Changeset - 5c3630dcfeb6
[Not reviewed]
0 3 0
mh - 4 years ago 2021-12-11 18:02:27
contact@maxhenger.nl
Add some tests for tuples, fix some initial bugs
3 files changed with 74 insertions and 4 deletions:
0 comments (0 inline, 0 general)
src/protocol/parser/pass_definitions_types.rs
Show inline comments
 
use crate::protocol::parser::*;
 
use crate::protocol::parser::token_parsing::*;
 

	
 
#[derive(Debug)]
 
struct Entry {
 
    element: ParserTypeElement,
 
    depth: i32,
 
}
 

	
 
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
 
enum DepthKind {
 
    Tuple, // because we had a `(` token
 
    PolyArgs, // because we had a `<` token
 
}
 

	
 
#[derive(Debug)]
 
struct DepthElement {
 
    kind: DepthKind,
 
    entry_index: u32, // in `entries` array of parser
 
    pos: InputPosition,
 
}
 

	
 
/// Current parsing state, for documentation's sake: types may be named, or may
 
/// be tuples. Named types may have polymorphic arguments (if the type
 
/// declaration allows) and a type may be turned into an array of that type by
 
/// postfixing a "[]".
 
#[derive(Debug)]
 
enum ParseState {
 
    TypeMaybePolyArgs,  // just parsed a type, might have poly arguments
 
    TypeNeverPolyArgs,  // just parsed a type that cannot have poly arguments
 
    PolyArgStart,       // just opened a polymorphic argument list
 
    TupleStart,         // just opened a tuple list
 
    ParsedComma,        // just had a comma
 
}
 

	
 
/// Parsers tokens into `ParserType` instances (yes, the name of the struct is
 
/// silly). Essentially a little state machine with its own temporary storage.
 
#[derive(Debug)]
 
pub(crate) struct ParserTypeParser {
 
    entries: Vec<Entry>,
 
    depths: Vec<DepthElement>,
 
    parse_state: ParseState,
 
    first_pos: InputPosition,
 
    last_pos: InputPosition,
 
}
 

	
 
impl ParserTypeParser {
 
    pub(crate) fn new() -> Self {
 
        return Self{
 
            entries: Vec::with_capacity(16),
 
            depths: Vec::with_capacity(16),
 
            parse_state: ParseState::TypeMaybePolyArgs,
 
            first_pos: InputPosition{ line: 0, offset: 0 },
 
            last_pos: InputPosition{ line: 0, offset: 0 }
 
        }
 
    }
 

	
 
    pub(crate) fn consume_parser_type(
 
        &mut self, iter: &mut TokenIter, heap: &Heap, source: &InputSource,
 
        symbols: &SymbolTable, poly_vars: &[Identifier],
 
        wrapping_definition: DefinitionId, cur_scope: SymbolScope,
 
        allow_inference: bool, inside_angular_bracket: Option<InputPosition>,
 
    ) -> Result<ParserType, ParseError> {
 
        // Prepare
 
        self.entries.clear();
 
        self.depths.clear();
 

	
 
        // Setup processing
 
        if let Some(bracket_pos) = inside_angular_bracket {
 
            self.push_depth(DepthKind::PolyArgs, u32::MAX, bracket_pos);
 
        }
 

	
 
        let initial_state = match iter.next() {
 
            Some(TokenKind::Ident) => {
 
                let element = Self::consume_parser_type_element(
 
                    iter, source, heap, symbols, wrapping_definition, poly_vars, cur_scope, allow_inference
 
                )?;
 
                self.first_pos = element.element_span.begin;
 
                self.last_pos = element.element_span.end;
 

	
 
                self.entries.push(Entry{
 
                    element,
 
                    depth: self.cur_depth(),
 
                });
 

	
 
                // Due to the nature of the subsequent type parsing algorithm,
 
                // we check the opening polymorphic argument list paren here.
 
                if let Some(TokenKind::OpenAngle) = iter.next() {
 
                    self.consume_open_angle(iter);
 
                    ParseState::PolyArgStart
 
                } else {
 
                    ParseState::TypeMaybePolyArgs
 
                }
 
            },
 
            Some(TokenKind::OpenParen) => {
 
                let tuple_start_pos = iter.next_start_position();
 
                self.first_pos = tuple_start_pos; // last pos will be set later, this is a tuple
 

	
 
                let tuple_entry_index = self.entries.len() as u32;
 
                let tuple_depth = self.cur_depth();
 
                self.push_depth(DepthKind::Tuple, tuple_entry_index, tuple_start_pos);
 
                self.entries.push(Entry{
 
                    element: ParserTypeElement{
 
                        element_span: InputSpan::from_positions(tuple_start_pos, tuple_start_pos),
 
                        variant: ParserTypeVariant::Tuple(0),
 
                    },
 
                    depth: self.cur_depth(),
 
                    depth: tuple_depth,
 
                });
 
                iter.consume();
 

	
 
                ParseState::PolyArgStart
 
                ParseState::TupleStart
 
            },
 
            _ => return Err(ParseError::new_error_str_at_pos(source, iter.last_valid_pos(), "expected a type")),
 
        };
 

	
 
        self.parse_state = initial_state;
 

	
 
        // Depth stack and entries are initialized, continue until depth stack
 
        // is empty, or until an unexpected set of tokens is encountered
 
        while !self.depths.is_empty() {
 
            let next = iter.next();
 

	
 
            match self.parse_state {
 
                ParseState::TypeMaybePolyArgs => {
 
                    // Allowed tokens: , < > >> ) [
 
                    match next {
 
                        Some(TokenKind::Comma) => self.consume_comma(iter),
 
                        Some(TokenKind::OpenAngle) => self.consume_open_angle(iter),
 
                        Some(TokenKind::CloseAngle) => self.consume_close_angle(source, iter)?,
 
                        Some(TokenKind::ShiftRight) => self.consume_double_close_angle(source, iter)?,
 
                        Some(TokenKind::CloseParen) => self.consume_close_paren(source, iter)?,
 
                        Some(TokenKind::OpenSquare) => self.consume_square_parens(source, iter)?,
 
                        _ => return Err(ParseError::new_error_str_at_pos(
 
                            source, iter.last_valid_pos(),
 
                            "unexpected token: expected ',', '<', '>', '<<', ')' or '['"
 
                        )),
 
                    }
 
                },
 
                ParseState::TypeNeverPolyArgs => {
 
                    // Allowed tokens: , > >> ) [
 
                    match next {
 
                        Some(TokenKind::Comma) => self.consume_comma(iter),
 
                        Some(TokenKind::CloseAngle) => self.consume_close_angle(source, iter)?,
 
                        Some(TokenKind::ShiftRight) => self.consume_double_close_angle(source, iter)?,
 
                        Some(TokenKind::CloseParen) => self.consume_close_paren(source, iter)?,
 
                        Some(TokenKind::OpenSquare) => self.consume_square_parens(source, iter)?,
 
                        _ => return Err(ParseError::new_error_str_at_pos(
 
                            source, iter.last_valid_pos(),
 
                            "unexpected token: expected ',', '>', '>>', ')' or '['"
 
                        )),
 
                    }
 
                },
 
                ParseState::PolyArgStart => {
 
                    // Allowed tokens: ident (
 
                    match next {
 
                        Some(TokenKind::Ident) => self.consume_type_idents(
 
                            source, heap, symbols, wrapping_definition, poly_vars, cur_scope, allow_inference, iter
 
                        )?,
 
                        Some(TokenKind::OpenParen) => self.consume_open_paren(iter),
 
                        _ => return Err(ParseError::new_error_str_at_pos(
 
                            source, iter.last_valid_pos(),
 
                            "unexpected token: expected typename or '('"
 
                        )),
 
                    }
 
                },
 
                ParseState::TupleStart => {
 
                    // Allowed tokens: ident )
 
                    match next {
 
                        Some(TokenKind::Ident) => self.consume_type_idents(
 
                            source, heap, symbols, wrapping_definition, poly_vars, cur_scope, allow_inference, iter
 
                        )?,
 
                        Some(TokenKind::CloseParen) => self.consume_close_paren(source, iter)?,
 
                        _ => return Err(ParseError::new_error_str_at_pos(
 
                            source, iter.last_valid_pos(),
 
                            "unexpected token: expected typename or ')'"
 
                        )),
 
                    }
 
                },
 
                ParseState::ParsedComma => {
 
                    // Allowed tokens: ident ( > >> )
 
                    match next {
 
                        Some(TokenKind::Ident) => self.consume_type_idents(
 
                            source, heap, symbols, wrapping_definition, poly_vars, cur_scope, allow_inference, iter
 
                        )?,
 
                        Some(TokenKind::OpenParen) => self.consume_open_paren(iter),
 
                        Some(TokenKind::CloseAngle) => self.consume_close_angle(source, iter)?,
 
                        Some(TokenKind::ShiftRight) => self.consume_double_close_angle(source, iter)?,
 
                        Some(TokenKind::CloseParen) => self.consume_close_paren(source, iter)?,
 
                        _ => return Err(ParseError::new_error_str_at_pos(
 
                            source, iter.last_valid_pos(),
 
                            "unexpected token: expected typename, '(', '>', '>>' or ')'"
 
                        ))
 
                    }
 
                }
 
            }
 
        }
 

	
 
        // If here then we have found the correct number of closing braces.
 
        // However we might still have any number of array postfixed
 
        if inside_angular_bracket.is_none() {
 
            while Some(TokenKind::OpenSquare) == iter.next() {
 
                self.consume_square_parens(source, iter)?;
 
            }
 
        }
 

	
 
        // Type should be completed. But we still need to check the polymorphic
 
        // arguments and strip tuples with just one embedded type.
 
        let num_entries = self.entries.len();
 

	
 
        for el_index in 0..num_entries {
 
            let cur_element = &self.entries[el_index];
 

	
 
            // Peek ahead to see how many embedded types we have
 
            let mut encountered_embedded = 0;
 
            for peek_index in el_index + 1..num_entries {
 
                let peek_element = &self.entries[peek_index];
 
                if peek_element.depth == cur_element.depth + 1 {
 
                    encountered_embedded += 1;
 
                } else if peek_element.depth <= cur_element.depth {
 
                    break;
 
                }
 
            }
 

	
 
            // If we're dealing with a tuple then we don't need to determine if
 
            // the number of embedded types is correct, we simply need to set it
 
            // to whatever what was encountered.
 
            if let ParserTypeVariant::Tuple(_) = cur_element.element.variant {
 
                self.entries[el_index].element.variant = ParserTypeVariant::Tuple(encountered_embedded);
 
            } else {
 
                let expected_embedded = cur_element.element.variant.num_embedded() as u32;
 
                if expected_embedded != encountered_embedded {
 
                    if encountered_embedded == 0 {
 
                        // Every polymorphic argument should be inferred
 
                        if !allow_inference {
 
                            println!("DEBUG: Ended up with {:?}", self.entries);
 
                            return Err(ParseError::new_error_str_at_span(
 
                                source, cur_element.element.element_span,
 
                                "type inference is not allowed here"
 
                            ));
 
                        }
 

	
 
                        // Insert missing types
 
                        let inserted_span = cur_element.element.element_span;
 
                        let inserted_depth = cur_element.depth + 1;
 
                        self.entries.reserve(expected_embedded as usize);
 
                        for _ in 0..expected_embedded {
 
                            self.entries.insert(el_index + 1, Entry {
 
                                element: ParserTypeElement {
 
                                    element_span: inserted_span,
 
                                    variant: ParserTypeVariant::Inferred,
 
                                },
 
                                depth: inserted_depth,
 
                            });
 
                        }
 
                    } else {
 
                        // Mismatch in number of embedded types
 
                        return Err(Self::construct_poly_arg_mismatch_error(
 
                            source, cur_element.element.element_span, allow_inference,
 
                            expected_embedded, encountered_embedded
 
                        ));
 
                    }
 
                }
 
            }
 
        }
 

	
 
        // Convert the results from parsing into the `ParserType`
 
        let mut elements = Vec::with_capacity(self.entries.len());
 
        debug_assert!(!self.entries.is_empty());
 

	
 
        for entry in self.entries.drain(..) {
 
            elements.push(entry.element)
 
            if ParserTypeVariant::Tuple(1) == entry.element.variant {
 
                // We strip these ones
 
            } else {
 
                elements.push(entry.element);
 
            }
 
        }
 

	
 
        return Ok(ParserType{
 
            elements,
 
            full_span: InputSpan::from_positions(self.first_pos, self.last_pos),
 
        });
 
    }
 

	
 
    // --- Parsing Utilities
 

	
 
    #[inline]
 
    fn consume_type_idents(
 
        &mut self, source: &InputSource, heap: &Heap, symbols: &SymbolTable,
 
        wrapping_definition: DefinitionId, poly_vars: &[Identifier],
 
        cur_scope: SymbolScope, allow_inference: bool, iter: &mut TokenIter
 
    ) -> Result<(), ParseError> {
 
        let element = Self::consume_parser_type_element(
 
            iter, source, heap, symbols, wrapping_definition, poly_vars, cur_scope, allow_inference
 
        )?;
 
        let depth = self.cur_depth();
 
        self.last_pos = element.element_span.end;
 
        self.entries.push(Entry{ element, depth });
 
        self.parse_state = ParseState::TypeMaybePolyArgs;
 

	
 
        return Ok(());
 
    }
 

	
 
    #[inline]
 
    fn consume_open_angle(&mut self, iter: &mut TokenIter) {
 
        // Note: open angular bracket is only consumed when we just parsed an
 
        //  ident-based type. So the last element of the `entries` array is the
 
        //  one that this angular bracket starts the polymorphic arguments for.
 
        let angle_start_pos = iter.next_start_position();
 
        let entry_index = (self.entries.len() - 1) as u32;
 
        self.push_depth(DepthKind::PolyArgs, entry_index, angle_start_pos);
 
        self.parse_state = ParseState::PolyArgStart;
 

	
 
        iter.consume();
 
    }
 

	
 
    #[inline]
 
    fn consume_close_angle(&mut self, source: &InputSource, iter: &mut TokenIter) -> Result<(), ParseError> {
 
        let (angle_start_pos, angle_end_pos) = iter.next_positions();
 
        self.last_pos = angle_end_pos;
 
        self.pop_depth(source, DepthKind::PolyArgs, angle_start_pos)?;
 
        self.parse_state = ParseState::TypeNeverPolyArgs;
 

	
 
        iter.consume();
 
        return Ok(())
 
    }
 

	
 
    #[inline]
 
    fn consume_double_close_angle(&mut self, source: &InputSource, iter: &mut TokenIter) -> Result<(), ParseError> {
 
        let (angle_start_pos, angle_end_pos) = iter.next_positions();
 
        self.last_pos = angle_end_pos;
 

	
 
        self.pop_depth(source, DepthKind::PolyArgs, angle_start_pos)?; // first '>' in '>>'.
 
        self.pop_depth(source, DepthKind::PolyArgs, angle_start_pos.with_offset(1))?; // second '>' in '>>'
 
        self.parse_state = ParseState::TypeNeverPolyArgs;
 

	
 
        iter.consume(); // consume once, '>>' is one token
 
        return Ok(())
 
    }
 

	
 
    #[inline]
 
    fn consume_open_paren(&mut self, iter: &mut TokenIter) {
 
        let paren_start_pos = iter.next_start_position();
 
        let cur_depth = self.cur_depth();
 
        let entry_index = self.entries.len() as u32;
 
        self.entries.push(Entry{
 
            element: ParserTypeElement {
 
                element_span: InputSpan::from_positions(paren_start_pos, paren_start_pos),
 
                variant: ParserTypeVariant::Tuple(0),
 
            },
 
            depth: cur_depth,
 
        });
 

	
 
        self.push_depth(DepthKind::Tuple, entry_index, paren_start_pos);
 
        self.parse_state = ParseState::TupleStart;
 

	
 
        iter.consume();
 
    }
 

	
 
    #[inline]
 
    fn consume_close_paren(&mut self, source: &InputSource, iter: &mut TokenIter) -> Result<(), ParseError> {
 
        let (paren_start_pos, paren_end_pos) = iter.next_positions();
 
        self.last_pos = paren_end_pos;
 
        let tuple_type_index = self.pop_depth(source, DepthKind::Tuple, paren_start_pos)?;
 
        self.entries[tuple_type_index as usize].element.element_span.end = paren_end_pos.with_offset(1);
 
        self.parse_state = ParseState::TypeNeverPolyArgs;
 

	
 
        iter.consume();
 
        return Ok(())
 
    }
 

	
 
    #[inline]
 
    fn consume_comma(&mut self, iter: &mut TokenIter) {
 
        iter.consume();
 
        self.parse_state = ParseState::ParsedComma;
 
    }
 

	
 
    #[inline]
 
    fn consume_square_parens(&mut self, source: &InputSource, iter: &mut TokenIter) -> Result<(), ParseError> {
 
        // Consume the opening square paren that forms the postfixed array type
 
        let array_start_pos = iter.next_start_position();
 
        iter.consume();
 
        if iter.next() != Some(TokenKind::CloseSquare) {
 
            return Err(ParseError::new_error_str_at_pos(
 
                source, iter.last_valid_pos(),
 
                "unexpected token: expected ']'"
 
            ));
 
        }
 

	
 
        let (_, array_end_pos) = iter.next_positions();
 
        let array_span = InputSpan::from_positions(array_start_pos, array_end_pos);
 
        self.last_pos = array_end_pos;
 
        iter.consume();
 

	
 
        // In the language we put the array specification after a type, in the
 
        // type tree we need to make the array type the parent, so:
 
        let insert_depth = self.cur_depth();
 
        let insert_at = self.entries.iter().rposition(|e| e.depth == insert_depth).unwrap();
 
        let num_embedded = self.entries[insert_at].element.variant.num_embedded();
 

	
 
        self.entries.insert(insert_at, Entry{
 
            element: ParserTypeElement{
 
                element_span: array_span,
 
                variant: ParserTypeVariant::Array,
 
            },
 
            depth: insert_depth
 
        });
 

	
 
        // Need to increment the depth of the child types
 
        self.entries[insert_at + 1].depth += 1; // element we applied the array type to
 
        if num_embedded != 0 {
 
            for index in insert_at + 2..self.entries.len() {
 
                let element = &mut self.entries[index];
 
                if element.depth >= insert_depth + 1 {
 
                    element.depth += 1;
 
                } else {
 
                    break;
 
                }
 
            }
 
        }
 

	
 
        return Ok(())
 
    }
 

	
 
    /// Consumes a namespaced identifier that should resolve to some kind of
 
    /// type. There may be commas or polymorphic arguments remaining after this
 
    /// function has finished.
 
    fn consume_parser_type_element(
 
        iter: &mut TokenIter, source: &InputSource, heap: &Heap, symbols: &SymbolTable,
 
        wrapping_definition: DefinitionId, poly_vars: &[Identifier],
 
        mut scope: SymbolScope, allow_inference: bool,
 
    ) -> Result<ParserTypeElement, ParseError> {
 
        use ParserTypeVariant as PTV;
 
        let (mut type_text, mut type_span) = consume_any_ident(source, iter)?;
 

	
 
        let variant = match type_text {
 
            KW_TYPE_MESSAGE => PTV::Message,
 
            KW_TYPE_BOOL => PTV::Bool,
 
            KW_TYPE_UINT8 => PTV::UInt8,
 
            KW_TYPE_UINT16 => PTV::UInt16,
 
            KW_TYPE_UINT32 => PTV::UInt32,
 
            KW_TYPE_UINT64 => PTV::UInt64,
 
            KW_TYPE_SINT8 => PTV::SInt8,
 
            KW_TYPE_SINT16 => PTV::SInt16,
 
            KW_TYPE_SINT32 => PTV::SInt32,
 
            KW_TYPE_SINT64 => PTV::SInt64,
 
            KW_TYPE_IN_PORT => PTV::Input,
 
            KW_TYPE_OUT_PORT => PTV::Output,
 
            KW_TYPE_CHAR => PTV::Character,
 
            KW_TYPE_STRING => PTV::String,
 
            KW_TYPE_INFERRED => {
 
                if !allow_inference {
 
                    return Err(ParseError::new_error_str_at_span(
 
                        source, type_span, "type inference is not allowed here"
 
                    ));
 
                }
 

	
 
                PTV::Inferred
 
            },
 
            _ => {
 
                // Must be some kind of symbolic type
 
                let mut type_kind = None;
 
                for (poly_idx, poly_var) in poly_vars.iter().enumerate() {
 
                    if poly_var.value.as_bytes() == type_text {
 
                        type_kind = Some(PTV::PolymorphicArgument(wrapping_definition, poly_idx as u32));
 
                    }
 
                }
 

	
src/protocol/parser/type_table.rs
Show inline comments
 
@@ -1307,384 +1307,385 @@ impl TypeTable {
 
        }
 

	
 
        for type_loop in &self.type_loops {
 
            let mut can_be_broken = false;
 
            debug_assert!(!type_loop.members.is_empty());
 

	
 
            for entry in &type_loop.members {
 
                if entry.is_union {
 
                    let base_type = self.lookup.get(&entry.definition_id).unwrap();
 
                    let monomorph = &base_type.definition.as_union().monomorphs[entry.monomorph_idx];
 

	
 
                    debug_assert!(!monomorph.variants.is_empty()); // otherwise it couldn't be part of the type loop
 
                    let has_stack_variant = monomorph.variants.iter().any(|variant| !variant.lives_on_heap);
 
                    if has_stack_variant {
 
                        can_be_broken = true;
 
                    }
 
                }
 
            }
 

	
 
            if !can_be_broken {
 
                // Construct a type loop error
 
                return Err(construct_type_loop_error(self, type_loop, modules, heap));
 
            }
 
        }
 

	
 
        // If here, then all type loops have been resolved and we can lay out
 
        // all of the members
 
        self.type_loops.clear();
 

	
 
        return Ok(());
 
    }
 

	
 
    /// Checks if the specified type needs to be resolved (i.e. we need to push
 
    /// a breadcrumb), is already resolved (i.e. we can continue with the next
 
    /// member of the currently considered type) or is in the process of being
 
    /// resolved (i.e. we're in a type loop). Because of borrowing rules we
 
    /// don't do any modifications of internal types here. Hence: if we
 
    /// return `PushBreadcrumb` then call `handle_new_breadcrumb_for_type_loops`
 
    /// to take care of storing the appropriate types.
 
    fn check_member_for_type_loops(&self, definition_type: &ConcreteType) -> TypeLoopResult {
 
        use ConcreteTypePart as CTP;
 

	
 
        // We're only interested in user-defined types, so exit if it is a
 
        // builtin of some sort.
 
        debug_assert!(!definition_type.parts.is_empty());
 
        let definition_id = match &definition_type.parts[0] {
 
            CTP::Instance(definition_id, _) |
 
            CTP::Function(definition_id, _) |
 
            CTP::Component(definition_id, _) => {
 
                *definition_id
 
            },
 
            _ => {
 
                return TypeLoopResult::TypeExists
 
            },
 
        };
 

	
 
        let base_type = self.lookup.get(&definition_id).unwrap();
 
        if let Some(mono_idx) = base_type.get_monomorph_index(&definition_type.parts) {
 
            // Monomorph is already known. Check if it is present in the
 
            // breadcrumbs. If so, then we are in a type loop
 
            for (breadcrumb_idx, breadcrumb) in self.type_loop_breadcrumbs.iter().enumerate() {
 
                if breadcrumb.definition_id == definition_id && breadcrumb.monomorph_idx == mono_idx {
 
                    return TypeLoopResult::TypeLoop(breadcrumb_idx);
 
                }
 
            }
 

	
 
            return TypeLoopResult::TypeExists;
 
        }
 

	
 
        // Type is not yet known, so we need to insert it into the lookup and
 
        // push a new breadcrumb.
 
        return TypeLoopResult::PushBreadcrumb(definition_id, definition_type.clone());
 
    }
 

	
 
    /// Handles the `PushBreadcrumb` result for a `check_member_for_type_loops`
 
    /// call.
 
    fn handle_new_breadcrumb_for_type_loops(&mut self, definition_id: DefinitionId, definition_type: ConcreteType) {
 
        use DefinedTypeVariant as DTV;
 

	
 
        let base_type = self.lookup.get_mut(&definition_id).unwrap();
 
        let mut is_union = false;
 
        let monomorph_idx = match &mut base_type.definition {
 
            DTV::Enum(definition) => {
 
                debug_assert!(definition.monomorphs.is_empty());
 
                definition.monomorphs.push(EnumMonomorph{
 
                    concrete_type: definition_type,
 
                });
 
                0
 
            },
 
            DTV::Union(definition) => {
 
                // Create all the variants with their concrete types
 
                let mut mono_variants = Vec::with_capacity(definition.variants.len());
 
                for poly_variant in &definition.variants {
 
                    let mut mono_embedded = Vec::with_capacity(poly_variant.embedded.len());
 
                    for poly_embedded in &poly_variant.embedded {
 
                        let mono_concrete = Self::construct_concrete_type(poly_embedded, &definition_type);
 
                        mono_embedded.push(UnionMonomorphEmbedded{
 
                            concrete_type: mono_concrete,
 
                            size: 0,
 
                            alignment: 0,
 
                            offset: 0
 
                        });
 
                    }
 

	
 
                    mono_variants.push(UnionMonomorphVariant{
 
                        lives_on_heap: false,
 
                        embedded: mono_embedded,
 
                    })
 
                }
 

	
 
                let mono_idx = definition.monomorphs.len();
 
                definition.monomorphs.push(UnionMonomorph{
 
                    concrete_type: definition_type,
 
                    variants: mono_variants,
 
                    stack_size: 0,
 
                    stack_alignment: 0,
 
                    heap_size: 0,
 
                    heap_alignment: 0
 
                });
 

	
 
                is_union = true;
 
                mono_idx
 
            },
 
            DTV::Struct(definition) => {
 
                let mut mono_fields = Vec::with_capacity(definition.fields.len());
 
                for poly_field in &definition.fields {
 
                    let mono_concrete = Self::construct_concrete_type(&poly_field.parser_type, &definition_type);
 
                    mono_fields.push(StructMonomorphField{
 
                        concrete_type: mono_concrete,
 
                        size: 0,
 
                        alignment: 0,
 
                        offset: 0
 
                    })
 
                }
 

	
 
                let mono_idx = definition.monomorphs.len();
 
                definition.monomorphs.push(StructMonomorph{
 
                    concrete_type: definition_type,
 
                    fields: mono_fields,
 
                    size: 0,
 
                    alignment: 0
 
                });
 

	
 
                mono_idx
 
            },
 
            DTV::Function(_) | DTV::Component(_) => {
 
                unreachable!("pushing type resolving breadcrumb for procedure type")
 
            },
 
        };
 

	
 
        self.encountered_types.push(TypeLoopEntry{
 
            definition_id,
 
            monomorph_idx,
 
            is_union,
 
        });
 

	
 
        self.type_loop_breadcrumbs.push(TypeLoopBreadcrumb{
 
            definition_id,
 
            monomorph_idx,
 
            next_member: 0,
 
            next_embedded: 0,
 
        });
 
    }
 

	
 
    /// Constructs a concrete type out of a parser type for a struct field or
 
    /// union embedded type. It will do this by looking up the polymorphic
 
    /// variables in the supplied concrete type. The assumption is that the
 
    /// polymorphic variable's indices correspond to the subtrees in the
 
    /// concrete type.
 
    fn construct_concrete_type(member_type: &ParserType, container_type: &ConcreteType) -> ConcreteType {
 
        use ParserTypeVariant as PTV;
 
        use ConcreteTypePart as CTP;
 

	
 
        // TODO: Combine with code in pass_typing.rs
 
        fn parser_to_concrete_part(part: &ParserTypeVariant) -> Option<ConcreteTypePart> {
 
            match part {
 
                PTV::Void      => Some(CTP::Void),
 
                PTV::Message   => Some(CTP::Message),
 
                PTV::Bool      => Some(CTP::Bool),
 
                PTV::UInt8     => Some(CTP::UInt8),
 
                PTV::UInt16    => Some(CTP::UInt16),
 
                PTV::UInt32    => Some(CTP::UInt32),
 
                PTV::UInt64    => Some(CTP::UInt64),
 
                PTV::SInt8     => Some(CTP::SInt8),
 
                PTV::SInt16    => Some(CTP::SInt16),
 
                PTV::SInt32    => Some(CTP::SInt32),
 
                PTV::SInt64    => Some(CTP::SInt64),
 
                PTV::Character => Some(CTP::Character),
 
                PTV::String    => Some(CTP::String),
 
                PTV::Array     => Some(CTP::Array),
 
                PTV::Input     => Some(CTP::Input),
 
                PTV::Output    => Some(CTP::Output),
 
                PTV::Tuple(num) => Some(CTP::Tuple(*num)),
 
                PTV::Definition(definition_id, num) => Some(CTP::Instance(*definition_id, *num)),
 
                _              => None
 
            }
 
        }
 

	
 
        let mut parts = Vec::with_capacity(member_type.elements.len()); // usually a correct estimation, might not be
 
        for member_part in &member_type.elements {
 
            // Check if we have a regular builtin type
 
            if let Some(part) = parser_to_concrete_part(&member_part.variant) {
 
                parts.push(part);
 
                continue;
 
            }
 

	
 
            // Not builtin, but if all code is working correctly, we only care
 
            // about the polymorphic argument at this point.
 
            if let PTV::PolymorphicArgument(_container_definition_id, poly_arg_idx) = member_part.variant {
 
                debug_assert_eq!(_container_definition_id, get_concrete_type_definition(container_type));
 

	
 
                let mut container_iter = container_type.embedded_iter(0);
 
                for _ in 0..poly_arg_idx {
 
                    container_iter.next();
 
                }
 

	
 
                let poly_section = container_iter.next().unwrap();
 
                parts.extend(poly_section);
 

	
 
                continue;
 
            }
 

	
 
            unreachable!("unexpected type part {:?} from {:?}", member_part, member_type);
 
        }
 

	
 
        return ConcreteType{ parts };
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Determining memory layout for types
 
    //--------------------------------------------------------------------------
 

	
 
    fn lay_out_memory_for_encountered_types(&mut self, arch: &TargetArch) {
 
        use DefinedTypeVariant as DTV;
 

	
 
        // Just finished type loop detection, so we're left with the encountered
 
        // types only
 
        debug_assert!(self.type_loops.is_empty());
 
        debug_assert!(!self.encountered_types.is_empty());
 
        debug_assert!(self.memory_layout_breadcrumbs.is_empty());
 
        debug_assert!(self.size_alignment_stack.is_empty());
 

	
 
        // Push the first entry (the type we originally started with when we
 
        // were detecting type loops)
 
        let first_entry = &self.encountered_types[0];
 
        self.memory_layout_breadcrumbs.push(MemoryBreadcrumb{
 
            definition_id: first_entry.definition_id,
 
            monomorph_idx: first_entry.monomorph_idx,
 
            next_member: 0,
 
            next_embedded: 0,
 
            first_size_alignment_idx: 0,
 
        });
 

	
 
        // Enter the main resolving loop
 
        'breadcrumb_loop: while !self.memory_layout_breadcrumbs.is_empty() {
 
            let cur_breadcrumb_idx = self.memory_layout_breadcrumbs.len() - 1;
 
            let mut breadcrumb = self.memory_layout_breadcrumbs[cur_breadcrumb_idx].clone();
 

	
 
            let poly_type = self.lookup.get(&breadcrumb.definition_id).unwrap();
 
            match &poly_type.definition {
 
                DTV::Enum(definition) => {
 
                    // Size should already be computed
 
                    debug_assert!(definition.size != 0 && definition.alignment != 0);
 
                },
 
                DTV::Union(definition) => {
 
                    // Retrieve size/alignment of each embedded type. We do not
 
                    // compute the offsets or total type sizes yet.
 
                    let mono_type = &definition.monomorphs[breadcrumb.monomorph_idx];
 
                    let num_variants = mono_type.variants.len();
 
                    while breadcrumb.next_member < num_variants {
 
                        let mono_variant = &mono_type.variants[breadcrumb.next_member];
 

	
 
                        if mono_variant.lives_on_heap {
 
                            // To prevent type loops we made this a heap-
 
                            // allocated variant. This implies we cannot
 
                            // compute sizes of members at this point.
 
                        } else {
 
                            let num_embedded = mono_variant.embedded.len();
 
                            while breadcrumb.next_embedded < num_embedded {
 
                                let mono_embedded = &mono_variant.embedded[breadcrumb.next_embedded];
 
                                match self.get_memory_layout_or_breadcrumb(arch, &mono_embedded.concrete_type.parts) {
 
                                    MemoryLayoutResult::TypeExists(size, alignment) => {
 
                                        self.size_alignment_stack.push((size, alignment));
 
                                    },
 
                                    MemoryLayoutResult::PushBreadcrumb(new_breadcrumb) => {
 
                                        self.memory_layout_breadcrumbs[cur_breadcrumb_idx] = breadcrumb;
 
                                        self.memory_layout_breadcrumbs.push(new_breadcrumb);
 
                                        continue 'breadcrumb_loop;
 
                                    }
 
                                }
 

	
 
                                breadcrumb.next_embedded += 1;
 
                            }
 
                        }
 

	
 
                        breadcrumb.next_member += 1;
 
                        breadcrumb.next_embedded = 0;
 
                    }
 

	
 
                    // If here then we can at least compute the stack size of
 
                    // the type, we'll have to come back at the very end to
 
                    // fill in the heap size/alignment/offset of each heap-
 
                    // allocated variant.
 
                    let mut max_size = definition.tag_size;
 
                    let mut max_alignment = definition.tag_size;
 

	
 
                    let poly_type = self.lookup.get_mut(&breadcrumb.definition_id).unwrap();
 
                    let definition = poly_type.definition.as_union_mut();
 
                    let mono_type = &mut definition.monomorphs[breadcrumb.monomorph_idx];
 
                    let mut size_alignment_idx = breadcrumb.first_size_alignment_idx;
 

	
 
                    for variant in &mut mono_type.variants {
 
                        // We're doing stack computations, so always start with
 
                        // the tag size/alignment.
 
                        let mut variant_offset = definition.tag_size;
 
                        let mut variant_alignment = definition.tag_size;
 

	
 
                        if variant.lives_on_heap {
 
                            // Variant lives on heap, so just a pointer
 
                            let (ptr_size, ptr_align) = arch.pointer_size_alignment;
 
                            align_offset_to(&mut variant_offset, ptr_align);
 

	
 
                            variant_offset += ptr_size;
 
                            variant_alignment = variant_alignment.max(ptr_align);
 
                        } else {
 
                            // Variant lives on stack, so walk all embedded
 
                            // types.
 
                            for embedded in &mut variant.embedded {
 
                                let (size, alignment) = self.size_alignment_stack[size_alignment_idx];
 
                                embedded.size = size;
 
                                embedded.alignment = alignment;
 
                                size_alignment_idx += 1;
 

	
 
                                align_offset_to(&mut variant_offset, alignment);
 
                                embedded.offset = variant_offset;
 

	
 
                                variant_offset += size;
 
                                variant_alignment = variant_alignment.max(alignment);
 
                            }
 
                        };
 

	
 
                        max_size = max_size.max(variant_offset);
 
                        max_alignment = max_alignment.max(variant_alignment);
 
                    }
 

	
 
                    mono_type.stack_size = max_size;
 
                    mono_type.stack_alignment = max_alignment;
 
                    self.size_alignment_stack.truncate(breadcrumb.first_size_alignment_idx);
 
                },
 
                DTV::Struct(definition) => {
 
                    // Retrieve size and alignment of each struct member. We'll
 
                    // compute the offsets once all of those are known
 
                    let mono_type = &definition.monomorphs[breadcrumb.monomorph_idx];
 
                    let num_fields = mono_type.fields.len();
 
                    while breadcrumb.next_member < num_fields {
 
                        let mono_field = &mono_type.fields[breadcrumb.next_member];
 

	
 
                        match self.get_memory_layout_or_breadcrumb(arch, &mono_field.concrete_type.parts) {
 
                            MemoryLayoutResult::TypeExists(size, alignment) => {
 
                                self.size_alignment_stack.push((size, alignment))
 
                            },
 
                            MemoryLayoutResult::PushBreadcrumb(new_breadcrumb) => {
 
                                self.memory_layout_breadcrumbs[cur_breadcrumb_idx] = breadcrumb;
 
                                self.memory_layout_breadcrumbs.push(new_breadcrumb);
 
                                continue 'breadcrumb_loop;
 
                            },
 
                        }
 

	
 
                        breadcrumb.next_member += 1;
 
                    }
 

	
 
                    // Compute offsets and size of total type
 
                    let mut cur_offset = 0;
 
                    let mut max_alignment = 1;
 

	
 
                    let poly_type = self.lookup.get_mut(&breadcrumb.definition_id).unwrap();
 
                    let definition = poly_type.definition.as_struct_mut();
 
                    let mono_type = &mut definition.monomorphs[breadcrumb.monomorph_idx];
 
                    let mut size_alignment_idx = breadcrumb.first_size_alignment_idx;
 

	
 
                    for field in &mut mono_type.fields {
 
                        let (size, alignment) = self.size_alignment_stack[size_alignment_idx];
 
                        field.size = size;
 
                        field.alignment = alignment;
 
                        size_alignment_idx += 1;
src/protocol/tests/parser_validation.rs
Show inline comments
 
@@ -163,213 +163,278 @@ fn test_correct_enum_instance() {
 
    Tester::new_single_source_expect_ok(
 
        "explicit single polymorph",
 
        "
 
        enum Foo<T>{ A }
 
        func bar() -> Foo<s32> { return Foo::A; }
 
        "
 
    );
 

	
 
    Tester::new_single_source_expect_ok(
 
        "explicit multi-polymorph",
 
        "
 
        enum Foo<A, B>{ A, B }
 
        func bar() -> Foo<s8, s32> { return Foo::B; }
 
        "
 
    );
 
}
 

	
 
#[test]
 
fn test_incorrect_enum_instance() {
 
    Tester::new_single_source_expect_err(
 
        "variant name reuse",
 
        "
 
        enum Foo { A, A }
 
        func bar() -> Foo { return Foo::A; }
 
        "
 
    ).error(|e| { e
 
        .assert_num(2)
 
        .assert_occurs_at(0, "A }")
 
        .assert_msg_has(0, "defined more than once")
 
        .assert_occurs_at(1, "A, ")
 
        .assert_msg_has(1, "other enum variant is defined here");
 
    });
 

	
 
    Tester::new_single_source_expect_err(
 
        "undefined variant",
 
        "
 
        enum Foo { A }
 
        func bar() -> Foo { return Foo::B; }
 
        "
 
    ).error(|e| { e
 
        .assert_num(1)
 
        .assert_msg_has(0, "variant 'B' does not exist on the enum 'Foo'");
 
    });
 
}
 

	
 
#[test]
 
fn test_correct_union_instance() {
 
    Tester::new_single_source_expect_ok(
 
        "single tag",
 
        "
 
        union Foo { A }
 
        func bar() -> Foo { return Foo::A; }
 
        "
 
    );
 

	
 
    Tester::new_single_source_expect_ok(
 
        "multiple tags",
 
        "
 
        union Foo { A, B }
 
        func bar() -> Foo { return Foo::B; }
 
        "
 
    );
 

	
 
    Tester::new_single_source_expect_ok(
 
        "single embedded",
 
        "
 
        union Foo { A(s32) }
 
        func bar() -> Foo { return Foo::A(5); }
 
        "
 
    );
 

	
 
    Tester::new_single_source_expect_ok(
 
        "multiple embedded",
 
        "
 
        union Foo { A(s32), B(s8) }
 
        func bar() -> Foo { return Foo::B(2); }
 
        "
 
    );
 

	
 
    Tester::new_single_source_expect_ok(
 
        "multiple values in embedded",
 
        "
 
        union Foo { A(s32, s8) }
 
        func bar() -> Foo { return Foo::A(0, 2); }
 
        "
 
    );
 

	
 
    Tester::new_single_source_expect_ok(
 
        "mixed tag/embedded",
 
        "
 
        union OptionInt { None, Some(s32) }
 
        func bar() -> OptionInt { return OptionInt::Some(3); }
 
        "
 
    );
 

	
 
    Tester::new_single_source_expect_ok(
 
        "single polymorphic var",
 
        "
 
        union Option<T> { None, Some(T) }
 
        func bar() -> Option<s32> { return Option::Some(3); }"
 
    );
 

	
 
    Tester::new_single_source_expect_ok(
 
        "multiple polymorphic vars",
 
        "
 
        union Result<T, E> { Ok(T), Err(E), }
 
        func bar() -> Result<s32, s8> { return Result::Ok(3); }
 
        "
 
    );
 

	
 
    Tester::new_single_source_expect_ok(
 
        "multiple polymorphic in one variant",
 
        "
 
        union MaybePair<T1, T2>{ None, Some(T1, T2) }
 
        func bar() -> MaybePair<s8, s32> { return MaybePair::Some(1, 2); }
 
        "
 
    );
 
}
 

	
 
#[test]
 
fn test_incorrect_union_instance() {
 
    Tester::new_single_source_expect_err(
 
        "tag-variant name reuse",
 
        "
 
        union Foo{ A, A }
 
        "
 
    ).error(|e| { e
 
        .assert_num(2)
 
        .assert_occurs_at(0, "A }")
 
        .assert_msg_has(0, "union variant is defined more than once")
 
        .assert_occurs_at(1, "A, ")
 
        .assert_msg_has(1, "other union variant");
 
    });
 

	
 
    Tester::new_single_source_expect_err(
 
        "embedded-variant name reuse",
 
        "
 
        union Foo{ A(s32), A(s8) }
 
        "
 
    ).error(|e| { e 
 
        .assert_num(2)
 
        .assert_occurs_at(0, "A(s8)")
 
        .assert_msg_has(0, "union variant is defined more than once")
 
        .assert_occurs_at(1, "A(s32)")
 
        .assert_msg_has(1, "other union variant");
 
    });
 

	
 
    Tester::new_single_source_expect_err(
 
        "undefined variant",
 
        "
 
        union Silly{ Thing(s8) }
 
        func bar() -> Silly { return Silly::Undefined(5); }
 
        "
 
    ).error(|e| { e
 
        .assert_msg_has(0, "variant 'Undefined' does not exist on the union 'Silly'");
 
    });
 

	
 
    Tester::new_single_source_expect_err(
 
        "using tag instead of embedded",
 
        "
 
        union Foo{ A(s32) }
 
        func bar() -> Foo { return Foo::A; }
 
        "
 
    ).error(|e| { e
 
        .assert_msg_has(0, "variant 'A' of union 'Foo' expects 1 embedded values, but 0 were");
 
    });
 

	
 
    Tester::new_single_source_expect_err(
 
        "using embedded instead of tag",
 
        "
 
        union Foo{ A }
 
        func bar() -> Foo { return Foo::A(3); }
 
        "
 
    ).error(|e| { e 
 
        .assert_msg_has(0, "The variant 'A' of union 'Foo' expects 0");
 
    });
 

	
 
    Tester::new_single_source_expect_err(
 
        "wrong embedded value",
 
        "
 
        union Foo{ A(s32) }
 
        func bar() -> Foo { return Foo::A(false); }
 
        "
 
    ).error(|e| { e
 
        .assert_occurs_at(0, "Foo::A")
 
        .assert_msg_has(0, "failed to fully resolve")
 
        .assert_occurs_at(1, "false")
 
        .assert_msg_has(1, "has been resolved to 's32'")
 
        .assert_msg_has(1, "has been resolved to 'bool'");
 
    });
 
}
 

	
 
#[test]
 
fn test_correct_tuple_members() {
 
    // Tuples with zero members
 
    Tester::new_single_source_expect_ok(
 
        "single zero-tuple",
 
        "struct Foo{ () bar }"
 
    ).for_struct("Foo", |s| { s
 
        .for_field("bar", |f| { f.assert_parser_type("()"); })
 
        .assert_size_alignment("Foo", 0, 1);
 
    });
 

	
 
    Tester::new_single_source_expect_ok(
 
        "triple zero-tuple",
 
        "struct Foo{ () bar, () baz, () qux }"
 
    ).for_struct("Foo", |s| { s
 
        .assert_size_alignment("Foo", 0, 1);
 
    });
 

	
 
    // Tuples with one member (which are elided, because due to ambiguity
 
    // between a one-tuple literal and a parenthesized expression, we're not
 
    // going to be able to construct one-tuples).
 
    Tester::new_single_source_expect_ok(
 
        "single elided one-tuple",
 
        "struct Foo{ (u32) bar }"
 
    ).for_struct("Foo", |s| { s
 
        .for_field("bar", |f| { f.assert_parser_type("u32"); })
 
        .assert_size_alignment("Foo", 4, 4);
 
    });
 

	
 
    Tester::new_single_source_expect_ok(
 
        "triple elided one-tuple",
 
        "struct Foo{ (u8) bar, (u16) baz, (u32) qux }"
 
    ).for_struct("Foo", |s| { s
 
        .assert_size_alignment("Foo", 8, 4);
 
    });
 

	
 
    // Tuples with three members
 
    Tester::new_single_source_expect_ok(
 
        "single three-tuple",
 
        "struct Foo{ (u8, u16, u32) bar }"
 
    ).for_struct("Foo", |s| { s
 
        .for_field("bar", |f| { f.assert_parser_type("(u8,u16,u32)"); })
 
        .assert_size_alignment("Foo", 8, 4);
 
    });
 

	
 
    Tester::new_single_source_expect_ok(
 
        "double three-tuple",
 
        "struct Foo{ (u8,u16,u32,) bar, (s8,s16,s32,) baz }"
 
    ).for_struct("Foo", |s| { s
 
        .for_field("bar", |f| { f.assert_parser_type("(u8,u16,u32)"); })
 
        .for_field("baz", |f| { f.assert_parser_type("(s8,s16,s32)"); })
 
        .assert_size_alignment("Foo", 16, 4);
 
    });
 
}
 

	
 
#[test]
 
fn test_correct_tuple_polymorph_args() {
 
    todo!("write");
 
}
 

	
 
#[test]
 
fn test_incorrect_tuple_polymorph_args() {
 
    todo!("write");
 
}
 

	
 
#[test]
 
fn test_polymorph_array_types() {
 
    Tester::new_single_source_expect_ok(
 
        "array of polymorph in struct",
 
        "
 
        struct Foo<T> { T[] hello }
 
        struct Bar { Foo<u32>[] world }
 
        "
 
    ).for_struct("Bar", |s| { s
 
        .for_field("world", |f| { f.assert_parser_type("Foo<u32>[]"); });
 
    });
 

	
 
    Tester::new_single_source_expect_ok(
 
        "array of port in struct",
 
        "
 
        struct Bar { in<u32>[] inputs }
 
        "
 
    ).for_struct("Bar", |s| { s
 
        .for_field("inputs", |f| { f.assert_parser_type("in<u32>[]"); });
 
    });
 
}
 
\ No newline at end of file
0 comments (0 inline, 0 general)