Changeset - 48df7d1bc380
[Not reviewed]
v1.2.0
0 1 0
MH - 4 years ago 2021-12-16 11:38:57
contact@maxhenger.nl
Remove leftover debug print
1 file changed with 0 insertions and 1 deletions:
0 comments (0 inline, 0 general)
src/protocol/parser/pass_typing.rs
Show inline comments
 
@@ -1351,193 +1351,192 @@ impl Visitor for PassTyping {
 
                    self.visit_expr(ctx, expr_id)?;
 
                }
 
                expr_ids.forget();
 
            }
 
        }
 

	
 
        self.progress_literal_expr(ctx, id)
 
    }
 

	
 
    fn visit_cast_expr(&mut self, ctx: &mut Ctx, id: CastExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let cast_expr = &ctx.heap[id];
 
        let subject_expr_id = cast_expr.subject;
 

	
 
        self.visit_expr(ctx, subject_expr_id)?;
 

	
 
        self.progress_cast_expr(ctx, id)
 
    }
 

	
 
    fn visit_call_expr(&mut self, ctx: &mut Ctx, id: CallExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 
        self.insert_initial_call_polymorph_data(ctx, id);
 

	
 
        // By default we set the polymorph idx for calls to 0. If the call ends
 
        // up not being a polymorphic one, then we will select the default
 
        // expression types in the type table
 
        let call_expr = &ctx.heap[id];
 
        self.expr_types[call_expr.unique_id_in_definition as usize].field_or_monomorph_idx = 0;
 

	
 
        // Visit all arguments
 
        let expr_ids = self.expr_buffer.start_section_initialized(call_expr.arguments.as_slice());
 
        for arg_expr_id in expr_ids.iter_copied() {
 
            self.visit_expr(ctx, arg_expr_id)?;
 
        }
 
        expr_ids.forget();
 

	
 
        self.progress_call_expr(ctx, id)
 
    }
 

	
 
    fn visit_variable_expr(&mut self, ctx: &mut Ctx, id: VariableExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let var_expr = &ctx.heap[id];
 
        debug_assert!(var_expr.declaration.is_some());
 

	
 
        // Not pretty: if a binding expression, then this is the first time we
 
        // encounter the variable, so we still need to insert the variable data.
 
        let declaration = &ctx.heap[var_expr.declaration.unwrap()];
 
        if !self.var_types.contains_key(&declaration.this)  {
 
            debug_assert!(declaration.kind == VariableKind::Binding);
 
            let var_type = self.determine_inference_type_from_parser_type_elements(
 
                &declaration.parser_type.elements, true
 
            );
 
            self.var_types.insert(declaration.this, VarData{
 
                var_type,
 
                used_at: vec![upcast_id],
 
                linked_var: None
 
            });
 
        } else {
 
            let var_data = self.var_types.get_mut(&declaration.this).unwrap();
 
            var_data.used_at.push(upcast_id);
 
        }
 

	
 
        self.progress_variable_expr(ctx, id)
 
    }
 
}
 

	
 
impl PassTyping {
 
    #[allow(dead_code)] // used when debug flag at the top of this file is true.
 
    fn debug_get_display_name(&self, ctx: &Ctx, expr_id: ExpressionId) -> String {
 
        let expr_idx = ctx.heap[expr_id].get_unique_id_in_definition();
 
        let expr_type = &self.expr_types[expr_idx as usize].expr_type;
 
        expr_type.display_name(&ctx.heap)
 
    }
 

	
 
    fn resolve_types(&mut self, ctx: &mut Ctx, queue: &mut ResolveQueue) -> Result<(), ParseError> {
 
        // Keep inferring until we can no longer make any progress
 
        while !self.expr_queued.is_empty() {
 
            // Make as much progress as possible without forced integer
 
            // inference.
 
            while !self.expr_queued.is_empty() {
 
                let next_expr_idx = self.expr_queued.pop_front().unwrap();
 
                self.progress_expr(ctx, next_expr_idx)?;
 
            }
 

	
 
            // Nothing is queued anymore. However we might have integer literals
 
            // whose type cannot be inferred. For convenience's sake we'll
 
            // infer these to be s32.
 
            for (infer_expr_idx, infer_expr) in self.expr_types.iter_mut().enumerate() {
 
                let expr_type = &mut infer_expr.expr_type;
 
                if !expr_type.is_done && expr_type.parts.len() == 1 && expr_type.parts[0] == InferenceTypePart::IntegerLike {
 
                    // Force integer type to s32
 
                    println!("DEBUG: Autoinferring (idx {}) {}", infer_expr.expr_id.index, String::from_utf8_lossy(ctx.module().source.section_at_span(ctx.heap[infer_expr.expr_id].full_span())));
 
                    expr_type.parts[0] = InferenceTypePart::SInt32;
 
                    expr_type.is_done = true;
 

	
 
                    // Requeue expression (and its parent, if it exists)
 
                    self.expr_queued.push_back(infer_expr_idx as i32);
 

	
 
                    if let Some(parent_expr) = ctx.heap[infer_expr.expr_id].parent_expr_id() {
 
                        let parent_idx = ctx.heap[parent_expr].get_unique_id_in_definition();
 
                        self.expr_queued.push_back(parent_idx);
 
                    }
 
                }
 
            }
 
        }
 

	
 
        // Helper for transferring polymorphic variables to concrete types and
 
        // checking if they're completely specified
 
        fn inference_type_to_concrete_type(
 
            ctx: &Ctx, expr_id: ExpressionId, inference: &Vec<InferenceType>,
 
            first_concrete_part: ConcreteTypePart,
 
        ) -> Result<ConcreteType, ParseError> {
 
            // Prepare storage vector
 
            let mut num_inference_parts = 0;
 
            for inference_type in inference {
 
                num_inference_parts += inference_type.parts.len();
 
            }
 

	
 
            let mut concrete_type = ConcreteType{
 
                parts: Vec::with_capacity(1 + num_inference_parts),
 
            };
 
            concrete_type.parts.push(first_concrete_part);
 

	
 
            // Go through all polymorphic arguments and add them to the concrete
 
            // types.
 
            for (poly_idx, poly_type) in inference.iter().enumerate() {
 
                if !poly_type.is_done {
 
                    let expr = &ctx.heap[expr_id];
 
                    let definition = match expr {
 
                        Expression::Call(expr) => expr.definition,
 
                        Expression::Literal(expr) => match &expr.value {
 
                            Literal::Enum(lit) => lit.definition,
 
                            Literal::Union(lit) => lit.definition,
 
                            Literal::Struct(lit) => lit.definition,
 
                            _ => unreachable!()
 
                        },
 
                        _ => unreachable!(),
 
                    };
 
                    let poly_vars = ctx.heap[definition].poly_vars();
 
                    return Err(ParseError::new_error_at_span(
 
                        &ctx.module().source, expr.operation_span(), format!(
 
                            "could not fully infer the type of polymorphic variable '{}' of this expression (got '{}')",
 
                            poly_vars[poly_idx].value.as_str(), poly_type.display_name(&ctx.heap)
 
                        )
 
                    ));
 
                }
 

	
 
                poly_type.write_concrete_type(&mut concrete_type);
 
            }
 

	
 
            Ok(concrete_type)
 
        }
 

	
 
        // Inference is now done. But we may still have uninferred types. So we
 
        // check for these.
 
        for infer_expr in self.expr_types.iter_mut() {
 
            if !infer_expr.expr_type.is_done {
 
                let expr = &ctx.heap[infer_expr.expr_id];
 
                return Err(ParseError::new_error_at_span(
 
                    &ctx.module().source, expr.full_span(), format!(
 
                        "could not fully infer the type of this expression (got '{}')",
 
                        infer_expr.expr_type.display_name(&ctx.heap)
 
                    )
 
                ));
 
            }
 

	
 
            // Expression is fine, check if any extra data is attached
 
            if infer_expr.extra_data_idx < 0 { continue; }
 

	
 
            // Extra data is attached, perform typechecking and transfer
 
            // resolved information to the expression
 
            let extra_data = &self.extra_data[infer_expr.extra_data_idx as usize];
 

	
 
            // Note that only call and literal expressions need full inference.
 
            // Select expressions also use `extra_data`, but only for temporary
 
            // storage of the struct type whose field it is selecting.
 
            match &ctx.heap[extra_data.expr_id] {
 
                Expression::Call(expr) => {
 
                    // Check if it is not a builtin function. If not, then
 
                    // construct the first part of the concrete type.
 
                    let first_concrete_part = if expr.method == Method::UserFunction {
 
                        ConcreteTypePart::Function(expr.definition, extra_data.poly_vars.len() as u32)
 
                    } else if expr.method == Method::UserComponent {
 
                        ConcreteTypePart::Component(expr.definition, extra_data.poly_vars.len() as u32)
 
                    } else {
 
                        // Builtin function
 
                        continue;
 
                    };
0 comments (0 inline, 0 general)