Changeset - 5664651bdca4
[Not reviewed]
MH - 4 years ago 2021-11-11 11:13:02
contact@maxhenger.nl
small fix to reduce number of compiler warnings
3 files changed with 35 insertions and 35 deletions:
0 comments (0 inline, 0 general)
src/lib.rs
Show inline comments
 
#[macro_use]
 
mod macros;
 

	
 
mod common;
 
mod protocol;
 
mod runtime;
 
mod runtime2;
 
pub mod runtime2;
 
mod collections;
 

	
 
pub use common::{ConnectorId, EndpointPolarity, Payload, Polarity, PortId};
 
pub use protocol::ProtocolDescription;
 
pub use runtime::{error, Connector, DummyLogger, FileLogger, VecLogger};
 

	
 
// TODO: Remove when not benchmarking
 
pub use protocol::input_source::InputSource;
 
pub use protocol::ast::Heap;
 

	
 
#[cfg(feature = "ffi")]
 
pub mod ffi;
src/runtime2/mod.rs
Show inline comments
 
// Structure of module
 

	
 
mod branch;
 
mod native;
 
mod port;
 
mod scheduler;
 
mod consensus;
 
mod inbox;
 

	
 
#[cfg(test)] mod tests;
 
mod connector;
 

	
 
// Imports
 

	
 
use std::collections::VecDeque;
 
use std::sync::{Arc, Condvar, Mutex, RwLock};
 
use std::sync::atomic::{AtomicBool, AtomicU32, Ordering};
 
use std::thread::{self, JoinHandle};
 

	
 
use crate::collections::RawVec;
 
use crate::ProtocolDescription;
 

	
 
use connector::{ConnectorPDL, ConnectorPublic, ConnectorScheduling};
 
use scheduler::{Scheduler, ComponentCtx, SchedulerCtx, ControlMessageHandler};
 
use native::{Connector, ConnectorApplication, ApplicationInterface};
 
use inbox::Message;
 
use port::{ChannelId, Port, PortState};
 

	
 
/// A kind of token that, once obtained, allows mutable access to a connector.
 
/// We're trying to use move semantics as much as possible: the owner of this
 
/// key is the only one that may execute the connector's code.
 
pub(crate) struct ConnectorKey {
 
    pub index: u32, // of connector
 
}
 

	
 
impl ConnectorKey {
 
    /// Downcasts the `ConnectorKey` type, which can be used to obtain mutable
 
    /// access, to a "regular ID" which can be used to obtain immutable access.
 
    #[inline]
 
    pub fn downcast(&self) -> ConnectorId {
 
        return ConnectorId(self.index);
 
    }
 

	
 
    /// Turns the `ConnectorId` into a `ConnectorKey`, marked as unsafe as it
 
    /// bypasses the type-enforced `ConnectorKey`/`ConnectorId` system
 
    #[inline]
 
    pub unsafe fn from_id(id: ConnectorId) -> ConnectorKey {
 
        return ConnectorKey{ index: id.0 };
 
    }
 
}
 

	
 
/// A kind of token that allows shared access to a connector. Multiple threads
 
/// may hold this
 
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord)]
 
pub struct ConnectorId(pub u32);
 

	
 
impl ConnectorId {
 
    // TODO: Like the other `new_invalid`, maybe remove
 
    #[inline]
 
    pub fn new_invalid() -> ConnectorId {
 
        return ConnectorId(u32::MAX);
 
    }
 

	
 
    #[inline]
 
    pub(crate) fn is_valid(&self) -> bool {
 
        return self.0 != u32::MAX;
 
    }
 
}
 

	
 
// TODO: Change this, I hate this. But I also don't want to put `public` and
 
//  `router` of `ScheduledConnector` back into `Connector`. The reason I don't
 
//  want `Box<dyn Connector>` everywhere is because of the v-table overhead. But
 
//  to truly design this properly I need some benchmarks.
 
pub(crate) enum ConnectorVariant {
 
    UserDefined(ConnectorPDL),
 
    Native(Box<dyn Connector>),
 
}
 

	
 
impl Connector for ConnectorVariant {
 
    fn run(&mut self, scheduler_ctx: SchedulerCtx, comp_ctx: &mut ComponentCtx) -> ConnectorScheduling {
 
        match self {
 
            ConnectorVariant::UserDefined(c) => c.run(scheduler_ctx, comp_ctx),
 
            ConnectorVariant::Native(c) => c.run(scheduler_ctx, comp_ctx),
 
        }
 
    }
 
}
 

	
 
pub(crate) struct ScheduledConnector {
 
    pub connector: ConnectorVariant, // access by connector
 
    pub ctx_fancy: ComponentCtx,
 
    pub ctx: ComponentCtx,
 
    pub public: ConnectorPublic, // accessible by all schedulers and connectors
 
    pub router: ControlMessageHandler,
 
    pub shutting_down: bool,
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// Runtime
 
// -----------------------------------------------------------------------------
 

	
 
/// Externally facing runtime.
 
pub struct Runtime {
 
    inner: Arc<RuntimeInner>,
 
}
 

	
 
impl Runtime {
 
    pub fn new(num_threads: u32, protocol_description: ProtocolDescription) -> Runtime {
 
        // Setup global state
 
        assert!(num_threads > 0, "need a thread to run connectors");
 
        let runtime_inner = Arc::new(RuntimeInner{
 
            protocol_description,
 
            port_counter: AtomicU32::new(0),
 
            connectors: RwLock::new(ConnectorStore::with_capacity(32)),
 
            connector_queue: Mutex::new(VecDeque::with_capacity(32)),
 
            schedulers: Mutex::new(Vec::new()),
 
            scheduler_notifier: Condvar::new(),
 
            active_connectors: AtomicU32::new(0),
 
            active_interfaces: AtomicU32::new(1), // this `Runtime` instance
 
            should_exit: AtomicBool::new(false),
 
        });
 

	
 
        // Launch threads
 
        {
 
            let mut schedulers = Vec::with_capacity(num_threads as usize);
 
            for thread_index in 0..num_threads {
 
                let cloned_runtime_inner = runtime_inner.clone();
 
                let thread = thread::Builder::new()
 
                    .name(format!("thread-{}", thread_index))
 
                    .spawn(move || {
 
                        let mut scheduler = Scheduler::new(cloned_runtime_inner, thread_index);
 
                        scheduler.run();
 
                    })
 
                    .unwrap();
 

	
 
                schedulers.push(thread);
 
            }
 

	
 
            let mut lock = runtime_inner.schedulers.lock().unwrap();
 
            *lock = schedulers;
 
        }
 

	
 
        // Return runtime
 
        return Runtime{ inner: runtime_inner };
 
    }
 

	
 
    /// Returns a new interface through which channels and connectors can be
 
    /// created.
 
    pub fn create_interface(&self) -> ApplicationInterface {
 
        self.inner.increment_active_interfaces();
 
        let (connector, mut interface) = ConnectorApplication::new(self.inner.clone());
 
        let connector_key = self.inner.create_interface_component(connector);
 
        interface.set_connector_id(connector_key.downcast());
 

	
 
        // Note that we're not scheduling. That is done by the interface in case
 
        // it is actually needed.
 
        return interface;
 
    }
 
}
 

	
 
impl Drop for Runtime {
 
    fn drop(&mut self) {
 
        self.inner.decrement_active_interfaces();
 
        let mut lock = self.inner.schedulers.lock().unwrap();
 
        for handle in lock.drain(..) {
 
            handle.join().unwrap();
 
        }
 
    }
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// RuntimeInner
 
// -----------------------------------------------------------------------------
 

	
 
pub(crate) struct RuntimeInner {
 
    // Protocol
 
    pub(crate) protocol_description: ProtocolDescription,
 
    // Regular counter for port IDs
 
    port_counter: AtomicU32,
 
    // Storage of connectors and the work queue
 
    connectors: RwLock<ConnectorStore>,
 
    connector_queue: Mutex<VecDeque<ConnectorKey>>,
 
    schedulers: Mutex<Vec<JoinHandle<()>>>,
 
    // Conditions to determine whether the runtime can exit
 
    scheduler_notifier: Condvar,  // coupled to mutex on `connector_queue`.
 
    // TODO: Figure out if we can simply merge the counters?
 
    active_connectors: AtomicU32, // active connectors (if sleeping, then still considered active)
 
    active_interfaces: AtomicU32, // active API interfaces that can add connectors/channels
 
@@ -309,168 +309,168 @@ impl RuntimeInner {
 
        debug_assert_ne!(_old_num, 0); // once it hits 0, it stays zero
 
    }
 

	
 
    pub(crate) fn decrement_active_interfaces(&self) {
 
        let old_num = self.active_interfaces.fetch_sub(1, Ordering::SeqCst);
 
        debug_assert!(old_num > 0);
 
        if old_num == 1 { // such that active interfaces is now 0
 
            let num_connectors = self.active_connectors.load(Ordering::Acquire);
 
            if num_connectors == 0 {
 
                self.signal_for_shutdown();
 
            }
 
        }
 
    }
 

	
 
    #[inline]
 
    fn increment_active_components(&self) {
 
        let _old_num = self.active_connectors.fetch_add(1, Ordering::SeqCst);
 
    }
 

	
 
    fn decrement_active_components(&self) {
 
        let old_num = self.active_connectors.fetch_sub(1, Ordering::SeqCst);
 
        debug_assert!(old_num > 0);
 
        if old_num == 1 { // such that we have no more active connectors (for now!)
 
            let num_interfaces = self.active_interfaces.load(Ordering::Acquire);
 
            if num_interfaces == 0 {
 
                self.signal_for_shutdown();
 
            }
 
        }
 
    }
 

	
 
    #[inline]
 
    fn signal_for_shutdown(&self) {
 
        debug_assert_eq!(self.active_interfaces.load(Ordering::Acquire), 0);
 
        debug_assert_eq!(self.active_connectors.load(Ordering::Acquire), 0);
 

	
 
        let _lock = self.connector_queue.lock().unwrap();
 
        let should_signal = self.should_exit
 
            .compare_exchange(false, true, Ordering::SeqCst, Ordering::Acquire)
 
            .is_ok();
 

	
 
        if should_signal {
 
            self.scheduler_notifier.notify_all();
 
        }
 
    }
 
}
 

	
 
// TODO: Come back to this at some point
 
unsafe impl Send for RuntimeInner {}
 
unsafe impl Sync for RuntimeInner {}
 

	
 
// -----------------------------------------------------------------------------
 
// ConnectorStore
 
// -----------------------------------------------------------------------------
 

	
 
struct ConnectorStore {
 
    // Freelist storage of connectors. Storage should be pointer-stable as
 
    // someone might be mutating the vector while we're executing one of the
 
    // connectors.
 
    connectors: RawVec<*mut ScheduledConnector>,
 
    free: Vec<usize>,
 
}
 

	
 
impl ConnectorStore {
 
    fn with_capacity(capacity: usize) -> Self {
 
        Self {
 
            connectors: RawVec::with_capacity(capacity),
 
            free: Vec::with_capacity(capacity),
 
        }
 
    }
 

	
 
    /// Retrieves public part of connector - accessible by many threads at once.
 
    fn get_public(&self, id: ConnectorId) -> &'static ConnectorPublic {
 
        unsafe {
 
            debug_assert!(!self.free.contains(&(id.0 as usize)));
 
            let connector = self.connectors.get(id.0 as usize);
 
            debug_assert!(!connector.is_null());
 
            return &(**connector).public;
 
        }
 
    }
 

	
 
    /// Retrieves private part of connector - accessible by one thread at a
 
    /// time.
 
    fn get_private(&self, key: &ConnectorKey) -> &'static mut ScheduledConnector {
 
        unsafe {
 
            debug_assert!(!self.free.contains(&(key.index as usize)));
 
            let connector = self.connectors.get_mut(key.index as usize);
 
            debug_assert!(!connector.is_null());
 
            return &mut (**connector);
 
        }
 
    }
 

	
 
    /// Creates a new connector. Caller should ensure ports are set up correctly
 
    /// and the connector is queued for execution if needed.
 
    fn create(&mut self, connector: ConnectorVariant, initially_sleeping: bool) -> ConnectorKey {
 
        let mut connector = ScheduledConnector {
 
            connector,
 
            ctx_fancy: ComponentCtx::new_empty(),
 
            ctx: ComponentCtx::new_empty(),
 
            public: ConnectorPublic::new(initially_sleeping),
 
            router: ControlMessageHandler::new(),
 
            shutting_down: false,
 
        };
 

	
 
        let index;
 
        let key;
 

	
 
        if self.free.is_empty() {
 
            // No free entries, allocate new entry
 
            index = self.connectors.len();
 
            key = ConnectorKey{ index: index as u32 };
 
            connector.ctx_fancy.id = key.downcast();
 
            connector.ctx.id = key.downcast();
 

	
 
            let connector = Box::into_raw(Box::new(connector));
 
            self.connectors.push(connector);
 
        } else {
 
            // Free spot available
 
            index = self.free.pop().unwrap();
 
            key = ConnectorKey{ index: index as u32 };
 
            connector.ctx_fancy.id = key.downcast();
 
            connector.ctx.id = key.downcast();
 

	
 
            unsafe {
 
                let target = self.connectors.get_mut(index);
 
                std::ptr::write(*target, connector);
 
            }
 
        }
 

	
 
        return key;
 
    }
 

	
 
    /// Destroys a connector. Caller should make sure it is not scheduled for
 
    /// execution. Otherwise one experiences "bad stuff" (tm).
 
    fn destroy(&mut self, key: ConnectorKey) {
 
        unsafe {
 
            let target = self.connectors.get_mut(key.index as usize);
 
            std::ptr::drop_in_place(*target);
 
            // Note: but not deallocating!
 
        }
 

	
 
        self.free.push(key.index as usize);
 
    }
 
}
 

	
 
impl Drop for ConnectorStore {
 
    fn drop(&mut self) {
 
        // Everything in the freelist already had its destructor called, so only
 
        // has to be deallocated
 
        for free_idx in self.free.iter().copied() {
 
            unsafe {
 
                let memory = self.connectors.get_mut(free_idx);
 
                let layout = std::alloc::Layout::for_value(&**memory);
 
                std::alloc::dealloc(*memory as *mut u8, layout);
 

	
 
                // mark as null for the remainder
 
                *memory = std::ptr::null_mut();
 
            }
 
        }
 

	
 
        // With the deallocated stuff marked as null, clear the remainder that
 
        // is not null
 
        for idx in 0..self.connectors.len() {
 
            unsafe {
 
                let memory = *self.connectors.get_mut(idx);
 
                if !memory.is_null() {
 
                    let _ = Box::from_raw(memory); // take care of deallocation, bit dirty, but meh
 
                }
 
            }
 
        }
 
    }
 
}
 
\ No newline at end of file
src/runtime2/scheduler.rs
Show inline comments
 
use std::collections::VecDeque;
 
use std::sync::Arc;
 
use std::sync::atomic::Ordering;
 

	
 
use super::{ScheduledConnector, RuntimeInner, ConnectorId, ConnectorKey};
 
use super::port::{Port, PortState, PortIdLocal};
 
use super::native::Connector;
 
use super::branch::{BranchId};
 
use super::connector::{ConnectorPDL, ConnectorScheduling};
 
use super::inbox::{Message, DataMessage, ControlMessage, ControlContent};
 

	
 
// Because it contains pointers we're going to do a copy by value on this one
 
#[derive(Clone, Copy)]
 
pub(crate) struct SchedulerCtx<'a> {
 
    pub(crate) runtime: &'a RuntimeInner
 
}
 

	
 
pub(crate) struct Scheduler {
 
    runtime: Arc<RuntimeInner>,
 
    scheduler_id: u32,
 
}
 

	
 
impl Scheduler {
 
    pub fn new(runtime: Arc<RuntimeInner>, scheduler_id: u32) -> Self {
 
        return Self{ runtime, scheduler_id };
 
    }
 

	
 
    pub fn run(&mut self) {
 
        // Setup global storage and workspaces that are reused for every
 
        // connector that we run
 
        'thread_loop: loop {
 
            // Retrieve a unit of work
 
            self.debug("Waiting for work");
 
            let connector_key = self.runtime.wait_for_work();
 
            if connector_key.is_none() {
 
                // We should exit
 
                self.debug(" ... No more work, quitting");
 
                break 'thread_loop;
 
            }
 

	
 
            // We have something to do
 
            let connector_key = connector_key.unwrap();
 
            let connector_id = connector_key.downcast();
 
            self.debug_conn(connector_id, &format!(" ... Got work, running {}", connector_key.index));
 

	
 
            let scheduled = self.runtime.get_component_private(&connector_key);
 

	
 
            // Keep running until we should no longer immediately schedule the
 
            // connector.
 
            let mut cur_schedule = ConnectorScheduling::Immediate;
 
            while cur_schedule == ConnectorScheduling::Immediate {
 
                self.handle_inbox_messages(scheduled);
 

	
 
                // Run the main behaviour of the connector, depending on its
 
                // current state.
 
                if scheduled.shutting_down {
 
                    // Nothing to do. But we're stil waiting for all our pending
 
                    // control messages to be answered.
 
                    self.debug_conn(connector_id, &format!("Shutting down, {} Acks remaining", scheduled.router.num_pending_acks()));
 
                    if scheduled.router.num_pending_acks() == 0 {
 
                        // We're actually done, we can safely destroy the
 
                        // currently running connector
 
                        self.runtime.destroy_component(connector_key);
 
                        continue 'thread_loop;
 
                    } else {
 
                        cur_schedule = ConnectorScheduling::NotNow;
 
                    }
 
                } else {
 
                    self.debug_conn(connector_id, "Running ...");
 
                    let scheduler_ctx = SchedulerCtx{ runtime: &*self.runtime };
 
                    let new_schedule = scheduled.connector.run(scheduler_ctx, &mut scheduled.ctx_fancy);
 
                    let new_schedule = scheduled.connector.run(scheduler_ctx, &mut scheduled.ctx);
 
                    self.debug_conn(connector_id, "Finished running");
 

	
 
                    // Handle all of the output from the current run: messages to
 
                    // send and connectors to instantiate.
 
                    self.handle_changes_in_context(scheduled);
 

	
 
                    cur_schedule = new_schedule;
 
                }
 
            }
 

	
 
            // If here then the connector does not require immediate execution.
 
            // So enqueue it if requested, and otherwise put it in a sleeping
 
            // state.
 
            match cur_schedule {
 
                ConnectorScheduling::Immediate => unreachable!(),
 
                ConnectorScheduling::Later => {
 
                    // Simply queue it again later
 
                    self.runtime.push_work(connector_key);
 
                },
 
                ConnectorScheduling::NotNow => {
 
                    // Need to sleep, note that we are the only ones which are
 
                    // allows to set the sleeping state to `true`, and since
 
                    // we're running it must currently be `false`.
 
                    self.try_go_to_sleep(connector_key, scheduled);
 
                },
 
                ConnectorScheduling::Exit => {
 
                    // Prepare for exit. Set the shutdown flag and broadcast
 
                    // messages to notify peers of closing channels
 
                    scheduled.shutting_down = true;
 
                    for port in &scheduled.ctx_fancy.ports {
 
                    for port in &scheduled.ctx.ports {
 
                        if port.state != PortState::Closed {
 
                            let message = scheduled.router.prepare_closing_channel(
 
                                port.self_id, port.peer_id,
 
                                connector_id
 
                            );
 
                            self.debug_conn(connector_id, &format!("Sending message [ exit ] \n --- {:?}", message));
 
                            self.runtime.send_message(port.peer_connector, Message::Control(message));
 
                        }
 
                    }
 

	
 
                    if scheduled.router.num_pending_acks() == 0 {
 
                        self.runtime.destroy_component(connector_key);
 
                        continue 'thread_loop;
 
                    }
 

	
 
                    self.try_go_to_sleep(connector_key, scheduled);
 
                }
 
            }
 
        }
 
    }
 

	
 
    /// Receiving messages from the public inbox and handling them or storing
 
    /// them in the component's private inbox
 
    fn handle_inbox_messages(&mut self, scheduled: &mut ScheduledConnector) {
 
        let connector_id = scheduled.ctx_fancy.id;
 
        let connector_id = scheduled.ctx.id;
 

	
 
        while let Some(message) = scheduled.public.inbox.take_message() {
 
            // Check if the message has to be rerouted because we have moved the
 
            // target port to another component.
 
            self.debug_conn(connector_id, &format!("Handling message\n --- {:?}", message));
 
            if let Some(target_port) = Self::get_message_target_port(&message) {
 
                if let Some(other_component_id) = scheduled.router.should_reroute(target_port) {
 
                    self.debug_conn(connector_id, " ... Rerouting the message");
 
                    self.runtime.send_message(other_component_id, message);
 
                    continue;
 
                }
 
            }
 

	
 
            // If here, then we should handle the message
 
            self.debug_conn(connector_id, " ... Handling the message");
 

	
 
            match message {
 
                Message::Control(message) => {
 
                    match message.content {
 
                        ControlContent::PortPeerChanged(port_id, new_target_connector_id) => {
 
                            // Need to change port target
 
                            let port = scheduled.ctx_fancy.get_port_mut_by_id(port_id).unwrap();
 
                            let port = scheduled.ctx.get_port_mut_by_id(port_id).unwrap();
 
                            port.peer_connector = new_target_connector_id;
 

	
 
                            // Note: for simplicity we program the scheduler to always finish
 
                            // running a connector with an empty outbox. If this ever changes
 
                            // then accepting the "port peer changed" message implies we need
 
                            // to change the recipient of the message in the outbox.
 
                            debug_assert!(scheduled.ctx_fancy.outbox.is_empty());
 
                            debug_assert!(scheduled.ctx.outbox.is_empty());
 

	
 
                            // And respond with an Ack
 
                            let ack_message = Message::Control(ControlMessage {
 
                                id: message.id,
 
                                sending_component_id: connector_id,
 
                                content: ControlContent::Ack,
 
                            });
 
                            self.debug_conn(connector_id, &format!("Sending message [pp ack]\n --- {:?}", ack_message));
 
                            self.runtime.send_message(message.sending_component_id, ack_message);
 
                        },
 
                        ControlContent::CloseChannel(port_id) => {
 
                            // Mark the port as being closed
 
                            let port = scheduled.ctx_fancy.get_port_mut_by_id(port_id).unwrap();
 
                            let port = scheduled.ctx.get_port_mut_by_id(port_id).unwrap();
 
                            port.state = PortState::Closed;
 

	
 
                            // Send an Ack
 
                            let ack_message = Message::Control(ControlMessage {
 
                                id: message.id,
 
                                sending_component_id: connector_id,
 
                                content: ControlContent::Ack,
 
                            });
 
                            self.debug_conn(connector_id, &format!("Sending message [cc ack] \n --- {:?}", ack_message));
 
                            self.runtime.send_message(message.sending_component_id, ack_message);
 
                        },
 
                        ControlContent::Ack => {
 
                            scheduled.router.handle_ack(message.id);
 
                        },
 
                        ControlContent::Ping => {},
 
                    }
 
                },
 
                _ => {
 
                    // All other cases have to be handled by the component
 
                    scheduled.ctx_fancy.inbox_messages.push(message);
 
                    scheduled.ctx.inbox_messages.push(message);
 
                }
 
            }
 
        }
 
    }
 

	
 
    /// Handles changes to the context that were made by the component. This is
 
    /// the way (due to Rust's borrowing rules) that we bubble up changes in the
 
    /// component's state that the scheduler needs to know about (e.g. a message
 
    /// that the component wants to send, a port that has been added).
 
    fn handle_changes_in_context(&mut self, scheduled: &mut ScheduledConnector) {
 
        let connector_id = scheduled.ctx_fancy.id;
 
        let connector_id = scheduled.ctx.id;
 

	
 
        // Handling any messages that were sent
 
        while let Some(message) = scheduled.ctx_fancy.outbox.pop_front() {
 
        while let Some(message) = scheduled.ctx.outbox.pop_front() {
 
            self.debug_conn(connector_id, &format!("Sending message [outbox] \n --- {:?}", message));
 

	
 
            let target_component_id = match &message {
 
                Message::Data(content) => {
 
                    // Data messages are always sent to a particular port, and
 
                    // may end up being rerouted.
 
                    let port_desc = scheduled.ctx_fancy.get_port_by_id(content.data_header.sending_port).unwrap();
 
                    let port_desc = scheduled.ctx.get_port_by_id(content.data_header.sending_port).unwrap();
 
                    debug_assert_eq!(port_desc.peer_id, content.data_header.target_port);
 

	
 
                    if port_desc.state == PortState::Closed {
 
                        todo!("handle sending over a closed port")
 
                    }
 

	
 
                    port_desc.peer_connector
 
                },
 
                Message::Sync(content) => {
 
                    // Sync messages are always sent to a particular component,
 
                    // the sender must make sure it actually wants to send to
 
                    // the specified component (and is not using an inconsistent
 
                    // component ID associated with a port).
 
                    content.target_component_id
 
                },
 
                Message::Control(_) => {
 
                    unreachable!("component sending control messages directly");
 
                }
 
            };
 

	
 
            self.runtime.send_message(target_component_id, message);
 
        }
 

	
 
        while let Some(state_change) = scheduled.ctx_fancy.state_changes.pop_front() {
 
        while let Some(state_change) = scheduled.ctx.state_changes.pop_front() {
 
            match state_change {
 
                ComponentStateChange::CreatedComponent(component, initial_ports) => {
 
                    // Creating a new component. The creator needs to relinquish
 
                    // ownership of the ports that are given to the new
 
                    // component. All data messages that were intended for that
 
                    // port also needs to be transferred.
 
                    let new_key = self.runtime.create_pdl_component(component, false);
 
                    let new_connector = self.runtime.get_component_private(&new_key);
 

	
 
                    for port_id in initial_ports {
 
                        // Transfer messages associated with the transferred port
 
                        let mut message_idx = 0;
 
                        while message_idx < scheduled.ctx_fancy.inbox_messages.len() {
 
                            let message = &scheduled.ctx_fancy.inbox_messages[message_idx];
 
                        while message_idx < scheduled.ctx.inbox_messages.len() {
 
                            let message = &scheduled.ctx.inbox_messages[message_idx];
 
                            if Self::get_message_target_port(message) == Some(port_id) {
 
                                // Need to transfer this message
 
                                let message = scheduled.ctx_fancy.inbox_messages.remove(message_idx);
 
                                new_connector.ctx_fancy.inbox_messages.push(message);
 
                                let message = scheduled.ctx.inbox_messages.remove(message_idx);
 
                                new_connector.ctx.inbox_messages.push(message);
 
                            } else {
 
                                message_idx += 1;
 
                            }
 
                        }
 

	
 
                        // Transfer the port itself
 
                        let port_index = scheduled.ctx_fancy.ports.iter()
 
                        let port_index = scheduled.ctx.ports.iter()
 
                            .position(|v| v.self_id == port_id)
 
                            .unwrap();
 
                        let port = scheduled.ctx_fancy.ports.remove(port_index);
 
                        new_connector.ctx_fancy.ports.push(port.clone());
 
                        let port = scheduled.ctx.ports.remove(port_index);
 
                        new_connector.ctx.ports.push(port.clone());
 

	
 
                        // Notify the peer that the port has changed
 
                        let reroute_message = scheduled.router.prepare_reroute(
 
                            port.self_id, port.peer_id, scheduled.ctx_fancy.id,
 
                            port.peer_connector, new_connector.ctx_fancy.id
 
                            port.self_id, port.peer_id, scheduled.ctx.id,
 
                            port.peer_connector, new_connector.ctx.id
 
                        );
 

	
 
                        self.debug_conn(connector_id, &format!("Sending message [newcon]\n --- {:?}", reroute_message));
 
                        self.runtime.send_message(port.peer_connector, Message::Control(reroute_message));
 
                    }
 

	
 
                    // Schedule new connector to run
 
                    self.runtime.push_work(new_key);
 
                },
 
                ComponentStateChange::CreatedPort(port) => {
 
                    scheduled.ctx_fancy.ports.push(port);
 
                    scheduled.ctx.ports.push(port);
 
                },
 
                ComponentStateChange::ChangedPort(port_change) => {
 
                    if port_change.is_acquired {
 
                        scheduled.ctx_fancy.ports.push(port_change.port);
 
                        scheduled.ctx.ports.push(port_change.port);
 
                    } else {
 
                        let index = scheduled.ctx_fancy.ports
 
                        let index = scheduled.ctx.ports
 
                            .iter()
 
                            .position(|v| v.self_id == port_change.port.self_id)
 
                            .unwrap();
 
                        scheduled.ctx_fancy.ports.remove(index);
 
                        scheduled.ctx.ports.remove(index);
 
                    }
 
                }
 
            }
 
        }
 

	
 
        // Finally, check if we just entered or just left a sync region
 
        if scheduled.ctx_fancy.changed_in_sync {
 
            if scheduled.ctx_fancy.is_in_sync {
 
        if scheduled.ctx.changed_in_sync {
 
            if scheduled.ctx.is_in_sync {
 
                // Just entered sync region
 
            } else {
 
                // Just left sync region. So clear inbox
 
                scheduled.ctx_fancy.inbox_messages.clear();
 
                scheduled.ctx_fancy.inbox_len_read = 0;
 
                scheduled.ctx.inbox_messages.clear();
 
                scheduled.ctx.inbox_len_read = 0;
 
            }
 

	
 
            scheduled.ctx_fancy.changed_in_sync = false; // reset flag
 
            scheduled.ctx.changed_in_sync = false; // reset flag
 
        }
 
    }
 

	
 
    fn try_go_to_sleep(&self, connector_key: ConnectorKey, connector: &mut ScheduledConnector) {
 
        debug_assert_eq!(connector_key.index, connector.ctx_fancy.id.0);
 
        debug_assert_eq!(connector_key.index, connector.ctx.id.0);
 
        debug_assert_eq!(connector.public.sleeping.load(Ordering::Acquire), false);
 

	
 
        // This is the running connector, and only the running connector may
 
        // decide it wants to sleep again.
 
        connector.public.sleeping.store(true, Ordering::Release);
 

	
 
        // But due to reordering we might have received messages from peers who
 
        // did not consider us sleeping. If so, then we wake ourselves again.
 
        if !connector.public.inbox.is_empty() {
 
            // Try to wake ourselves up (needed because someone might be trying
 
            // the exact same atomic compare-and-swap at this point in time)
 
            let should_wake_up_again = connector.public.sleeping
 
                .compare_exchange(true, false, Ordering::SeqCst, Ordering::Acquire)
 
                .is_ok();
 

	
 
            if should_wake_up_again {
 
                self.runtime.push_work(connector_key)
 
            }
 
        }
 
    }
 

	
 
    #[inline]
 
    fn get_message_target_port(message: &Message) -> Option<PortIdLocal> {
 
        match message {
 
            Message::Data(data) => return Some(data.data_header.target_port),
 
            Message::Sync(_) => {},
 
            Message::Control(control) => {
 
                match &control.content {
 
                    ControlContent::PortPeerChanged(port_id, _) => return Some(*port_id),
 
                    ControlContent::CloseChannel(port_id) => return Some(*port_id),
 
                    ControlContent::Ping | ControlContent::Ack => {},
 
                }
 
            },
 
        }
 

	
 
        return None
 
    }
 

	
 
    // TODO: Remove, this is debugging stuff
 
    fn debug(&self, message: &str) {
 
        // println!("DEBUG [thrd:{:02} conn:  ]: {}", self.scheduler_id, message);
 
    }
 

	
 
    fn debug_conn(&self, conn: ConnectorId, message: &str) {
 
        // println!("DEBUG [thrd:{:02} conn:{:02}]: {}", self.scheduler_id, conn.0, message);
 
    }
 
}
 

	
 
// -----------------------------------------------------------------------------
 
// ComponentCtx
 
// -----------------------------------------------------------------------------
 

	
 
enum ComponentStateChange {
 
    CreatedComponent(ConnectorPDL, Vec<PortIdLocal>),
 
    CreatedPort(Port),
 
    ChangedPort(ComponentPortChange),
 
}
 

	
 
#[derive(Clone)]
 
pub(crate) struct ComponentPortChange {
 
    pub is_acquired: bool, // otherwise: released
 
    pub port: Port,
 
}
 

	
 
/// The component context (better name may be invented). This was created
 
/// because part of the component's state is managed by the scheduler, and part
 
/// of it by the component itself. When the component starts a sync block or
 
/// exits a sync block the partially managed state by both component and
 
/// scheduler need to be exchanged.
 
pub(crate) struct ComponentCtx {
 
    // Mostly managed by the scheduler
 
    pub(crate) id: ConnectorId,
 
    ports: Vec<Port>,
 
    inbox_messages: Vec<Message>, // never control or ping messages
 
    inbox_len_read: usize,
 
    // Submitted by the component
 
    is_in_sync: bool,
 
    changed_in_sync: bool,
 
    outbox: VecDeque<Message>,
 
    state_changes: VecDeque<ComponentStateChange>,
 
    // Workspaces that may be used by components to (generally) prevent
 
    // allocations. Be a good scout and leave it empty after you've used it.
 
    // TODO: Move to scheduler ctx, this is the wrong place
 
    pub workspace_ports: Vec<PortIdLocal>,
 
    pub workspace_branches: Vec<BranchId>,
 
}
 

	
 
impl ComponentCtx {
 
    pub(crate) fn new_empty() -> Self {
 
        return Self{
 
            id: ConnectorId::new_invalid(),
 
            ports: Vec::new(),
 
            inbox_messages: Vec::new(),
 
            inbox_len_read: 0,
 
            is_in_sync: false,
 
            changed_in_sync: false,
0 comments (0 inline, 0 general)