_local, new_local, .. } = self;
 
        new_local.drain().map(move |local| {
 
            old_local.insert(local.clone());
 
            local
 
        })
 
    }
 

	
 
    pub(crate) fn submit_and_digest_subtree_solution(
 
        &mut self,
 
        subtree_id: SubtreeId,
 
        predicate: Predicate,
 
    ) {
 
        let index = self.subtree_id_to_index[&subtree_id];
 
        let left = 0..index;
 
        let right = (index + 1)..self.subtree_solutions.len();
 

	
 
        let Self { subtree_solutions, new_local, old_local, .. } = self;
 
        let was_new = subtree_solutions[index].insert(predicate.clone());
 
        if was_new {
 
            let set_visitor = left.chain(right).map(|index| &subtree_solutions[index]);
 
            Self::elaborate_into_new_local_rec(predicate, set_visitor, old_local, new_local);
 
        }
 
    }
 

	
 
    fn elaborate_into_new_local_rec<'a, 'b>(
 
        partial: Predicate,
 
        mut set_visitor: impl Iterator<Item = &'b HashSet<Predicate>> + Clone,
 
        old_local: &'b HashSet<Predicate>,
 
        new_local: &'a mut HashSet<Predicate>,
 
    ) {
 
        if let Some(set) = set_visitor.next() {
 
            // incomplete solution. keep traversing
 
            for pred in set.iter() {
 
                if let Some(elaborated) = pred.union_with(&partial) {
 
                    Self::elaborate_into_new_local_rec(
 
                        elaborated,
 
                        set_visitor.clone(),
 
                        old_local,
 
                        new_local,
 
                    )
 
                }
 
            }
 
        } else {
 
            // recursive stop condition. `partial` is a local subtree solution
 
            if !old_local.contains(&partial) {
 
                // ... and it hasn't been found before
 
                new_local.insert(partial);
 
            }
 
        }
 
    }
 
}
 
impl PolyContext for BranchPContext<'_, '_> {
 
    type D = ProtocolD;
 

	
 
    fn is_firing(&self, ekey: Key) -> Option<bool> {
 
        assert!(self.ekeys.contains(&ekey));
 
        let channel_id = self.m_ctx.inner.endpoint_exts.get(ekey).unwrap().info.channel_id;
 
        let val = self.predicate.query(channel_id);
 
        lockprintln!(
 
            "{:?}: !! PolyContext callback to is_firing by {:?}! returning {:?}",
 
            self.m_ctx.inner.channel_id_stream.controller_id,
 
            self.m_ctx.my_subtree_id,
 
            val,
 
        );
 
        val
 
    }
 
    fn read_msg(&self, ekey: Key) -> Option<&Payload> {
 
        assert!(self.ekeys.contains(&ekey));
 
        let val = self.inbox.get(&ekey);
 
        lockprintln!(
 
            "{:?}: !! PolyContext callback to read_msg by {:?}! returning {:?}",
 
            self.m_ctx.inner.channel_id_stream.controller_id,
 
            self.m_ctx.my_subtree_id,
 
            val,
 
        );
 
        val
 
    }
 
}
src/runtime/mod.rs
Show inline comments
 
@@ -25,496 +25,495 @@ pub(crate) enum CommonSatResult {
 
    Equivalent,
 
    New(Predicate),
 
    Nonexistant,
 
}
 

	
 
#[derive(Clone, Eq, PartialEq, Hash)]
 
pub(crate) struct Predicate {
 
    pub assigned: BTreeMap<ChannelId, bool>,
 
}
 

	
 
#[derive(Debug, Default)]
 
struct SyncBatch {
 
    puts: HashMap<Key, Payload>,
 
    gets: HashSet<Key>,
 
}
 

	
 
#[derive(Debug)]
 
pub enum Connector {
 
    Unconfigured(Unconfigured),
 
    Configured(Configured),
 
    Connected(Connected), // TODO consider boxing. currently takes up a lot of stack real estate
 
}
 
#[derive(Debug)]
 
pub struct Unconfigured {
 
    pub controller_id: ControllerId,
 
}
 
#[derive(Debug)]
 
pub struct Connected {
 
    native_interface: Vec<(Key, Polarity)>,
 
    sync_batches: Vec<SyncBatch>,
 
    controller: Controller,
 
}
 
#[derive(Debug)]
 
pub struct Configured {
 
    // invariant: proto_maybe_bindings.len() is the size of the protocol's interface
 
    controller_id: ControllerId,
 
    proto_maybe_bindings: Vec<(Polarity, Option<PortBinding>)>,
 
    protocol_description: Arc<ProtocolD>,
 
}
 

	
 
#[derive(Debug, Copy, Clone)]
 
pub enum PortBinding {
 
    Native,
 
    Active(SocketAddr),
 
    Passive(SocketAddr),
 
}
 

	
 
#[derive(Debug)]
 
struct Arena<T> {
 
    storage: Vec<T>,
 
}
 

	
 
#[derive(Debug)]
 
struct ReceivedMsg {
 
    recipient: Key,
 
    msg: Msg,
 
}
 

	
 
#[derive(Debug)]
 
struct MessengerState {
 
    poll: Poll,
 
    events: Events,
 
    delayed: Vec<ReceivedMsg>,
 
    undelayed: Vec<ReceivedMsg>,
 
    polled_undrained: IndexSet<Key>,
 
}
 
#[derive(Debug)]
 
struct ChannelIdStream {
 
    controller_id: ControllerId,
 
    next_channel_index: ChannelIndex,
 
}
 

	
 
#[derive(Debug)]
 
struct Controller {
 
    protocol_description: Arc<ProtocolD>,
 
    inner: ControllerInner,
 
    ephemeral: ControllerEphemeral,
 
}
 
#[derive(Debug)]
 
struct ControllerInner {
 
    round_index: usize,
 
    channel_id_stream: ChannelIdStream,
 
    endpoint_exts: Arena<EndpointExt>,
 
    messenger_state: MessengerState,
 
    mono_n: Option<MonoN>,
 
    mono_ps: Vec<MonoP>,
 
    family: ControllerFamily,
 
}
 

	
 
/// This structure has its state entirely reset between synchronous rounds
 
#[derive(Debug, Default)]
 
struct ControllerEphemeral {
 
    solution_storage: SolutionStorage,
 
    poly_n: Option<PolyN>,
 
    poly_ps: Vec<PolyP>,
 
    ekey_to_holder: HashMap<Key, PolyId>,
 
}
 

	
 
#[derive(Debug)]
 
struct ControllerFamily {
 
    parent_ekey: Option<Key>,
 
    children_ekeys: Vec<Key>,
 
}
 

	
 
#[derive(Debug)]
 
pub(crate) enum SyncRunResult {
 
    BlockingForRecv,
 
    AllBranchesComplete,
 
    NoBranches,
 
}
 

	
 
// Used to identify poly actors
 
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
 
enum PolyId {
 
    N,
 
    P { index: usize },
 
}
 

	
 
#[derive(Debug, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)]
 
pub(crate) enum SubtreeId {
 
    PolyN,
 
    PolyP { index: usize },
 
    ChildController { ekey: Key },
 
}
 

	
 
pub(crate) struct MonoPContext<'a> {
 
    inner: &'a mut ControllerInner,
 
    ekeys: &'a mut HashSet<Key>,
 
}
 
pub(crate) struct PolyPContext<'a> {
 
    my_subtree_id: SubtreeId,
 
    inner: &'a mut ControllerInner,
 
    solution_storage: &'a mut SolutionStorage,
 
}
 
impl PolyPContext<'_> {
 
    #[inline(always)]
 
    fn reborrow<'a>(&'a mut self) -> PolyPContext<'a> {
 
        let Self { solution_storage, my_subtree_id, inner } = self;
 
        PolyPContext { solution_storage, my_subtree_id: *my_subtree_id, inner }
 
    }
 
}
 
struct BranchPContext<'m, 'r> {
 
    m_ctx: PolyPContext<'m>,
 
    ekeys: &'r HashSet<Key>,
 
    predicate: &'r Predicate,
 
    inbox: &'r HashMap<Key, Payload>,
 
}
 

	
 
#[derive(Debug, Default)]
 
pub(crate) struct SolutionStorage {
 
    old_local: HashSet<Predicate>,
 
    new_local: HashSet<Predicate>,
 
    // this pair acts as SubtreeId -> HashSet<Predicate> which is friendlier to iteration
 
    subtree_solutions: Vec<HashSet<Predicate>>,
 
    subtree_id_to_index: HashMap<SubtreeId, usize>,
 
}
 

	
 
trait Messengerlike {
 
    fn get_state_mut(&mut self) -> &mut MessengerState;
 
    fn get_endpoint_mut(&mut self, eekey: Key) -> &mut Endpoint;
 

	
 
    fn delay(&mut self, received: ReceivedMsg) {
 
        self.get_state_mut().delayed.push(received);
 
    }
 
    fn undelay_all(&mut self) {
 
        let MessengerState { delayed, undelayed, .. } = self.get_state_mut();
 
        undelayed.extend(delayed.drain(..))
 
    }
 

	
 
    fn send(&mut self, to: Key, msg: Msg) -> Result<(), EndpointErr> {
 
        self.get_endpoint_mut(to).send(msg)
 
    }
 

	
 
    // attempt to receive a message from one of the endpoints before the deadline
 
    fn recv(&mut self, deadline: Instant) -> Result<Option<ReceivedMsg>, MessengerRecvErr> {
 
        // try get something buffered
 
        if let Some(x) = self.get_state_mut().undelayed.pop() {
 
            return Ok(Some(x));
 
        }
 

	
 
        loop {
 
            // polled_undrained may not be empty
 
            while let Some(eekey) = self.get_state_mut().polled_undrained.pop() {
 
                if let Some(msg) = self.get_endpoint_mut(eekey).recv()? {
 
                    // this endpoint MAY still have messages! check again in future
 
                    self.get_state_mut().polled_undrained.insert(eekey);
 
                    return Ok(Some(ReceivedMsg { recipient: eekey, msg }));
 
                }
 
            }
 

	
 
            let state = self.get_state_mut();
 
            match state.poll_events(deadline) {
 
                Ok(()) => {
 
                    for e in state.events.iter() {
 
                        state.polled_undrained.insert(Key::from_token(e.token()));
 
                    }
 
                }
 
                Err(PollDeadlineErr::PollingFailed) => return Err(MessengerRecvErr::PollingFailed),
 
                Err(PollDeadlineErr::Timeout) => return Ok(None),
 
            }
 
        }
 
    }
 
}
 

	
 
/////////////////////////////////
 

	
 
impl From<EvalErr> for SyncErr {
 
    fn from(e: EvalErr) -> SyncErr {
 
        SyncErr::EvalErr(e)
 
    }
 
}
 
impl From<MessengerRecvErr> for SyncErr {
 
    fn from(e: MessengerRecvErr) -> SyncErr {
 
        SyncErr::MessengerRecvErr(e)
 
    }
 
}
 
impl From<MessengerRecvErr> for ConnectErr {
 
    fn from(e: MessengerRecvErr) -> ConnectErr {
 
        ConnectErr::MessengerRecvErr(e)
 
    }
 
}
 
impl From<EndpointErr> for MessengerRecvErr {
 
    fn from(e: EndpointErr) -> MessengerRecvErr {
 
        MessengerRecvErr::EndpointErr(e)
 
    }
 
}
 
impl<T> Default for Arena<T> {
 
    fn default() -> Self {
 
        Self { storage: vec![] }
 
    }
 
}
 
impl<T> Arena<T> {
 
    pub fn alloc(&mut self, t: T) -> Key {
 
        self.storage.push(t);
 
        Key::from_raw(self.storage.len() as u64 - 1)
 
    }
 
    pub fn get(&self, key: Key) -> Option<&T> {
 
        self.storage.get(key.to_raw() as usize)
 
    }
 
    pub fn get_mut(&mut self, key: Key) -> Option<&mut T> {
 
        self.storage.get_mut(key.to_raw() as usize)
 
    }
 
    pub fn type_convert<X>(self, f: impl FnMut((Key, T)) -> X) -> Arena<X> {
 
        Arena { storage: self.keyspace().zip(self.storage.into_iter()).map(f).collect() }
 
    }
 
    pub fn iter(&self) -> impl Iterator<Item = (Key, &T)> {
 
        self.keyspace().zip(self.storage.iter())
 
    }
 
    pub fn len(&self) -> usize {
 
        self.storage.len()
 
    }
 
    pub fn keyspace(&self) -> impl Iterator<Item = Key> {
 
        (0..(self.storage.len() as u64)).map(Key::from_raw)
 
    }
 
}
 

	
 
impl ChannelIdStream {
 
    fn new(controller_id: ControllerId) -> Self {
 
        Self { controller_id, next_channel_index: 0 }
 
    }
 
    fn next(&mut self) -> ChannelId {
 
        self.next_channel_index += 1;
 
        ChannelId { controller_id: self.controller_id, channel_index: self.next_channel_index - 1 }
 
    }
 
}
 

	
 
impl MessengerState {
 
    // does NOT guarantee that events is non-empty
 
    fn poll_events(&mut self, deadline: Instant) -> Result<(), PollDeadlineErr> {
 
        use PollDeadlineErr::*;
 
        self.events.clear();
 
        let poll_timeout = deadline.checked_duration_since(Instant::now()).ok_or(Timeout)?;
 
        self.poll.poll(&mut self.events, Some(poll_timeout)).map_err(|_| PollingFailed)?;
 
        Ok(())
 
    }
 
}
 
impl From<PollDeadlineErr> for ConnectErr {
 
    fn from(e: PollDeadlineErr) -> ConnectErr {
 
        match e {
 
            PollDeadlineErr::Timeout => ConnectErr::Timeout,
 
            PollDeadlineErr::PollingFailed => ConnectErr::PollingFailed,
 
        }
 
    }
 
}
 

	
 
impl std::ops::Not for Polarity {
 
    type Output = Self;
 
    fn not(self) -> Self::Output {
 
        use Polarity::*;
 
        match self {
 
            Putter => Getter,
 
            Getter => Putter,
 
        }
 
    }
 
}
 

	
 
impl Predicate {
 
    // returns true IFF self.unify would return Equivalent OR FormerNotLatter
 
    pub fn satisfies(&self, other: &Self) -> bool {
 
        let mut s_it = self.assigned.iter();
 
        let mut s = if let Some(s) = s_it.next() {
 
            s
 
        } else {
 
            return other.assigned.is_empty();
 
        };
 
        for (oid, ob) in other.assigned.iter() {
 
            while s.0 < oid {
 
                s = if let Some(s) = s_it.next() {
 
                    s
 
                } else {
 
                    return false;
 
                };
 
            }
 
            if s.0 > oid || s.1 != ob {
 
                return false;
 
            }
 
        }
 
        true
 
    }
 

	
 
    /// Given self and other, two predicates, return the most general Predicate possible, N
 
    /// such that n.satisfies(self) && n.satisfies(other).
 
    /// If none exists Nonexistant is returned.
 
    /// If the resulting predicate is equivlanet to self, other, or both,
 
    /// FormerNotLatter, LatterNotFormer and Equivalent are returned respectively.
 
    /// otherwise New(N) is returned.
 
    pub fn common_satisfier(&self, other: &Self) -> CommonSatResult {
 
        use CommonSatResult::*;
 
        // iterators over assignments of both predicates. Rely on SORTED ordering of BTreeMap's keys.
 
        let [mut s_it, mut o_it] = [self.assigned.iter(), other.assigned.iter()];
 
        let [mut s, mut o] = [s_it.next(), o_it.next()];
 
        // lists of assignments in self but not other and vice versa.
 
        let [mut s_not_o, mut o_not_s] = [vec![], vec![]];
 
        loop {
 
            match [s, o] {
 
                [None, None] => break,
 
                [None, Some(x)] => {
 
                    o_not_s.push(x);
 
                    o_not_s.extend(o_it);
 
                    break;
 
                }
 
                [Some(x), None] => {
 
                    s_not_o.push(x);
 
                    s_not_o.extend(s_it);
 
                    break;
 
                }
 
                [Some((sid, sb)), Some((oid, ob))] => {
 
                    if sid < oid {
 
                        // o is missing this element
 
                        s_not_o.push((sid, sb));
 
                        s = s_it.next();
 
                    } else if sid > oid {
 
                        // s is missing this element
 
                        o_not_s.push((sid, sb));
 
                        o = o_it.next();
 
                    } else if sb != ob {
 
                        assert_eq!(sid, oid);
 
                        // both predicates assign the variable but differ on the value
 
                        return Nonexistant;
 
                    } else {
 
                        // both predicates assign the variable to the same value
 
                        s = s_it.next();
 
                        o = o_it.next();
 
                    }
 
                }
 
            }
 
        }
 
        // Observed zero inconsistencies. A unified predicate exists...
 
        match [s_not_o.is_empty(), o_not_s.is_empty()] {
 
            [true, true] => Equivalent,       // ... equivalent to both.
 
            [false, true] => FormerNotLatter, // ... equivalent to self.
 
            [true, false] => LatterNotFormer, // ... equivalent to other.
 
            [false, false] => {
 
                // ... which is the union of the predicates' assignments but
 
                //     is equivalent to neither self nor other.
 
                let mut predicate = self.clone();
 
                for (&id, &b) in o_not_s {
 
                    predicate.assigned.insert(id, b);
 
                }
 
                New(predicate)
 
            }
 
        }
 
    }
 

	
 
    pub fn iter_true(&self) -> impl Iterator<Item = ChannelId> + '_ {
 
        self.assigned.iter().filter_map(|(&channel_id, b)| match b {
 
            true => Some(channel_id),
 
            false => None,
 
        })
 
    pub fn iter_matching(&self, value: bool) -> impl Iterator<Item = ChannelId> + '_ {
 
        self.assigned
 
            .iter()
 
            .filter_map(move |(&channel_id, &b)| if b == value { Some(channel_id) } else { None })
 
    }
 

	
 
    pub fn batch_assign_nones(
 
        &mut self,
 
        channel_ids: impl Iterator<Item = ChannelId>,
 
        value: bool,
 
    ) {
 
        for channel_id in channel_ids {
 
            self.assigned.entry(channel_id).or_insert(value);
 
        }
 
    }
 
    pub fn replace_assignment(&mut self, channel_id: ChannelId, value: bool) -> Option<bool> {
 
        self.assigned.insert(channel_id, value)
 
    }
 
    pub fn union_with(&self, other: &Self) -> Option<Self> {
 
        let mut res = self.clone();
 
        for (&channel_id, &assignment_1) in other.assigned.iter() {
 
            match res.assigned.insert(channel_id, assignment_1) {
 
                Some(assignment_2) if assignment_1 != assignment_2 => return None,
 
                _ => {}
 
            }
 
        }
 
        Some(res)
 
    }
 
    pub fn query(&self, x: ChannelId) -> Option<bool> {
 
        self.assigned.get(&x).copied()
 
    }
 
    pub fn new_trivial() -> Self {
 
        Self { assigned: Default::default() }
 
    }
 
}
 
impl Debug for Predicate {
 
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
 
        for (ChannelId { controller_id, channel_index }, &v) in self.assigned.iter() {
 
            write!(
 
                f,
 
                "({:?},{:?})=>{}, ",
 
                controller_id,
 
                channel_index,
 
                if v { 'T' } else { 'F' }
 
            )?;
 
        }
 
        Ok(())
 
    }
 
}
 

	
 
#[test]
 
fn pred_sat() {
 
    use maplit::btreemap;
 
    let mut c = ChannelIdStream::new(0);
 
    let ch = std::iter::repeat_with(move || c.next()).take(5).collect::<Vec<_>>();
 
    let p = Predicate::new_trivial();
 
    let p_0t = Predicate { assigned: btreemap! { ch[0] => true } };
 
    let p_0f = Predicate { assigned: btreemap! { ch[0] => false } };
 
    let p_0f_3f = Predicate { assigned: btreemap! { ch[0] => false, ch[3] => false } };
 
    let p_0f_3t = Predicate { assigned: btreemap! { ch[0] => false, ch[3] => true } };
 

	
 
    assert!(p.satisfies(&p));
 
    assert!(p_0t.satisfies(&p_0t));
 
    assert!(p_0f.satisfies(&p_0f));
 
    assert!(p_0f_3f.satisfies(&p_0f_3f));
 
    assert!(p_0f_3t.satisfies(&p_0f_3t));
 

	
 
    assert!(p_0t.satisfies(&p));
 
    assert!(p_0f.satisfies(&p));
 
    assert!(p_0f_3f.satisfies(&p_0f));
 
    assert!(p_0f_3t.satisfies(&p_0f));
 

	
 
    assert!(!p.satisfies(&p_0t));
 
    assert!(!p.satisfies(&p_0f));
 
    assert!(!p_0f.satisfies(&p_0t));
 
    assert!(!p_0t.satisfies(&p_0f));
 
    assert!(!p_0f_3f.satisfies(&p_0f_3t));
 
    assert!(!p_0f_3t.satisfies(&p_0f_3f));
 
    assert!(!p_0t.satisfies(&p_0f_3f));
 
    assert!(!p_0f.satisfies(&p_0f_3f));
 
    assert!(!p_0t.satisfies(&p_0f_3t));
 
    assert!(!p_0f.satisfies(&p_0f_3t));
 
}
 

	
 
#[test]
 
fn pred_common_sat() {
 
    use maplit::btreemap;
 
    use CommonSatResult::*;
 

	
 
    let mut c = ChannelIdStream::new(0);
 
    let ch = std::iter::repeat_with(move || c.next()).take(5).collect::<Vec<_>>();
 
    let p = Predicate::new_trivial();
 
    let p_0t = Predicate { assigned: btreemap! { ch[0] => true } };
 
    let p_0f = Predicate { assigned: btreemap! { ch[0] => false } };
 
    let p_3f = Predicate { assigned: btreemap! { ch[3] => false } };
 
    let p_0f_3f = Predicate { assigned: btreemap! { ch[0] => false, ch[3] => false } };
 
    let p_0f_3t = Predicate { assigned: btreemap! { ch[0] => false, ch[3] => true } };
 

	
 
    assert_eq![p.common_satisfier(&p), Equivalent];
 
    assert_eq![p_0t.common_satisfier(&p_0t), Equivalent];
 

	
 
    assert_eq![p.common_satisfier(&p_0t), LatterNotFormer];
 
    assert_eq![p_0t.common_satisfier(&p), FormerNotLatter];
 

	
 
    assert_eq![p_0t.common_satisfier(&p_0f), Nonexistant];
 
    assert_eq![p_0f_3t.common_satisfier(&p_0f_3f), Nonexistant];
 
    assert_eq![p_0f_3t.common_satisfier(&p_3f), Nonexistant];
 
    assert_eq![p_3f.common_satisfier(&p_0f_3t), Nonexistant];
 

	
 
    assert_eq![p_0f.common_satisfier(&p_3f), New(p_0f_3f)];
 
}
0 comments (0 inline, 0 general)