Changeset - 52c6dcd1ff17
[Not reviewed]
0 1 0
Christopher Esterhuyse - 5 years ago 2020-02-15 21:36:31
christopher.esterhuyse@gmail.com
newtypes
1 file changed with 127 insertions and 83 deletions:
0 comments (0 inline, 0 general)
src/runtime/bits.rs
Show inline comments
 
use crate::common::*;
 

	
 
/// Converts an iterator over contiguous u32 chunks into an iterator over usize
 
/// e.g. input [0b111000, 0b11] gives output [3, 4, 5, 32, 33]
 
/// observe that the bits per chunk are ordered from least to most significant bits, yielding smaller to larger usizes.
 
/// works by draining the inner u32 chunk iterator one u32 at a time, then draining that chunk until its 0.
 
struct BitChunkIter<I: Iterator<Item = u32>> {
 
struct BitChunkIter<I: Iterator<Item = BitChunk>> {
 
    chunk_iter: I,
 
    next_bit_index: u32,
 
    cached: u32,
 
    cached: BitChunk,
 
}
 

	
 
impl<I: Iterator<Item = u32>> BitChunkIter<I> {
 
impl<I: Iterator<Item = BitChunk>> BitChunkIter<I> {
 
    fn new(chunk_iter: I) -> Self {
 
        // first chunk is always a dummy zero, as if chunk_iter yielded Some(0).
 
        // Consequences:
 
        // 1. our next_bit_index is always off by 32 (we correct for it in Self::next) (no additional overhead)
 
        // 2. we cache u32 and not Option<u32>, because chunk_iter.next() is only called in Self::next.
 
        Self { chunk_iter, next_bit_index: 0, cached: 0 }
 
        Self { chunk_iter, next_bit_index: 0, cached: BitChunk(0) }
 
    }
 
}
 
impl<I: Iterator<Item = u32>> Iterator for BitChunkIter<I> {
 
impl<I: Iterator<Item = BitChunk>> Iterator for BitChunkIter<I> {
 
    type Item = u32;
 
    fn next(&mut self) -> Option<Self::Item> {
 
        let mut chunk = self.cached;
 

	
 
        // loop until either:
 
        // 1. there are no more Items to return, or
 
        // 2. chunk encodes 1+ Items, one of which we will return.
 
        while chunk == 0 {
 
        while !chunk.any() {
 
            // chunk is still empty! get the next one...
 
            chunk = self.chunk_iter.next()?;
 

	
 
            // ... and jump self.next_bit_index to the next multiple of 32.
 
            self.next_bit_index = (self.next_bit_index + 32) & !(32 - 1);
 
            // ... and jump self.next_bit_index to the next multiple of BitChunk::chunk_bits().
 
            self.next_bit_index =
 
                (self.next_bit_index + BitChunk::bits() as u32) & !(BitChunk::bits() as u32 - 1);
 
        }
 
        // assert(chunk > 0);
 

	
 
        // Shift the contents of chunk until the least significant bit is 1.
 
        // ... being sure to increment next_bit_index accordingly.
 
        #[inline(always)]
 
        fn skip_n_zeroes(chunk: &mut u32, n: u32, next_bit_index: &mut u32) {
 
            if *chunk & ((1 << n) - 1) == 0 {
 
        fn skip_n_zeroes(chunk: &mut BitChunk, n: u32, next_bit_index: &mut u32) {
 
            if chunk.0 & ((1 << n) - 1) == 0 {
 
                // n least significant bits are zero. skip n bits.
 
                *next_bit_index += n;
 
                *chunk >>= n;
 
                chunk.0 >>= n;
 
            }
 
        }
 
        skip_n_zeroes(&mut chunk, 16, &mut self.next_bit_index);
 
        skip_n_zeroes(&mut chunk, 08, &mut self.next_bit_index);
 
        skip_n_zeroes(&mut chunk, 04, &mut self.next_bit_index);
 
        skip_n_zeroes(&mut chunk, 02, &mut self.next_bit_index);
 
        skip_n_zeroes(&mut chunk, 01, &mut self.next_bit_index);
 
        let mut n = std::mem::size_of::<usize>() as u32 * 8 / 2;
 
        while n >= 1 {
 
            skip_n_zeroes(&mut chunk, n, &mut self.next_bit_index);
 
            n /= 2;
 
        }
 
        // least significant bit of chunk is 1.
 
        // assert(chunk & 1 == 1)
 

	
 
        // prepare our state for the next time Self::next is called.
 
        // Overwrite self.cached such that its shifted state is retained,
 
        // and jump over the bit whose index we are about to return.
 
        self.next_bit_index += 1;
 
        self.cached = chunk >> 1;
 
        self.cached = BitChunk(chunk.0 >> 1);
 

	
 
        // returned index is 32 smaller than self.next_bit_index because we use an
 
        // off-by-32 encoding to avoid having to cache an Option<u32>.
 
        Some(self.next_bit_index - 1 - 32)
 
        // returned index is BitChunk::bits() smaller than self.next_bit_index because we use an
 
        // off-by-BitChunk::bits() encoding to avoid having to cache an Option<BitChunk>.
 
        Some(self.next_bit_index - 1 - BitChunk::bits() as u32)
 
    }
 
}
 

	
 
/*  --properties-->
 
     ___ ___ ___ ___
 
    |___|___|___|___|
 
  | |___|___|___|___|
 
  | |___|___|___|___|
 
  | |___|___|___|___|
 
  |
 
  V
 
 entity chunks (groups of 32)
 
 entity chunks (groups of BitChunk::bits())
 
*/
 

	
 
// TODO newtypes Entity and Property
 

	
 
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
 
struct Pair {
 
@@ -88,128 +89,146 @@ impl From<[u32; 2]> for Pair {
 
    fn from([entity, property]: [u32; 2]) -> Self {
 
        Pair { entity, property }
 
    }
 
}
 
struct BitMatrix {
 
    bounds: Pair,
 
    buffer: *mut u32,
 
    buffer: *mut BitChunk,
 
}
 
impl Drop for BitMatrix {
 
    fn drop(&mut self) {
 
        let total_chunks = Self::row_chunks(self.bounds.property) as usize
 
            * Self::column_chunks(self.bounds.entity) as usize;
 
        let total_chunks = Self::row_chunks(self.bounds.property as usize)
 
            * Self::column_chunks(self.bounds.entity as usize);
 
        let layout = Self::layout_for(total_chunks);
 
        unsafe {
 
            // ?
 
            std::alloc::dealloc(self.buffer as *mut u8, layout);
 
        }
 
    }
 
}
 
impl Debug for BitMatrix {
 
    fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
 
        let row_chunks = Self::row_chunks(self.bounds.property) as usize;
 
        let column_chunks = Self::column_chunks(self.bounds.entity) as usize;
 
        let row_chunks = Self::row_chunks(self.bounds.property as usize);
 
        let column_chunks = Self::column_chunks(self.bounds.entity as usize);
 
        for property in 0..row_chunks {
 
            for entity_chunk in 0..column_chunks {
 
                write!(f, "|")?;
 
                let mut chunk = unsafe { *self.buffer.add(row_chunks * entity_chunk + property) };
 
                let end =
 
                    if entity_chunk + 1 == column_chunks { self.bounds.entity % 32 } else { 32 };
 
                let end = if entity_chunk + 1 == column_chunks {
 
                    self.bounds.entity % BitChunk::bits() as u32
 
                } else {
 
                    BitChunk::bits() as u32
 
                };
 
                for _ in 0..end {
 
                    let c = match chunk & 1 {
 
                    let c = match chunk.0 & 1 {
 
                        0 => '0',
 
                        _ => '1',
 
                    };
 
                    write!(f, "{}", c)?;
 
                    chunk >>= 1;
 
                    chunk.0 >>= 1;
 
                }
 
            }
 
            write!(f, "|\n")?;
 
        }
 
        Ok(())
 
    }
 
}
 
impl BitMatrix {
 
    #[inline]
 
    fn ceiling_to_mul_32(value: u32) -> u32 {
 
        (value + 31) & !31
 
    const fn chunk_len_ceil(value: usize) -> usize {
 
        (value + BitChunk::bits() - 1) & !(BitChunk::bits() - 1)
 
    }
 
    #[inline]
 
    fn row_of(entity: u32) -> u32 {
 
        entity / 32
 
    const fn row_of(entity: usize) -> usize {
 
        entity / BitChunk::bits()
 
    }
 
    #[inline]
 
    fn row_chunks(property_bound: u32) -> u32 {
 
    const fn row_chunks(property_bound: usize) -> usize {
 
        property_bound
 
    }
 
    #[inline]
 
    fn column_chunks(entity_bound: u32) -> u32 {
 
        Self::ceiling_to_mul_32(entity_bound) / 32
 
    const fn column_chunks(entity_bound: usize) -> usize {
 
        Self::chunk_len_ceil(entity_bound) / BitChunk::bits()
 
    }
 
    #[inline]
 
    fn offsets_unchecked(&self, at: Pair) -> [usize; 2] {
 
        let o_in = at.entity as usize % 32;
 
        let row = Self::row_of(at.entity);
 
        let row_chunks = self.bounds.property;
 
        let o_of = row as usize * row_chunks as usize + at.property as usize;
 
        let o_in = at.entity as usize % BitChunk::bits();
 
        let row = Self::row_of(at.entity as usize);
 
        let row_chunks = self.bounds.property as usize;
 
        let o_of = row * row_chunks + at.property as usize;
 
        [o_of, o_in]
 
    }
 
    // returns a u32 which has bits 000...000111...111
 
    // for the last JAGGED chunk given the column size
 
    // if the last chunk is not jagged (when entity_bound % 32 == 0)
 
    // None is returned,
 
    // otherwise Some(x) is returned such that x & chunk would mask out
 
    // the bits NOT in 0..entity_bound
 
    fn last_row_chunk_mask(entity_bound: u32) -> Option<u32> {
 
        let zero_prefix_len = entity_bound % 32;
 
    fn last_row_chunk_mask(entity_bound: u32) -> Option<BitChunk> {
 
        let zero_prefix_len = entity_bound as usize % BitChunk::bits();
 
        if zero_prefix_len == 0 {
 
            None
 
        } else {
 
            Some(!0u32 >> (32 - zero_prefix_len))
 
            Some(BitChunk(!0 >> (BitChunk::bits() - zero_prefix_len)))
 
        }
 
    }
 
    fn assert_within_bounds(&self, at: Pair) {
 
        assert!(at.entity < self.bounds.entity);
 
        assert!(at.property < self.bounds.property);
 
    }
 

	
 
    fn layout_for(mut total_chunks: usize) -> std::alloc::Layout {
 
        unsafe {
 
            // this layout is ALWAYS valid:
 
            // 1. size is always nonzero
 
            // 2. size is always a multiple of 4 and 4-aligned
 
            if total_chunks == 0 {
 
                total_chunks = 1;
 
            }
 
            std::alloc::Layout::from_size_align_unchecked(
 
                BitChunk::bytes() * total_chunks,
 
                BitChunk::bytes(),
 
            )
 
        }
 
    }
 
    /////////
 

	
 
    fn reshape(&mut self, dims: [usize; 2]) {
 
    fn reshape(&mut self, bounds: Pair) {
 
        todo!()
 
    }
 

	
 
    fn new(bounds: Pair) -> Self {
 
        let total_chunks = Self::row_chunks(bounds.property) as usize
 
            * Self::column_chunks(bounds.entity) as usize;
 
        let total_chunks = Self::row_chunks(bounds.property as usize)
 
            * Self::column_chunks(bounds.entity as usize);
 
        let layout = Self::layout_for(total_chunks);
 
        let buffer;
 
        unsafe {
 
            buffer = std::alloc::alloc(layout) as *mut u32;
 
            buffer = std::alloc::alloc(layout) as *mut BitChunk;
 
            buffer.write_bytes(0u8, total_chunks);
 
        };
 
        Self { buffer, bounds }
 
    }
 
    fn set(&mut self, at: Pair) {
 
        self.assert_within_bounds(at);
 
        let [o_of, o_in] = self.offsets_unchecked(at);
 
        unsafe { *self.buffer.add(o_of) |= 1 << o_in };
 
        unsafe { *self.buffer.add(o_of) |= BitChunk(1 << o_in) };
 
    }
 
    fn unset(&mut self, at: Pair) {
 
        self.assert_within_bounds(at);
 
        let [o_of, o_in] = self.offsets_unchecked(at);
 
        unsafe { *self.buffer.add(o_of) &= !(1 << o_in) };
 
        unsafe { *self.buffer.add(o_of) &= !BitChunk(1 << o_in) };
 
    }
 
    fn test(&self, at: Pair) -> bool {
 
        self.assert_within_bounds(at);
 
        let [o_of, o_in] = self.offsets_unchecked(at);
 
        unsafe { (*self.buffer.add(o_of) & 1 << o_in) != 0 }
 
        unsafe { (*self.buffer.add(o_of) & BitChunk(1 << o_in)).any() }
 
    }
 

	
 
    fn batch_mut<'a, 'b>(&mut self, mut chunk_mut_fn: impl FnMut(&'b mut [BitChunk])) {
 
        let row_chunks = Self::row_chunks(self.bounds.property) as usize;
 
        let column_chunks = Self::column_chunks(self.bounds.entity);
 
        let row_chunks = Self::row_chunks(self.bounds.property as usize);
 
        let column_chunks = Self::column_chunks(self.bounds.entity as usize);
 
        let mut ptr = self.buffer;
 
        for _row in 0..column_chunks {
 
            let slice;
 
            unsafe {
 
                let slicey = std::slice::from_raw_parts_mut(ptr, row_chunks);
 
                slice = std::mem::transmute(slicey);
 
@@ -233,73 +252,98 @@ impl BitMatrix {
 
    /// given:
 
    /// 1. a buffer to work with
 
    /// 2. a _fold function_ for combining the properties of a given entity
 
    ///    and returning a new derived property (working )
 
    fn iter_entities_where<'a, 'b>(
 
        &'a self,
 
        buf: &'b mut Vec<u32>,
 
        buf: &'b mut Vec<BitChunk>,
 
        mut fold_fn: impl FnMut(&'b [BitChunk]) -> BitChunk,
 
    ) -> BitChunkIter<std::vec::Drain<'b, u32>> {
 
    ) -> BitChunkIter<std::vec::Drain<'b, BitChunk>> {
 
        let buf_start = buf.len();
 
        let row_chunks = Self::row_chunks(self.bounds.property) as usize;
 
        let column_chunks = Self::column_chunks(self.bounds.entity);
 
        let row_chunks = Self::row_chunks(self.bounds.property as usize);
 
        let column_chunks = Self::column_chunks(self.bounds.entity as usize);
 
        let mut ptr = self.buffer;
 
        for _row in 0..column_chunks {
 
            let slice;
 
            unsafe {
 
                let slicey = std::slice::from_raw_parts(ptr, row_chunks);
 
                slice = std::mem::transmute(slicey);
 
                ptr = ptr.add(row_chunks);
 
            }
 
            buf.push(fold_fn(slice).0);
 
            buf.push(fold_fn(slice));
 
        }
 
        if let Some(mask) = Self::last_row_chunk_mask(self.bounds.entity) {
 
            *buf.iter_mut().last().unwrap() &= mask;
 
        }
 
        BitChunkIter::new(buf.drain(buf_start..))
 
    }
 

	
 
    fn layout_for(total_chunks: usize) -> std::alloc::Layout {
 
        unsafe {
 
            // this layout is ALWAYS valid:
 
            // 1. size is always nonzero
 
            // 2. size is always a multiple of 4 and 4-aligned
 
            std::alloc::Layout::from_size_align_unchecked(4 * total_chunks.max(1), 4)
 
        }
 
    }
 
}
 

	
 
// TODO newtypes for:
 
// 1. BitChunk(u32) for fold fn
 
// 1. Entity(u32) and Property(u32)
 

	
 
use derive_more::*;
 
#[derive(Copy, Clone, BitAnd, Not, BitOr, BitXor, BitAndAssign, BitOrAssign, BitXorAssign)]
 
struct BitChunk(u32);
 
#[derive(
 
    Debug, Copy, Clone, BitAnd, Not, BitOr, BitXor, BitAndAssign, BitOrAssign, BitXorAssign,
 
)]
 
struct BitChunk(usize);
 
impl BitChunk {
 
    const fn bits() -> usize {
 
        Self::bytes() * 8
 
    }
 
    const fn bytes() -> usize {
 
        std::mem::size_of::<Self>()
 
    }
 
    const fn any(self) -> bool {
 
        self.0 != FALSE.0
 
    }
 
    const fn all(self) -> bool {
 
        self.0 == TRUE.0
 
    }
 
}
 
const TRUE: BitChunk = BitChunk(!0);
 
const FALSE: BitChunk = BitChunk(0);
 

	
 
#[test]
 
fn matrix_test() {
 
    let mut m = BitMatrix::new(Pair { entity: 50, property: 3 });
 
    let mut m = BitMatrix::new(Pair { entity: 70, property: 3 });
 
    m.set([2, 0].into());
 
    m.set([40, 1].into());
 
    m.set([40, 2].into());
 
    m.set([40, 0].into());
 
    println!("{:?}", &m);
 

	
 
    m.batch_mut(|p| {
 
        p[0] = FALSE | p[1];
 
        p[2] ^= TRUE;
 
    });
 
    m.batch_mut(|p| p[0] = TRUE);
 
    println!("{:?}", &m);
 

	
 
    let mut buf = vec![];
 
    for index in m.iter_entities_where(&mut buf, move |p| TRUE ^ p[1] ^ p[2]) {
 
        println!("index {}", index);
 
    for i in (0..70).step_by(7) {
 
        m.unset([i, 0].into());
 
    }
 
    for index in m.iter_entities_where(&mut buf, move |p| p[0] & !p[2]) {
 
    println!("{:?}", &m);
 

	
 
    m.batch_mut(move |p| p[1] = p[0] ^ TRUE);
 
    println!("{:?}", &m);
 

	
 
    let mut buf = vec![];
 
    for index in m.iter_entities_where(&mut buf, move |p| p[1]) {
 
        println!("index {}", index);
 
    }
 
}
 

	
 
// TODO something still a bit screwy with 1s where theere should be zeroes
 
/*
 
TODO
 
1. BitChunk newtype in matrix and bit iterator
 
2. make BitChunk a wrapper around usize, using mem::size_of for the shifting
 

	
 
    #[inline(always)]
 
    fn skip_n_zeroes(chunk: &mut usize, n: usize) {
 
        if *chunk & ((1 << n) - 1) == 0 {
 
            *chunk >>= n;
 
        }
 
    }
 
    let mut n = std::mem::size_of::<usize>() * 8 / 2;
 
    while n > 1 {
 
        if x & ((1 << n) - 1) == 0 {
 
            x >>= n;
 
        }
 
        n /= 2;
 
    }
 

	
 

	
 
*/
0 comments (0 inline, 0 general)