Changeset - 637115283740
[Not reviewed]
1 30 4
Max Henger - 3 years ago 2022-03-02 11:38:38
henger@cwi.nl
feat: select block evaluation
15 files changed:
0 comments (0 inline, 0 general)
Cargo.toml
Show inline comments
 
[package]
 
name = "reowolf_rs"
 
version = "1.2.0"
 
authors = [
 
	"Max Henger <henger@cwi.nl>",
 
	"Christopher Esterhuyse <esterhuy@cwi.nl>",
 
	"Hans-Dieter Hiep <hdh@cwi.nl>"
 
]
 
edition = "2021"
 

	
 
[dependencies]
 
# convenience macros
 
maplit = "1.0.2"
 
derive_more = "0.99.2"
 

	
 
# runtime
 
bincode = "1.3.1"
 
serde = { version = "1.0.114", features = ["derive"] }
 
getrandom = "0.1.14" # tiny crate. used to guess controller-id
 

	
 
# network
 
mio = { version = "0.7.0", package = "mio", features = ["udp", "tcp", "os-poll"] }
 
socket2 = { version = "0.3.12", optional = true }
 

	
 
# protocol
 
backtrace = "0.3"
 
lazy_static = "1.4.0"
 

	
 
# ffi
 

	
 
# socket ffi
 
libc = { version = "^0.2", optional = true }
 
os_socketaddr = { version = "0.1.0", optional = true }
 

	
 
[dev-dependencies]
 
# randomness
 
rand = "0.8.4"
 
rand_pcg = "0.3.1"
 

	
 
[lib]
 
crate-type = [
 
	"rlib", # for use as a Rust dependency.
 
]
 
\ No newline at end of file
docs/runtime/sync.md
Show inline comments
 
new file 100644
 
# Synchronous Communication
 

	
 
## 
 
\ No newline at end of file
src/collections/raw_vec.rs
Show inline comments
 
use std::{mem, ptr, cmp};
 
use std::alloc::{Layout, alloc, dealloc};
 

	
 
#[derive(Debug)]
 
enum AllocError {
 
    CapacityOverflow,
 
}
 

	
 
/// Generic raw vector. It has a base pointer, a capacity and a length. Basic
 
/// operations are supported, but the user of the structure is responsible for
 
/// ensuring that no illegal mutable access occurs.
 
/// A lot of the logic is simply stolen from the std lib. The destructor will
 
/// free the backing memory, but will not run any destructors.
 
/// Try to use functions to modify the length. But feel free if you know what
 
/// you're doing
 
pub struct RawVec<T: Sized> {
 
    base: *mut T,
 
    cap: usize,
 
    pub len: usize,
 
}
 

	
 
impl<T: Sized> RawVec<T> {
 
    const T_ALIGNMENT: usize = mem::align_of::<T>();
 
    const T_SIZE: usize = mem::size_of::<T>();
 
    
 
    const GROWTH_RATE: usize = 2;
 

	
 
    pub fn new() -> Self {
 
        Self{
 
            base: ptr::null_mut(),
 
            cap: 0,
 
            len: 0,
 
        }
 
    }
 

	
 
    pub fn with_capacity(capacity: usize) -> Self {
 
        // Could be done a bit more efficiently
 
        let mut result = Self::new();
 
        result.ensure_space(capacity).unwrap();
 
        return result;
 
    }
 

	
 
    #[inline]
 
    pub unsafe fn get(&self, idx: usize) -> *const T {
 
        debug_assert!(idx < self.len);
 
        return self.base.add(idx);
 
    }
 

	
 
    #[inline]
 
    pub unsafe fn get_mut(&self, idx: usize) -> *mut T {
 
        debug_assert!(idx < self.len);
 
        return self.base.add(idx);
 
    }
 

	
 
    /// Pushes a new element to the end of the list.
 
    pub fn push(&mut self, item: T) {
 
        self.ensure_space(1).unwrap();
 
        unsafe {
 
            let target = self.base.add(self.len);
 
            std::ptr::write(target, item);
 
            self.len += 1;
 
        }
 
    }
 

	
 
    /// Moves the elements in the range [from_idx, from_idx + num_to_move) to
 
    /// the range [to_idx, to_idx + num_to_move). Caller must make sure that all
 
    /// non-overlapping elements of the second range had their destructor called
 
    /// in case those elements were used.
 
    pub fn move_range(&mut self, from_idx: usize, to_idx: usize, num_to_move: usize) {
 
        debug_assert!(from_idx + num_to_move <= self.len);
 
        debug_assert!(to_idx + num_to_move <= self.len); // maybe not in future, for now this is fine
 
        unsafe {
 
            let source = self.base.add(from_idx);
 
            let target = self.base.add(to_idx);
 
            std::ptr::copy(source, target, num_to_move);
 
        }
 
    }
 

	
 
    pub fn len(&self) -> usize {
 
        return self.len;
 
    }
 

	
 
    pub fn as_slice(&self) -> &[T] {
 
        return unsafe{
 
            std::slice::from_raw_parts(self.base, self.len)
 
        };
 
    }
 

	
 
    fn ensure_space(&mut self, additional: usize) -> Result<(), AllocError>{
 
        debug_assert!(Self::T_SIZE != 0);
 
        debug_assert!(self.cap >= self.len);
 
        if self.cap - self.len < additional {
 
            // Need to resize. Note that due to all checked conditions we have
 
            // that new_cap >= 1.
 
            debug_assert!(additional > 0);
 
            let new_cap = self.len.checked_add(additional).unwrap();
 
            let new_cap = cmp::max(new_cap, self.cap * Self::GROWTH_RATE);
 

	
 
            let layout = Layout::array::<T>(new_cap)
 
                .map_err(|_| AllocError::CapacityOverflow)?;
 
            debug_assert_eq!(new_cap * Self::T_SIZE, layout.size());
 

	
 
            unsafe {
 
                // Allocate new storage, transfer bits, deallocate old store
 
                let new_base = alloc(layout);
 

	
 
                if self.cap > 0 {
 
                    let old_base = self.base as *mut u8;
 
                    let (old_size, old_layout) = self.current_layout();
 

	
 
                    ptr::copy_nonoverlapping(old_base, new_base, old_size);
 
                    dealloc(old_base, old_layout);
 
                }
 

	
 
                self.base = new_base as *mut T;
 
                self.cap = new_cap;
 
            }
 
        } // else: still enough space
 

	
 
        return Ok(());
 
    }
 

	
 
    #[inline]
 
    fn current_layout(&self) -> (usize, Layout) {
 
        debug_assert!(Self::T_SIZE > 0);
 
        let old_size = self.cap * Self::T_SIZE;
 
        unsafe {
 
            return (
 
                old_size,
 
                Layout::from_size_align_unchecked(old_size, Self::T_ALIGNMENT)
 
            );
 
        }
 
    }
 
}
 

	
 
impl<T: Sized> Drop for RawVec<T> {
 
    fn drop(&mut self) {
 
        if self.cap > 0 {
 
            debug_assert!(!self.base.is_null());
 
            let (_, layout) = self.current_layout();
 
            unsafe {
 
                dealloc(self.base as *mut u8, layout);
 
                if cfg!(debug_assertions) {
 
                    self.base = ptr::null_mut();
 
                }
 
                dbg_code!({ self.base = ptr::null_mut(); });
 
            }
 
        }
 
    }
 
}
 
\ No newline at end of file
src/collections/scoped_buffer.rs
Show inline comments
 
/// scoped_buffer.rs
 
///
 
/// Solves the common pattern where we are performing some kind of recursive
 
/// pattern while using a temporary buffer. At the start, or during the
 
/// procedure, we push stuff into the buffer. At the end we take out what we
 
/// have put in.
 
///
 
/// It is unsafe because we're using pointers to circumvent borrowing rules in
 
/// the name of code cleanliness. The correctness of use is checked in debug
 
/// mode at runtime.
 

	
 
use std::iter::FromIterator;
 

	
 
macro_rules! hide {
 
    ($v:block) => {
 
        #[cfg(debug_assertions)] $v
 
    };
 
    ($v:expr) => {
 
        #[cfg(debug_assertions)] $v
 
    };
 
}
 

	
 
pub(crate) struct ScopedBuffer<T: Sized> {
 
    pub inner: Vec<T>,
 
}
 

	
 
impl<T: Sized> ScopedBuffer<T> {
 
    pub(crate) fn with_capacity(capacity: usize) -> Self {
 
        Self {
 
            inner: Vec::with_capacity(capacity),
 
        }
 
    }
 

	
 
    pub(crate) fn start_section(&mut self) -> ScopedSection<T> {
 
        let start_size = self.inner.len() as u32;
 
        ScopedSection {
 
            inner: &mut self.inner,
 
            start_size,
 
            #[cfg(debug_assertions)] cur_size: start_size,
 
        }
 
    }
 
}
 

	
 
impl<T: Clone> ScopedBuffer<T> {
 
    pub(crate) fn start_section_initialized(&mut self, initialize_with: &[T]) -> ScopedSection<T> {
 
        let start_size = self.inner.len() as u32;
 
        let _data_size = initialize_with.len() as u32;
 
        self.inner.extend_from_slice(initialize_with);
 
        ScopedSection{
 
            inner: &mut self.inner,
 
            start_size,
 
            #[cfg(debug_assertions)] cur_size: start_size + _data_size,
 
        }
 
    }
 
}
 

	
 
#[cfg(debug_assertions)]
 
impl<T: Sized> Drop for ScopedBuffer<T> {
 
    fn drop(&mut self) {
 
        // Make sure that everyone cleaned up the buffer neatly
 
        debug_assert!(self.inner.is_empty(), "dropped non-empty scoped buffer");
 
    }
 
}
 

	
 
/// A section of the buffer. Keeps track of where we started the section. When
 
/// done with the section one must call `into_vec` or `forget` to remove the
 
/// section from the underlying buffer. This will also be done upon dropping the
 
/// ScopedSection in case errors are being handled.
 
pub(crate) struct ScopedSection<T: Sized> {
 
    inner: *mut Vec<T>,
 
    start_size: u32,
 
    #[cfg(debug_assertions)] cur_size: u32,
 
}
 

	
 
impl<T: Sized> ScopedSection<T> {
 
    /// Pushes value into section
 
    #[inline]
 
    pub(crate) fn push(&mut self, value: T) {
 
        self.check_length();
 
        let vec = unsafe{&mut *self.inner};
 
        hide!(debug_assert_eq!(
 
            vec.len(), self.cur_size as usize,
 
            "trying to push onto section, but size is larger than expected"
 
        ));
 
        vec.push(value);
 
        hide!(self.cur_size += 1);
 
    }
 

	
 
    #[inline]
 
    pub(crate) fn len(&self) -> usize {
 
        self.check_length();
 
        let vec = unsafe{&mut *self.inner};
 
        hide!(debug_assert_eq!(
 
            vec.len(), self.cur_size as usize,
 
            "trying to get section length, but size is larger than expected"
 
        ));
 
        return vec.len() - self.start_size as usize;
 
    }
 

	
 
    #[inline]
 
    #[allow(unused_mut)] // used in debug mode
 
    pub(crate) fn forget(mut self) {
 
        self.check_length();
 
        let vec = unsafe{&mut *self.inner};
 
        hide!({
 
            debug_assert_eq!(
 
                vec.len(), self.cur_size as usize,
 
                "trying to forget section, but size is larger than expected"
 
            );
 
            self.cur_size = self.start_size;
 
        });
 
        hide!(self.cur_size = self.start_size);
 
        vec.truncate(self.start_size as usize);
 
    }
 

	
 
    #[inline]
 
    #[allow(unused_mut)] // used in debug mode
 
    pub(crate) fn into_vec(mut self) -> Vec<T> {
 
        self.check_length();
 
        let vec = unsafe{&mut *self.inner};
 
        hide!(self.cur_size = self.start_size);
 
        let section = Vec::from_iter(vec.drain(self.start_size as usize..));
 
        section
 
    }
 

	
 
    #[inline]
 
    pub(crate) fn check_length(&self) {
 
        hide!({
 
            let vec = unsafe{&*self.inner};
 
            debug_assert_eq!(
 
                vec.len(), self.cur_size as usize,
 
                "trying to turn section into vec, but size is larger than expected"
 
            );
 
            self.cur_size = self.start_size;
 
        });
 
        let section = Vec::from_iter(vec.drain(self.start_size as usize..));
 
        section
 
                "incorrect use of ScopedSection: underlying storage vector has changed size"
 
            )
 
        })
 
    }
 
}
 

	
 
impl<T: Sized + PartialEq> ScopedSection<T> {
 
    #[inline]
 
    pub(crate) fn push_unique(&mut self, value: T) {
 
        self.check_length();
 
        let vec = unsafe{&mut *self.inner};
 
        for item in &vec[self.start_size as usize..] {
 
            if *item == value {
 
                // item already exists
 
                return;
 
            }
 
        }
 

	
 
        vec.push(value);
 
        hide!(self.cur_size += 1);
 
    }
 

	
 
    #[inline]
 
    pub(crate) fn contains(&self, value: &T) -> bool {
 
        self.check_length();
 
        let vec = unsafe{&*self.inner};
 
        for index in self.start_size as usize..vec.len() {
 
            if &vec[index] == value {
 
                return true;
 
            }
 
        }
 

	
 
        return false;
 
    }
 
}
 

	
 
impl<T: Copy> ScopedSection<T> {
 
    pub(crate) fn iter_copied(&self) -> ScopedIter<T> {
 
        return ScopedIter{
 
            inner: self.inner,
 
            cur_index: self.start_size,
 
            last_index: unsafe{ (*self.inner).len() as u32 },
 
        }
 
    }
 
}
 

	
 
impl<T> std::ops::Index<usize> for ScopedSection<T> {
 
    type Output = T;
 

	
 
    fn index(&self, index: usize) -> &Self::Output {
 
        let vec = unsafe{&*self.inner};
 
        return &vec[self.start_size as usize + index]
 
    }
 
}
 

	
 
impl<T> std::ops::IndexMut<usize> for ScopedSection<T> {
 
    fn index_mut(&mut self, index: usize) -> &mut Self::Output {
 
        let vec = unsafe{&mut *self.inner};
 
        return &mut vec[self.start_size as usize + index]
 
    }
 
}
 

	
 
#[cfg(debug_assertions)]
 
impl<T: Sized> Drop for ScopedSection<T> {
 
    fn drop(&mut self) {
 
        let vec = unsafe{&mut *self.inner};
 
        hide!(debug_assert_eq!(vec.len(), self.cur_size as usize));
 
        vec.truncate(self.start_size as usize);
 
    }
 
}
 

	
 
/// Small utility for iterating over a section of the buffer. Same conditions as
 
/// the buffer apply: each time we retrieve an element the buffer must have the
 
/// same size as the moment of creation.
 
pub(crate) struct ScopedIter<T: Copy> {
 
    inner: *mut Vec<T>,
 
    cur_index: u32,
 
    last_index: u32,
 
}
 

	
 
impl<T: Copy> Iterator for ScopedIter<T> {
 
    type Item = T;
 

	
 
    fn next(&mut self) -> Option<Self::Item> {
 
        hide!(debug_assert_eq!(self.last_index as usize, unsafe { (*self.inner).len() }));
 
        if self.cur_index >= self.last_index {
 
            return None;
 
        }
 

	
 
        let vec = unsafe{ &*self.inner };
 
        let index = self.cur_index as usize;
 
        self.cur_index += 1;
 
        return Some(vec[index]);
 
    }
 
}
 
\ No newline at end of file
src/collections/string_pool.rs
Show inline comments
 
use std::ptr::null_mut;
 
use std::ptr::{null_mut, null};
 
use std::hash::{Hash, Hasher};
 
use std::marker::PhantomData;
 
use std::fmt::{Debug, Display, Formatter, Result as FmtResult};
 

	
 
const SLAB_SIZE: usize = u16::MAX as usize;
 

	
 
#[derive(Clone)]
 
pub struct StringRef<'a> {
 
    data: *const u8,
 
    length: usize,
 
    _phantom: PhantomData<&'a [u8]>,
 
}
 

	
 
// As the StringRef is an immutable thing:
 
unsafe impl Sync for StringRef<'_> {}
 
unsafe impl Send for StringRef<'_> {}
 

	
 
impl<'a> StringRef<'a> {
 
    /// `new` constructs a new StringRef whose data is not owned by the
 
    /// `StringPool`, hence cannot have a `'static` lifetime.
 
    pub(crate) fn new(data: &'a [u8]) -> StringRef<'a> {
 
        // This is an internal (compiler) function: so debug_assert that the
 
        // string is valid ascii. Most commonly the input will come from the
 
        // code's source file, which is checked for ASCII-ness anyway.
 
        debug_assert!(data.is_ascii());
 
        let length = data.len();
 
        let data = data.as_ptr();
 
        StringRef{ data, length, _phantom: PhantomData }
 
    }
 

	
 
    /// `new_empty` creates a empty StringRef. It is a null pointer with a
 
    /// length of zero.
 
    pub(crate) const fn new_empty() -> StringRef<'static> {
 
        StringRef{ data: null(), length: 0, _phantom: PhantomData }
 
    }
 

	
 
    pub fn as_str(&self) -> &'a str {
 
        unsafe {
 
            let slice = std::slice::from_raw_parts::<'a, u8>(self.data, self.length);
 
            std::str::from_utf8_unchecked(slice)
 
        }
 
    }
 

	
 
    pub fn as_bytes(&self) -> &'a [u8] {
 
        unsafe {
 
            std::slice::from_raw_parts::<'a, u8>(self.data, self.length)
 
        }
 
    }
 
}
 

	
 
impl<'a> Debug for StringRef<'a> {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
 
        f.write_str("StringRef{ value: ")?;
 
        f.write_str(self.as_str())?;
 
        f.write_str(" }")
 
    }
 
}
 

	
 
impl<'a> Display for StringRef<'a> {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
 
        f.write_str(self.as_str())
 
    }
 
}
 

	
 
impl PartialEq for StringRef<'_> {
 
    fn eq(&self, other: &StringRef) -> bool {
 
        self.as_str() == other.as_str()
 
    }
 
}
 

	
 
impl Eq for StringRef<'_> {}
 

	
 
impl Hash for StringRef<'_> {
 
    fn hash<H: Hasher>(&self, state: &mut H) {
 
        state.write(self.as_bytes());
 
    }
 
}
 

	
 
struct StringPoolSlab {
 
    prev: *mut StringPoolSlab,
 
    data: Vec<u8>,
 
    remaining: usize,
 
}
 

	
 
impl StringPoolSlab {
 
    fn new(prev: *mut StringPoolSlab) -> Self {
 
        Self{ prev, data: Vec::with_capacity(SLAB_SIZE), remaining: SLAB_SIZE }
 
    }
 
}
 

	
 
/// StringPool is a ever-growing pool of strings. Strings have a maximum size
 
/// equal to the slab size. The slabs are essentially a linked list to maintain
 
/// pointer-stability of the strings themselves.
 
/// All `StringRef` instances are invalidated when the string pool is dropped
 
pub(crate) struct StringPool {
 
    last: *mut StringPoolSlab,
 
}
 

	
 
impl StringPool {
 
    pub(crate) fn new() -> Self {
 
        // To have some stability we just turn a box into a raw ptr.
 
        let initial_slab = Box::new(StringPoolSlab::new(null_mut()));
 
        let initial_slab = Box::into_raw(initial_slab);
 
        StringPool{
 
            last: initial_slab,
 
        }
 
    }
 

	
 
    /// Interns a string to the `StringPool`, returning a reference to it. The
 
    /// pointer owned by `StringRef` is `'static` as the `StringPool` doesn't
 
    /// reallocate/deallocate until dropped (which only happens at the end of
 
    /// the program.)
 
    pub(crate) fn intern(&mut self, data: &[u8]) -> StringRef<'static> {
 
        let data_len = data.len();
 
        assert!(data_len <= SLAB_SIZE, "string is too large for slab"); // if you hit this, create logic for large-string allocations
 
        debug_assert!(std::str::from_utf8(data).is_ok(), "string to intern is not valid UTF-8 encoded");
 
        
 
        let mut last = unsafe{&mut *self.last};
 
        if data.len() > last.remaining {
 
            // Doesn't fit: allocate new slab
 
            self.alloc_new_slab();
 
            last = unsafe{&mut *self.last};
 
        }
 

	
 
        // Must fit now, compute hash and put in buffer
 
        debug_assert!(data_len <= last.remaining);
 
        let range_start = last.data.len();
 
        last.data.extend_from_slice(data);
 
        last.remaining -= data_len;
 
        debug_assert_eq!(range_start + data_len, last.data.len());
 

	
 
        unsafe {
 
            let start = last.data.as_ptr().offset(range_start as isize);
 
            StringRef{ data: start, length: data_len, _phantom: PhantomData }
 
        }
 
    }
 

	
 
    fn alloc_new_slab(&mut self) {
 
        let new_slab = Box::new(StringPoolSlab::new(self.last));
 
        let new_slab = Box::into_raw(new_slab);
 
        self.last = new_slab;
 
    }
 
}
 

	
 
impl Drop for StringPool {
 
    fn drop(&mut self) {
 
        let mut new_slab = self.last;
 
        while !new_slab.is_null() {
 
            let cur_slab = new_slab;
 
            unsafe {
 
                new_slab = (*cur_slab).prev;
 
                Box::from_raw(cur_slab); // consume and deallocate
 
            }
 
        }
 
    }
 
}
 

	
 
// String pool cannot be cloned, and the created `StringRef` instances remain
 
// allocated until the end of the program, so it is always safe to send. It is
 
// also sync in the sense that it becomes an immutable thing after compilation,
 
// but lets not derive that if we would ever become a multithreaded compiler in
 
// the future.
 
unsafe impl Send for StringPool {}
 

	
 
#[cfg(test)]
 
mod tests {
 
    use super::*;
 

	
 
    #[test]
 
    fn display_empty_string_ref() {
 
        // Makes sure that null pointer inside StringRef will not cause issues
 
        let v = StringRef::new_empty();
 
        let _val = format!("{}{:?}", v, v); // calls Format and Debug on StringRef
 
    }
 

	
 
    #[test]
 
    fn test_string_just_fits() {
 
        let large = "0".repeat(SLAB_SIZE);
 
        let mut pool = StringPool::new();
 
        let interned = pool.intern(large.as_bytes());
 
        assert_eq!(interned.as_str(), large);
 
    }
 

	
 
    #[test]
 
    #[should_panic]
 
    fn test_string_too_large() {
 
        let large = "0".repeat(SLAB_SIZE + 1);
 
        let mut pool = StringPool::new();
 
        let _interned = pool.intern(large.as_bytes());
 
    }
 

	
 
    #[test]
 
    fn test_lots_of_small_allocations() {
 
        const NUM_PER_SLAB: usize = 32;
 
        const NUM_SLABS: usize = 4;
 

	
 
        let to_intern = "0".repeat(SLAB_SIZE / NUM_PER_SLAB);
 
        let mut pool = StringPool::new();
 

	
 
        let mut last_slab = pool.last;
 
        let mut all_refs = Vec::new();
 

	
 
        // Fill up first slab
 
        for _alloc_idx in 0..NUM_PER_SLAB {
 
            let interned = pool.intern(to_intern.as_bytes());
 
            all_refs.push(interned);
 
            assert!(std::ptr::eq(last_slab, pool.last));
 
        }
 

	
 
        for _slab_idx in 0..NUM_SLABS-1 {
 
            for alloc_idx in 0..NUM_PER_SLAB {
 
                let interned = pool.intern(to_intern.as_bytes());
 
                all_refs.push(interned);
 

	
 
                if alloc_idx == 0 {
 
                    // First allocation produces a new slab
 
                    assert!(!std::ptr::eq(last_slab, pool.last));
 
                    last_slab = pool.last;
 
                } else {
 
                    assert!(std::ptr::eq(last_slab, pool.last));
 
                }
 
            }
 
        }
 

	
 
        // All strings are still correct
 
        for string_ref in all_refs {
 
            assert_eq!(string_ref.as_str(), to_intern);
 
        }
 
    }
 
}
 
\ No newline at end of file
src/common.rs
Show inline comments
 
deleted file
src/lib.rs
Show inline comments
 
#[macro_use]
 
mod macros;
 

	
 
// mod common;
 
mod protocol;
 
pub mod runtime;
 
pub mod runtime2;
 
mod collections;
 
mod random;
 

	
 
pub use protocol::{ProtocolDescription, ProtocolDescriptionBuilder, ComponentCreationError};
 
\ No newline at end of file
src/macros.rs
Show inline comments
 
// Utility for performing debug printing within a particular module. Still
 
// requires some extra macros to be defined to be ergonomic.
 
macro_rules! enabled_debug_print {
 
    (false, $name:literal, $format:literal) => {};
 
    (false, $name:literal, $format:literal, $($args:expr),*) => {};
 
    (true, $name:literal, $format:literal) => {
 
        println!("[{}] {}", $name, $format)
 
    };
 
    (true, $name:literal, $format:literal, $($args:expr),*) => {
 
        println!("[{}] {}", $name, format!($format, $($args),*))
 
    };
 
}
 

	
 
// Utility for inserting code only executed in debug mode. Because writing the
 
// conditional cfg is tedious and looks ugly. Still doesn't work for struct
 
// fields, though.
 
macro_rules! dbg_code {
 
    ($code:stmt) => {
 
        #[cfg(debug_assertions)] $code
 
    }
 
}
 

	
 
// Given a function name, return type and variant, will generate the all-so
 
// common `union_value.as_variant()` method. The return value is the reference
 
// to the embedded union type.
 
macro_rules! union_cast_to_ref_method_impl {
 
    ($func_name:ident, $ret_type:ty, $variant:path) => {
 
        fn $func_name(&self) -> &$ret_type {
 
            match self {
 
                $variant(content) => return content,
 
                _ => unreachable!(),
 
            }
 
        }
 
    }
 
}
 

	
 
// Another union cast, but now returning a copy of the value
 
macro_rules! union_cast_to_value_method_impl {
 
    ($func_name:ident, $ret_type:ty, $variant:path) => {
 
        impl Value {
 
            pub(crate) fn $func_name(&self) -> $ret_type {
 
                match self {
 
                    $variant(v) => *v,
 
                    _ => unreachable!(),
 
                }
 
            }
 
        }
 
    }
 
}
 
\ No newline at end of file
src/protocol/ast.rs
Show inline comments
 
use std::fmt;
 
use std::fmt::{Debug, Display, Formatter};
 
use std::ops::{Index, IndexMut};
 

	
 
use super::arena::{Arena, Id};
 
use crate::collections::StringRef;
 
use crate::protocol::input_source::InputSpan;
 
use crate::protocol::TypeId;
 

	
 
/// Helper macro that defines a type alias for a AST element ID. In this case 
 
/// only used to alias the `Id<T>` types.
 
macro_rules! define_aliased_ast_id {
 
    // Variant where we just defined the alias, without any indexing
 
    ($name:ident, $parent:ty) => {
 
        pub type $name = $parent;
 
    };
 
    // Variant where we define the type, and the Index and IndexMut traits
 
    (
 
        $name:ident, $parent:ty, 
 
        index($indexed_type:ty, $indexed_arena:ident)
 
    ) => {
 
        define_aliased_ast_id!($name, $parent);
 
        impl Index<$name> for Heap {
 
            type Output = $indexed_type;
 
            fn index(&self, index: $name) -> &Self::Output {
 
                &self.$indexed_arena[index]
 
            }
 
        }
 

	
 
        impl IndexMut<$name> for Heap {
 
            fn index_mut(&mut self, index: $name) -> &mut Self::Output {
 
                &mut self.$indexed_arena[index]
 
            }
 
        }
 
    };
 
    // Variant where we define type, Index(Mut) traits and an allocation function
 
    (
 
        $name:ident, $parent:ty,
 
        index($indexed_type:ty, $indexed_arena:ident),
 
        alloc($fn_name:ident)
 
    ) => {
 
        define_aliased_ast_id!($name, $parent, index($indexed_type, $indexed_arena));
 
        impl Heap {
 
            pub fn $fn_name(&mut self, f: impl FnOnce($name) -> $indexed_type) -> $name {
 
                self.$indexed_arena.alloc_with_id(|id| f(id))
 
            }
 
        }
 
    };
 
}
 

	
 
/// Helper macro that defines a wrapper type for a particular variant of an AST
 
/// element ID. Only used to define single-wrapping IDs.
 
macro_rules! define_new_ast_id {
 
    // Variant where we just defined the new type, without any indexing
 
    ($name:ident, $parent:ty) => {
 
        #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
 
        pub struct $name (pub(crate) $parent);
 

	
 
        #[allow(dead_code)]
 
        impl $name {
 
            pub(crate) fn new_invalid() -> Self     { Self(<$parent>::new_invalid()) }
 
            pub(crate) fn is_invalid(&self) -> bool { self.0.is_invalid() }
 
            pub fn upcast(self) -> $parent          { self.0 }
 
        }
 
    };
 
    // Variant where we define the type, and the Index and IndexMut traits
 
    (
 
        $name:ident, $parent:ty, 
 
        index($indexed_type:ty, $wrapper_type:path, $indexed_arena:ident)
 
    ) => {
 
        define_new_ast_id!($name, $parent);
 
        impl Index<$name> for Heap {
 
            type Output = $indexed_type;
 
            fn index(&self, index: $name) -> &Self::Output {
 
                if let $wrapper_type(v) = &self.$indexed_arena[index.0] {
 
                    v
 
                } else {
 
                    unreachable!()
 
                }
 
            }
 
        }
 

	
 
        impl IndexMut<$name> for Heap {
 
            fn index_mut(&mut self, index: $name) -> &mut Self::Output {
 
                if let $wrapper_type(v) = &mut self.$indexed_arena[index.0] {
 
                    v
 
                } else {
 
                    unreachable!()
 
                }
 
            }
 
        }
 
    };
 
    // Variant where we define the type, the Index and IndexMut traits, and an allocation function
 
    (
 
        $name:ident, $parent:ty, 
 
        index($indexed_type:ty, $wrapper_type:path, $indexed_arena:ident),
 
        alloc($fn_name:ident)
 
    ) => {
 
        define_new_ast_id!($name, $parent, index($indexed_type, $wrapper_type, $indexed_arena));
 
        impl Heap {
 
            pub fn $fn_name(&mut self, f: impl FnOnce($name) -> $indexed_type) -> $name {
 
                $name(
 
                    self.$indexed_arena.alloc_with_id(|id| {
 
                        $wrapper_type(f($name(id)))
 
                    })
 
                )
 
            }
 
        }
 
    }
 
}
 

	
 
define_aliased_ast_id!(RootId, Id<Root>, index(Root, protocol_descriptions), alloc(alloc_protocol_description));
 
define_aliased_ast_id!(PragmaId, Id<Pragma>, index(Pragma, pragmas), alloc(alloc_pragma));
 
define_aliased_ast_id!(ImportId, Id<Import>, index(Import, imports), alloc(alloc_import));
 
define_aliased_ast_id!(VariableId, Id<Variable>, index(Variable, variables), alloc(alloc_variable));
 

	
 
define_aliased_ast_id!(DefinitionId, Id<Definition>, index(Definition, definitions));
 
define_new_ast_id!(StructDefinitionId, DefinitionId, index(StructDefinition, Definition::Struct, definitions), alloc(alloc_struct_definition));
 
define_new_ast_id!(EnumDefinitionId, DefinitionId, index(EnumDefinition, Definition::Enum, definitions), alloc(alloc_enum_definition));
 
define_new_ast_id!(UnionDefinitionId, DefinitionId, index(UnionDefinition, Definition::Union, definitions), alloc(alloc_union_definition));
 
define_new_ast_id!(ComponentDefinitionId, DefinitionId, index(ComponentDefinition, Definition::Component, definitions), alloc(alloc_component_definition));
 
define_new_ast_id!(FunctionDefinitionId, DefinitionId, index(FunctionDefinition, Definition::Function, definitions), alloc(alloc_function_definition));
 
define_new_ast_id!(ProcedureDefinitionId, DefinitionId, index(ProcedureDefinition, Definition::Procedure, definitions), alloc(alloc_procedure_definition));
 

	
 
define_aliased_ast_id!(StatementId, Id<Statement>, index(Statement, statements));
 
define_new_ast_id!(BlockStatementId, StatementId, index(BlockStatement, Statement::Block, statements), alloc(alloc_block_statement));
 
define_new_ast_id!(EndBlockStatementId, StatementId, index(EndBlockStatement, Statement::EndBlock, statements), alloc(alloc_end_block_statement));
 
define_new_ast_id!(LocalStatementId, StatementId, index(LocalStatement, Statement::Local, statements));
 
define_new_ast_id!(MemoryStatementId, LocalStatementId);
 
define_new_ast_id!(ChannelStatementId, LocalStatementId);
 
define_new_ast_id!(LabeledStatementId, StatementId, index(LabeledStatement, Statement::Labeled, statements), alloc(alloc_labeled_statement));
 
define_new_ast_id!(IfStatementId, StatementId, index(IfStatement, Statement::If, statements), alloc(alloc_if_statement));
 
define_new_ast_id!(EndIfStatementId, StatementId, index(EndIfStatement, Statement::EndIf, statements), alloc(alloc_end_if_statement));
 
define_new_ast_id!(WhileStatementId, StatementId, index(WhileStatement, Statement::While, statements), alloc(alloc_while_statement));
 
define_new_ast_id!(EndWhileStatementId, StatementId, index(EndWhileStatement, Statement::EndWhile, statements), alloc(alloc_end_while_statement));
 
define_new_ast_id!(BreakStatementId, StatementId, index(BreakStatement, Statement::Break, statements), alloc(alloc_break_statement));
 
define_new_ast_id!(ContinueStatementId, StatementId, index(ContinueStatement, Statement::Continue, statements), alloc(alloc_continue_statement));
 
define_new_ast_id!(SynchronousStatementId, StatementId, index(SynchronousStatement, Statement::Synchronous, statements), alloc(alloc_synchronous_statement));
 
define_new_ast_id!(EndSynchronousStatementId, StatementId, index(EndSynchronousStatement, Statement::EndSynchronous, statements), alloc(alloc_end_synchronous_statement));
 
define_new_ast_id!(ForkStatementId, StatementId, index(ForkStatement, Statement::Fork, statements), alloc(alloc_fork_statement));
 
define_new_ast_id!(EndForkStatementId, StatementId, index(EndForkStatement, Statement::EndFork, statements), alloc(alloc_end_fork_statement));
 
define_new_ast_id!(SelectStatementId, StatementId, index(SelectStatement, Statement::Select, statements), alloc(alloc_select_statement));
 
define_new_ast_id!(EndSelectStatementId, StatementId, index(EndSelectStatement, Statement::EndSelect, statements), alloc(alloc_end_select_statement));
 
define_new_ast_id!(ReturnStatementId, StatementId, index(ReturnStatement, Statement::Return, statements), alloc(alloc_return_statement));
 
define_new_ast_id!(GotoStatementId, StatementId, index(GotoStatement, Statement::Goto, statements), alloc(alloc_goto_statement));
 
define_new_ast_id!(NewStatementId, StatementId, index(NewStatement, Statement::New, statements), alloc(alloc_new_statement));
 
define_new_ast_id!(ExpressionStatementId, StatementId, index(ExpressionStatement, Statement::Expression, statements), alloc(alloc_expression_statement));
 

	
 
define_aliased_ast_id!(ExpressionId, Id<Expression>, index(Expression, expressions));
 
define_new_ast_id!(AssignmentExpressionId, ExpressionId, index(AssignmentExpression, Expression::Assignment, expressions), alloc(alloc_assignment_expression));
 
define_new_ast_id!(BindingExpressionId, ExpressionId, index(BindingExpression, Expression::Binding, expressions), alloc(alloc_binding_expression));
 
define_new_ast_id!(ConditionalExpressionId, ExpressionId, index(ConditionalExpression, Expression::Conditional, expressions), alloc(alloc_conditional_expression));
 
define_new_ast_id!(BinaryExpressionId, ExpressionId, index(BinaryExpression, Expression::Binary, expressions), alloc(alloc_binary_expression));
 
define_new_ast_id!(UnaryExpressionId, ExpressionId, index(UnaryExpression, Expression::Unary, expressions), alloc(alloc_unary_expression));
 
define_new_ast_id!(IndexingExpressionId, ExpressionId, index(IndexingExpression, Expression::Indexing, expressions), alloc(alloc_indexing_expression));
 
define_new_ast_id!(SlicingExpressionId, ExpressionId, index(SlicingExpression, Expression::Slicing, expressions), alloc(alloc_slicing_expression));
 
define_new_ast_id!(SelectExpressionId, ExpressionId, index(SelectExpression, Expression::Select, expressions), alloc(alloc_select_expression));
 
define_new_ast_id!(LiteralExpressionId, ExpressionId, index(LiteralExpression, Expression::Literal, expressions), alloc(alloc_literal_expression));
 
define_new_ast_id!(CastExpressionId, ExpressionId, index(CastExpression, Expression::Cast, expressions), alloc(alloc_cast_expression));
 
define_new_ast_id!(CallExpressionId, ExpressionId, index(CallExpression, Expression::Call, expressions), alloc(alloc_call_expression));
 
define_new_ast_id!(VariableExpressionId, ExpressionId, index(VariableExpression, Expression::Variable, expressions), alloc(alloc_variable_expression));
 

	
 
define_aliased_ast_id!(ScopeId, Id<Scope>, index(Scope, scopes), alloc(alloc_scope));
 

	
 
#[derive(Debug)]
 
pub struct Heap {
 
    // Root arena, contains the entry point for different modules. Each root
 
    // contains lists of IDs that correspond to the other arenas.
 
    pub(crate) protocol_descriptions: Arena<Root>,
 
    // Contents of a file, these are the elements the `Root` elements refer to
 
    pragmas: Arena<Pragma>,
 
    pub(crate) imports: Arena<Import>,
 
    pub(crate) variables: Arena<Variable>,
 
    pub(crate) definitions: Arena<Definition>,
 
    pub(crate) statements: Arena<Statement>,
 
    pub(crate) expressions: Arena<Expression>,
 
    pub(crate) scopes: Arena<Scope>,
 
}
 

	
 
impl Heap {
 
    pub fn new() -> Heap {
 
        Heap {
 
            // string_alloc: StringAllocator::new(),
 
            protocol_descriptions: Arena::new(),
 
            pragmas: Arena::new(),
 
            imports: Arena::new(),
 
            variables: Arena::new(),
 
            definitions: Arena::new(),
 
            statements: Arena::new(),
 
            expressions: Arena::new(),
 
            scopes: Arena::new(),
 
        }
 
    }
 
    pub fn alloc_memory_statement(
 
        &mut self,
 
        f: impl FnOnce(MemoryStatementId) -> MemoryStatement,
 
    ) -> MemoryStatementId {
 
        MemoryStatementId(LocalStatementId(self.statements.alloc_with_id(|id| {
 
            Statement::Local(LocalStatement::Memory(
 
                f(MemoryStatementId(LocalStatementId(id)))
 
            ))
 
        })))
 
    }
 
    pub fn alloc_channel_statement(
 
        &mut self,
 
        f: impl FnOnce(ChannelStatementId) -> ChannelStatement,
 
    ) -> ChannelStatementId {
 
        ChannelStatementId(LocalStatementId(self.statements.alloc_with_id(|id| {
 
            Statement::Local(LocalStatement::Channel(
 
                f(ChannelStatementId(LocalStatementId(id)))
 
            ))
 
        })))
 
    }
 
}
 

	
 
impl Index<MemoryStatementId> for Heap {
 
    type Output = MemoryStatement;
 
    fn index(&self, index: MemoryStatementId) -> &Self::Output {
 
        &self.statements[index.0.0].as_memory()
 
        match &self.statements[index.0.0] {
 
            Statement::Local(LocalStatement::Memory(v)) => v,
 
            _ => unreachable!(),
 
        }
 
    }
 
}
 

	
 
impl Index<ChannelStatementId> for Heap {
 
    type Output = ChannelStatement;
 
    fn index(&self, index: ChannelStatementId) -> &Self::Output {
 
        &self.statements[index.0.0].as_channel()
 
        match &self.statements[index.0.0] {
 
            Statement::Local(LocalStatement::Channel(v)) => v,
 
            _ => unreachable!(),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct Root {
 
    pub this: RootId,
 
    // Phase 1: parser
 
    // pub position: InputPosition,
 
    pub pragmas: Vec<PragmaId>,
 
    pub imports: Vec<ImportId>,
 
    pub definitions: Vec<DefinitionId>,
 
}
 

	
 
impl Root {
 
    pub fn get_definition_ident(&self, h: &Heap, id: &[u8]) -> Option<DefinitionId> {
 
        for &def in self.definitions.iter() {
 
            if h[def].identifier().value.as_bytes() == id {
 
                return Some(def);
 
            }
 
        }
 
        None
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Pragma {
 
    Version(PragmaVersion),
 
    Module(PragmaModule),
 
}
 

	
 
impl Pragma {
 
    pub(crate) fn as_module(&self) -> &PragmaModule {
 
        match self {
 
            Pragma::Module(pragma) => pragma,
 
            _ => unreachable!("Tried to obtain {:?} as PragmaModule", self),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct PragmaVersion {
 
    pub this: PragmaId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of full pragma
 
    pub version: u64,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct PragmaModule {
 
    pub this: PragmaId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of full pragma
 
    pub value: Identifier,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Import {
 
    Module(ImportModule),
 
    Symbols(ImportSymbols)
 
}
 

	
 
impl Import {
 
    pub(crate) fn span(&self) -> InputSpan {
 
        match self {
 
            Import::Module(v) => v.span,
 
            Import::Symbols(v) => v.span,
 
        }
 
    }
 

	
 
    pub(crate) fn as_module(&self) -> &ImportModule {
 
        match self {
 
            Import::Module(m) => m,
 
            _ => unreachable!("Unable to cast 'Import' to 'ImportModule'")
 
        }
 
    }
 
    pub(crate) fn as_symbols(&self) -> &ImportSymbols {
 
        match self {
 
            Import::Symbols(m) => m,
 
            _ => unreachable!("Unable to cast 'Import' to 'ImportSymbols'")
 
        }
 
    }
 
    pub(crate) fn as_symbols_mut(&mut self) -> &mut ImportSymbols {
 
        match self {
 
            Import::Symbols(m) => m,
 
            _ => unreachable!("Unable to cast 'Import' to 'ImportSymbols'")
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ImportModule {
 
    pub this: ImportId,
 
    // Phase 1: parser
 
    pub span: InputSpan,
 
    pub module: Identifier,
 
    pub alias: Identifier,
 
    pub module_id: RootId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct AliasedSymbol {
 
    pub name: Identifier,
 
    pub alias: Option<Identifier>,
 
    pub definition_id: DefinitionId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ImportSymbols {
 
    pub this: ImportId,
 
    // Phase 1: parser
 
    pub span: InputSpan,
 
    pub module: Identifier,
 
    pub module_id: RootId,
 
    pub symbols: Vec<AliasedSymbol>,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct Identifier {
 
    pub span: InputSpan,
 
    pub value: StringRef<'static>,
 
}
 

	
 
impl Identifier {
 
    pub(crate) const fn new_empty(span: InputSpan) -> Identifier {
 
        return Identifier{
 
            span,
 
            value: StringRef::new_empty(),
 
        };
 
    }
 
}
 

	
 
impl PartialEq for Identifier {
 
    fn eq(&self, other: &Self) -> bool {
 
        return self.value == other.value
 
    }
 
}
 

	
 
impl Display for Identifier {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{}", self.value.as_str())
 
    }
 
}
 

	
 
#[derive(Debug, Clone, PartialEq, Eq)]
 
pub enum ParserTypeVariant {
 
    // Special builtin, only usable by the compiler and not constructable by the
 
    // programmer
 
    Void,
 
    InputOrOutput,
 
    ArrayLike,
 
    IntegerLike,
 
    // Basic builtin
 
    Message,
 
    Bool,
 
    UInt8, UInt16, UInt32, UInt64,
 
    SInt8, SInt16, SInt32, SInt64,
 
    Character, String,
 
    // Literals (need to get concrete builtin type during typechecking)
 
    IntegerLiteral,
 
    // Marker for inference
 
    Inferred,
 
    // Builtins expecting one subsequent type
 
    Array,
 
    Input,
 
    Output,
 
    // Tuple: expecting any number of elements. Note that the parser type can
 
    // have one-valued tuples, these will be filtered out later during type
 
    // checking.
 
    Tuple(u32), // u32 = number of subsequent types
 
    // User-defined types
 
    PolymorphicArgument(DefinitionId, u32), // u32 = index into polymorphic variables
 
    Definition(DefinitionId, u32), // u32 = number of subsequent types in the type tree.
 
}
 

	
 
impl ParserTypeVariant {
 
    pub(crate) fn num_embedded(&self) -> usize {
 
        use ParserTypeVariant::*;
 

	
 
        match self {
 
            Void | IntegerLike |
 
            Message | Bool |
 
            UInt8 | UInt16 | UInt32 | UInt64 |
 
            SInt8 | SInt16 | SInt32 | SInt64 |
 
            Character | String | IntegerLiteral |
 
            Inferred | PolymorphicArgument(_, _) =>
 
                0,
 
            ArrayLike | InputOrOutput | Array | Input | Output =>
 
                1,
 
            Definition(_, num) | Tuple(num) => *num as usize,
 
        }
 
    }
 
}
 

	
 
/// ParserTypeElement is an element of the type tree. An element may be
 
/// implicit, meaning that the user didn't specify the type, but it was set by
 
/// the compiler.
 
#[derive(Debug, Clone)]
 
pub struct ParserTypeElement {
 
    pub element_span: InputSpan, // span of this element, not including the child types
 
    pub variant: ParserTypeVariant,
 
}
 

	
 
/// ParserType is a specification of a type during the parsing phase and initial
 
/// linker/validator phase of the compilation process. These types may be
 
/// (partially) inferred or represent literals (e.g. a integer whose bytesize is
 
/// not yet determined).
 
///
 
/// Its contents are the depth-first serialization of the type tree. Each node
 
/// is a type that may accept polymorphic arguments. The polymorphic arguments
 
/// are then the children of the node.
 
#[derive(Debug, Clone)]
 
pub struct ParserType {
 
    pub elements: Vec<ParserTypeElement>,
 
    pub full_span: InputSpan,
 
}
 

	
 
impl ParserType {
 
    pub(crate) fn iter_embedded(&self, parent_idx: usize) -> ParserTypeIter {
 
        ParserTypeIter::new(&self.elements, parent_idx)
 
    }
 
}
 

	
 
/// Iterator over the embedded elements of a specific element.
 
pub struct ParserTypeIter<'a> {
 
    pub elements: &'a [ParserTypeElement],
 
    pub cur_embedded_idx: usize,
 
}
 

	
 
impl<'a> ParserTypeIter<'a> {
 
    fn new(elements: &'a [ParserTypeElement], parent_idx: usize) -> Self {
 
        debug_assert!(parent_idx < elements.len(), "parent index exceeds number of elements in ParserType");
 
        if elements[0].variant.num_embedded() == 0 {
 
            // Parent element does not have any embedded types, place
 
            // `cur_embedded_idx` at end so we will always return `None`
 
            Self{ elements, cur_embedded_idx: elements.len() }
 
        } else {
 
            // Parent element has an embedded type
 
            Self{ elements, cur_embedded_idx: parent_idx + 1 }
 
        }
 
    }
 
}
 

	
 
impl<'a> Iterator for ParserTypeIter<'a> {
 
    type Item = &'a [ParserTypeElement];
 

	
 
    fn next(&mut self) -> Option<Self::Item> {
 
        let elements_len = self.elements.len();
 
        if self.cur_embedded_idx >= elements_len {
 
            return None;
 
        }
 

	
 
        // Seek to the end of the subtree
 
        let mut depth = 1;
 
        let start_element = self.cur_embedded_idx;
 
        while self.cur_embedded_idx < elements_len {
 
            let cur_element = &self.elements[self.cur_embedded_idx];
 
            let depth_change = cur_element.variant.num_embedded() as i32 - 1;
 
            depth += depth_change;
 
            debug_assert!(depth >= 0, "illegally constructed ParserType: {:?}", self.elements);
 

	
 
            self.cur_embedded_idx += 1;
 
            if depth == 0 {
 
                break;
 
            }
 
        }
 

	
 
        debug_assert!(depth == 0, "illegally constructed ParserType: {:?}", self.elements);
 
        return Some(&self.elements[start_element..self.cur_embedded_idx]);
 
    }
 
}
 

	
 
/// ConcreteType is the representation of a type after the type inference and
 
/// checker is finished. These are fully typed.
 
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
 
pub enum ConcreteTypePart {
 
    // Special types (cannot be explicitly constructed by the programmer)
 
    Void,
 
    // Builtin types without nested types
 
    Message,
 
    Bool,
 
    UInt8, UInt16, UInt32, UInt64,
 
    SInt8, SInt16, SInt32, SInt64,
 
    Character, String,
 
    // Builtin types with one nested type
 
    Array,
 
    Slice,
 
    Input,
 
    Output,
 
    Pointer,
 
    // Tuple: variable number of nested types, will never be 1
 
    Tuple(u32),
 
    // User defined type with any number of nested types
 
    Instance(DefinitionId, u32),    // instance of data type
 
    Function(DefinitionId, u32),    // instance of function
 
    Component(DefinitionId, u32),   // instance of a connector
 
    Function(ProcedureDefinitionId, u32),    // instance of function
 
    Component(ProcedureDefinitionId, u32),   // instance of a connector
 
}
 

	
 
impl ConcreteTypePart {
 
    pub(crate) fn num_embedded(&self) -> u32 {
 
        use ConcreteTypePart::*;
 

	
 
        match self {
 
            Void | Message | Bool |
 
            UInt8 | UInt16 | UInt32 | UInt64 |
 
            SInt8 | SInt16 | SInt32 | SInt64 |
 
            Character | String =>
 
                0,
 
            Array | Slice | Input | Output =>
 
            Array | Slice | Input | Output | Pointer =>
 
                1,
 
            Tuple(num_embedded) => *num_embedded,
 
            Instance(_, num_embedded) => *num_embedded,
 
            Function(_, num_embedded) => *num_embedded,
 
            Component(_, num_embedded) => *num_embedded,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Eq, PartialEq)]
 
pub struct ConcreteType {
 
    pub(crate) parts: Vec<ConcreteTypePart>
 
}
 

	
 
impl Default for ConcreteType {
 
    fn default() -> Self {
 
        Self{ parts: Vec::new() }
 
    }
 
}
 

	
 
impl ConcreteType {
 
    /// Returns an iterator over the subtrees that are type arguments (e.g. an
 
    /// array element's type, or a polymorphic type's arguments) to the
 
    /// provided parent type (specified by its index in the `parts` array).
 
    pub(crate) fn embedded_iter(&self, parent_part_idx: usize) -> ConcreteTypeIter {
 
        return ConcreteTypeIter::new(&self.parts, parent_part_idx);
 
    }
 

	
 
    /// Construct a human-readable name for the type. Because this performs
 
    /// a string allocation don't use it for anything else then displaying the
 
    /// type to the user.
 
    pub(crate) fn display_name(&self, heap: &Heap) -> String {
 
        return Self::type_parts_display_name(self.parts.as_slice(), heap);
 
    }
 

	
 
    // --- Utilities that operate on slice of parts
 

	
 
    /// Given the starting position of a type tree, determine the exclusive
 
    /// ending index.
 
    pub(crate) fn type_parts_subtree_end_idx(parts: &[ConcreteTypePart], start_idx: usize) -> usize {
 
        let mut depth = 1;
 
        let num_parts = parts.len();
 
        debug_assert!(start_idx < num_parts);
 

	
 
        for part_idx in start_idx..parts.len() {
 
            let depth_change = parts[part_idx].num_embedded() as i32 - 1;
 
            depth += depth_change;
 
            debug_assert!(depth >= 0);
 

	
 
            if depth == 0 {
 
                return part_idx + 1;
 
            }
 
        }
 

	
 
        debug_assert!(false, "incorrectly constructed ConcreteType instance");
 
        return 0;
 
    }
 

	
 
    /// Produces a human-readable representation of the concrete type parts
 
    fn type_parts_display_name(parts: &[ConcreteTypePart], heap: &Heap) -> String {
 
        let mut name = String::with_capacity(128);
 
        let _final_idx = Self::render_type_part_at(parts, heap, 0, &mut name);
 
        debug_assert_eq!(_final_idx, parts.len());
 

	
 
        return name;
 
    }
 

	
 
    /// Produces a human-readable representation of a single type part. Lower
 
    /// level utility for `type_parts_display_name`.
 
    fn render_type_part_at(parts: &[ConcreteTypePart], heap: &Heap, mut idx: usize, target: &mut String) -> usize {
 
        use ConcreteTypePart as CTP;
 
        use crate::protocol::parser::token_parsing::*;
 

	
 
        let cur_idx = idx;
 
        idx += 1; // increment by 1, because it always happens
 

	
 
        match parts[cur_idx] {
 
            CTP::Void => { target.push_str("void"); },
 
            CTP::Message => { target.push_str(KW_TYPE_MESSAGE_STR); },
 
            CTP::Bool => { target.push_str(KW_TYPE_BOOL_STR); },
 
            CTP::UInt8 => { target.push_str(KW_TYPE_UINT8_STR); },
 
            CTP::UInt16 => { target.push_str(KW_TYPE_UINT16_STR); },
 
            CTP::UInt32 => { target.push_str(KW_TYPE_UINT32_STR); },
 
            CTP::UInt64 => { target.push_str(KW_TYPE_UINT64_STR); },
 
            CTP::SInt8 => { target.push_str(KW_TYPE_SINT8_STR); },
 
            CTP::SInt16 => { target.push_str(KW_TYPE_SINT16_STR); },
 
            CTP::SInt32 => { target.push_str(KW_TYPE_SINT32_STR); },
 
            CTP::SInt64 => { target.push_str(KW_TYPE_SINT64_STR); },
 
            CTP::Character => { target.push_str(KW_TYPE_CHAR_STR); },
 
            CTP::String => { target.push_str(KW_TYPE_STRING_STR); },
 
            CTP::Array | CTP::Slice => {
 
                idx = Self::render_type_part_at(parts, heap, idx, target);
 
                target.push_str("[]");
 
            },
 
            CTP::Input => {
 
                target.push_str(KW_TYPE_IN_PORT_STR);
 
                target.push('<');
 
                idx = Self::render_type_part_at(parts, heap, idx, target);
 
                target.push('>');
 
            },
 
            CTP::Output => {
 
                target.push_str(KW_TYPE_OUT_PORT_STR);
 
                target.push('<');
 
                idx = Self::render_type_part_at(parts, heap, idx, target);
 
                target.push('>');
 
            },
 
            CTP::Pointer => {
 
                target.push('*');
 
                idx = Self::render_type_part_at(parts, heap, idx, target);
 
            }
 
            CTP::Tuple(num_parts) => {
 
                target.push('(');
 
                if num_parts != 0 {
 
                    idx = Self::render_type_part_at(parts, heap, idx, target);
 
                    for _ in 1..num_parts {
 
                        target.push(',');
 
                        idx = Self::render_type_part_at(parts, heap, idx, target);
 
                    }
 
                }
 
                target.push(')');
 
            },
 
            CTP::Instance(definition_id, num_poly_args) |
 
            CTP::Instance(definition_id, num_poly_args) => {
 
                idx = Self::render_definition_type_parts_at(parts, heap, definition_id, num_poly_args, idx, target);
 
            }
 
            CTP::Function(definition_id, num_poly_args) |
 
            CTP::Component(definition_id, num_poly_args) => {
 
                idx = Self::render_definition_type_parts_at(parts, heap, definition_id.upcast(), num_poly_args, idx, target);
 
            }
 
        }
 

	
 
        idx
 
    }
 

	
 
    fn render_definition_type_parts_at(parts: &[ConcreteTypePart], heap: &Heap, definition_id: DefinitionId, num_poly_args: u32, mut idx: usize, target: &mut String) -> usize {
 
        let definition = &heap[definition_id];
 
        target.push_str(definition.identifier().value.as_str());
 

	
 
        if num_poly_args != 0 {
 
            target.push('<');
 
            for poly_arg_idx in 0..num_poly_args {
 
                if poly_arg_idx != 0 {
 
                    target.push(',');
 
                }
 
                idx = Self::render_type_part_at(parts, heap, idx, target);
 
            }
 
            target.push('>');
 
        }
 
            }
 
        }
 

	
 
        idx
 
        return idx;
 
    }
 
}
 

	
 
#[derive(Debug)]
 
pub struct ConcreteTypeIter<'a> {
 
    parts: &'a [ConcreteTypePart],
 
    idx_embedded: u32,
 
    num_embedded: u32,
 
    part_idx: usize,
 
}
 

	
 
impl<'a> ConcreteTypeIter<'a> {
 
    pub(crate) fn new(parts: &'a[ConcreteTypePart], parent_idx: usize) -> Self {
 
        let num_embedded = parts[parent_idx].num_embedded();
 
        return ConcreteTypeIter{
 
            parts,
 
            idx_embedded: 0,
 
            num_embedded,
 
            part_idx: parent_idx + 1,
 
        }
 
    }
 
}
 

	
 
impl<'a> Iterator for ConcreteTypeIter<'a> {
 
    type Item = &'a [ConcreteTypePart];
 

	
 
    fn next(&mut self) -> Option<Self::Item> {
 
        if self.idx_embedded == self.num_embedded {
 
            return None;
 
        }
 

	
 
        // Retrieve the subtree of interest
 
        let start_idx = self.part_idx;
 
        let end_idx = ConcreteType::type_parts_subtree_end_idx(&self.parts, start_idx);
 

	
 
        self.idx_embedded += 1;
 
        self.part_idx = end_idx;
 

	
 
        return Some(&self.parts[start_idx..end_idx]);
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy)]
 
pub enum Scope {
 
pub enum ScopeAssociation {
 
    Definition(DefinitionId),
 
    Regular(BlockStatementId),
 
    Synchronous(SynchronousStatementId, BlockStatementId),
 
}
 

	
 
impl Scope {
 
    pub(crate) fn new_invalid() -> Scope {
 
        return Scope::Definition(DefinitionId::new_invalid());
 
    }
 

	
 
    pub(crate) fn is_invalid(&self) -> bool {
 
        match self {
 
            Scope::Definition(id) => id.is_invalid(),
 
            _ => false,
 
        }
 
    }
 

	
 
    pub fn is_block(&self) -> bool {
 
        match &self {
 
            Scope::Definition(_) => false,
 
            Scope::Regular(_) => true,
 
            Scope::Synchronous(_, _) => true,
 
        }
 
    }
 
    pub fn to_block(&self) -> BlockStatementId {
 
        match &self {
 
            Scope::Regular(id) => *id,
 
            Scope::Synchronous(_, id) => *id,
 
            _ => panic!("unable to get BlockStatement from Scope")
 
        }
 
    }
 
    Block(BlockStatementId),
 
    If(IfStatementId, bool), // if true, then body of "if", otherwise body of "else"
 
    While(WhileStatementId),
 
    Synchronous(SynchronousStatementId),
 
    SelectCase(SelectStatementId, u32), // index is select case
 
}
 

	
 
/// `ScopeNode` is a helper that links scopes in two directions. It doesn't
 
/// actually contain any information associated with the scope, this may be
 
/// found on the AST elements that `Scope` points to.
 
#[derive(Debug, Clone)]
 
pub struct ScopeNode {
 
    pub parent: Scope,
 
    pub nested: Vec<Scope>,
 
pub struct Scope {
 
    // Relation to other scopes
 
    pub this: ScopeId,
 
    pub parent: Option<ScopeId>,
 
    pub nested: Vec<ScopeId>,
 
    // Locally available variables/labels
 
    pub association: ScopeAssociation,
 
    pub variables: Vec<VariableId>,
 
    pub labels: Vec<LabeledStatementId>,
 
    // Location trackers/counters
 
    pub relative_pos_in_parent: i32,
 
    pub first_unique_id_in_scope: i32,
 
    pub next_unique_id_in_scope: i32,
 
}
 

	
 
impl ScopeNode {
 
    pub(crate) fn new_invalid() -> Self {
 
        ScopeNode{
 
            parent: Scope::new_invalid(),
 
impl Scope {
 
    pub(crate) fn new(id: ScopeId, association: ScopeAssociation) -> Self {
 
        return Self{
 
            this: id,
 
            parent: None,
 
            nested: Vec::new(),
 
            association,
 
            variables: Vec::new(),
 
            labels: Vec::new(),
 
            relative_pos_in_parent: -1,
 
            first_unique_id_in_scope: -1,
 
            next_unique_id_in_scope: -1,
 
        }
 
    }
 
}
 

	
 
impl Scope {
 
    pub(crate) fn new_invalid(this: ScopeId) -> Self {
 
        return Self{
 
            this,
 
            parent: None,
 
            nested: Vec::new(),
 
            association: ScopeAssociation::Definition(DefinitionId::new_invalid()),
 
            variables: Vec::new(),
 
            labels: Vec::new(),
 
            relative_pos_in_parent: -1,
 
            first_unique_id_in_scope: -1,
 
            next_unique_id_in_scope: -1,
 
        };
 
    }
 
}
 

	
 
#[derive(Debug, Clone, PartialEq, Eq)]
 
pub enum VariableKind {
 
    Parameter,      // in parameter list of function/component
 
    Local,          // declared in function/component body
 
    Binding,        // may be bound to in a binding expression (determined in validator/linker)
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct Variable {
 
    pub this: VariableId,
 
    // Parsing
 
    pub kind: VariableKind,
 
    pub parser_type: ParserType,
 
    pub identifier: Identifier,
 
    // Validator/linker
 
    pub relative_pos_in_block: i32,
 
    pub relative_pos_in_parent: i32,
 
    pub unique_id_in_scope: i32, // Temporary fix until proper bytecode/asm is generated
 
}
 

	
 
#[derive(Debug, Clone)]
 
#[derive(Debug)]
 
pub enum Definition {
 
    Struct(StructDefinition),
 
    Enum(EnumDefinition),
 
    Union(UnionDefinition),
 
    Component(ComponentDefinition),
 
    Function(FunctionDefinition),
 
    Procedure(ProcedureDefinition),
 
}
 

	
 
impl Definition {
 
    pub fn is_struct(&self) -> bool {
 
        match self {
 
            Definition::Struct(_) => true,
 
            _ => false
 
        }
 
    }
 
    pub(crate) fn as_struct(&self) -> &StructDefinition {
 
        match self {
 
            Definition::Struct(result) => result,
 
            _ => panic!("Unable to cast 'Definition' to 'StructDefinition'"),
 
        }
 
    }
 
    pub(crate) fn as_struct_mut(&mut self) -> &mut StructDefinition {
 
        match self {
 
            Definition::Struct(result) => result,
 
            _ => panic!("Unable to cast 'Definition' to 'StructDefinition'"),
 
        }
 
    }
 
    pub fn is_enum(&self) -> bool {
 
        match self {
 
            Definition::Enum(_) => true,
 
            _ => false,
 
        }
 
    }
 
    pub(crate) fn as_enum(&self) -> &EnumDefinition {
 
        match self {
 
            Definition::Enum(result) => result,
 
            _ => panic!("Unable to cast 'Definition' to 'EnumDefinition'"),
 
        }
 
    }
 
    pub(crate) fn as_enum_mut(&mut self) -> &mut EnumDefinition {
 
        match self {
 
            Definition::Enum(result) => result,
 
            _ => panic!("Unable to cast 'Definition' to 'EnumDefinition'"),
 
        }
 
    }
 
    pub fn is_union(&self) -> bool {
 
        match self {
 
            Definition::Union(_) => true,
 
            _ => false,
 
        }
 
    }
 
    pub(crate) fn as_union(&self) -> &UnionDefinition {
 
        match self {
 
            Definition::Union(result) => result, 
 
            _ => panic!("Unable to cast 'Definition' to 'UnionDefinition'"),
 
        }
 
    }
 

	
 
    pub(crate) fn as_union_mut(&mut self) -> &mut UnionDefinition {
 
        match self {
 
            Definition::Union(result) => result,
 
            _ => panic!("Unable to cast 'Definition' to 'UnionDefinition'"),
 
        }
 
    }
 
    pub fn is_component(&self) -> bool {
 
        match self {
 
            Definition::Component(_) => true,
 
            _ => false,
 
        }
 
    }
 
    pub(crate) fn as_component(&self) -> &ComponentDefinition {
 
        match self {
 
            Definition::Component(result) => result,
 
            _ => panic!("Unable to cast `Definition` to `Component`"),
 
        }
 
    }
 
    pub(crate) fn as_component_mut(&mut self) -> &mut ComponentDefinition {
 
        match self {
 
            Definition::Component(result) => result,
 
            _ => panic!("Unable to cast `Definition` to `Component`"),
 
        }
 
    }
 
    pub fn is_function(&self) -> bool {
 

	
 
    pub fn is_procedure(&self) -> bool {
 
        match self {
 
            Definition::Function(_) => true,
 
            Definition::Procedure(_) => true,
 
            _ => false,
 
        }
 
    }
 
    pub(crate) fn as_function(&self) -> &FunctionDefinition {
 

	
 
    pub(crate) fn as_procedure(&self) -> &ProcedureDefinition {
 
        match self {
 
            Definition::Function(result) => result,
 
            Definition::Procedure(result) => result,
 
            _ => panic!("Unable to cast `Definition` to `Function`"),
 
        }
 
    }
 
    pub(crate) fn as_function_mut(&mut self) -> &mut FunctionDefinition {
 

	
 
    pub(crate) fn as_procedure_mut(&mut self) -> &mut ProcedureDefinition {
 
        match self {
 
            Definition::Function(result) => result,
 
            Definition::Procedure(result) => result,
 
            _ => panic!("Unable to cast `Definition` to `Function`"),
 
        }
 
    }
 
    pub fn parameters(&self) -> &Vec<VariableId> {
 
        match self {
 
            Definition::Component(def) => &def.parameters,
 
            Definition::Function(def) => &def.parameters,
 
            _ => panic!("Called parameters() on {:?}", self)
 
        }
 
    }
 

	
 
    pub fn defined_in(&self) -> RootId {
 
        match self {
 
            Definition::Struct(def) => def.defined_in,
 
            Definition::Enum(def) => def.defined_in,
 
            Definition::Union(def) => def.defined_in,
 
            Definition::Component(def) => def.defined_in,
 
            Definition::Function(def) => def.defined_in,
 
            Definition::Procedure(def) => def.defined_in,
 
        }
 
    }
 

	
 
    pub fn identifier(&self) -> &Identifier {
 
        match self {
 
            Definition::Struct(def) => &def.identifier,
 
            Definition::Enum(def) => &def.identifier,
 
            Definition::Union(def) => &def.identifier,
 
            Definition::Component(def) => &def.identifier,
 
            Definition::Function(def) => &def.identifier,
 
            Definition::Procedure(def) => &def.identifier,
 
        }
 
    }
 
    pub fn poly_vars(&self) -> &Vec<Identifier> {
 
        match self {
 
            Definition::Struct(def) => &def.poly_vars,
 
            Definition::Enum(def) => &def.poly_vars,
 
            Definition::Union(def) => &def.poly_vars,
 
            Definition::Component(def) => &def.poly_vars,
 
            Definition::Function(def) => &def.poly_vars,
 
            Definition::Procedure(def) => &def.poly_vars,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct StructFieldDefinition {
 
    pub span: InputSpan,
 
    pub field: Identifier,
 
    pub parser_type: ParserType,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct StructDefinition {
 
    pub this: StructDefinitionId,
 
    pub defined_in: RootId,
 
    // Symbol scanning
 
    pub span: InputSpan,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    // Parsing
 
    pub fields: Vec<StructFieldDefinition>
 
}
 

	
 
impl StructDefinition {
 
    pub(crate) fn new_empty(
 
        this: StructDefinitionId, defined_in: RootId, span: InputSpan,
 
        identifier: Identifier, poly_vars: Vec<Identifier>
 
    ) -> Self {
 
        Self{ this, defined_in, span, identifier, poly_vars, fields: Vec::new() }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy)]
 
pub enum EnumVariantValue {
 
    None,
 
    Integer(i64),
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EnumVariantDefinition {
 
    pub identifier: Identifier,
 
    pub value: EnumVariantValue,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EnumDefinition {
 
    pub this: EnumDefinitionId,
 
    pub defined_in: RootId,
 
    // Symbol scanning
 
    pub span: InputSpan,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    // Parsing
 
    pub variants: Vec<EnumVariantDefinition>,
 
}
 

	
 
impl EnumDefinition {
 
    pub(crate) fn new_empty(
 
        this: EnumDefinitionId, defined_in: RootId, span: InputSpan,
 
        identifier: Identifier, poly_vars: Vec<Identifier>
 
    ) -> Self {
 
        Self{ this, defined_in, span, identifier, poly_vars, variants: Vec::new() }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct UnionVariantDefinition {
 
    pub span: InputSpan,
 
    pub identifier: Identifier,
 
    pub value: Vec<ParserType>, // if empty, then union variant does not contain any embedded types
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct UnionDefinition {
 
    pub this: UnionDefinitionId,
 
    pub defined_in: RootId,
 
    // Phase 1: symbol scanning
 
    pub span: InputSpan,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    // Phase 2: parsing
 
    pub variants: Vec<UnionVariantDefinition>,
 
}
 

	
 
impl UnionDefinition {
 
    pub(crate) fn new_empty(
 
        this: UnionDefinitionId, defined_in: RootId, span: InputSpan,
 
        identifier: Identifier, poly_vars: Vec<Identifier>
 
    ) -> Self {
 
        Self{ this, defined_in, span, identifier, poly_vars, variants: Vec::new() }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy)]
 
pub enum ComponentVariant {
 
    Primitive,
 
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
 
pub enum ProcedureKind {
 
    Function, // with return type
 
    Primitive, // without return type
 
    Composite,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ComponentDefinition {
 
    pub this: ComponentDefinitionId,
 
    pub defined_in: RootId,
 
    // Symbol scanning
 
    pub span: InputSpan,
 
    pub variant: ComponentVariant,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    // Parsing
 
    pub parameters: Vec<VariableId>,
 
    pub body: BlockStatementId,
 
    // Validation/linking
 
    pub num_expressions_in_body: i32,
 
/// Monomorphed instantiation of a procedure (or the sole instantiation of a
 
/// non-polymorphic procedure).
 
#[derive(Debug)]
 
pub struct ProcedureDefinitionMonomorph {
 
    pub argument_types: Vec<TypeId>,
 
    pub expr_info: Vec<ExpressionInfo>
 
}
 

	
 
impl ComponentDefinition {
 
    // Used for preallocation during symbol scanning
 
    pub(crate) fn new_empty(
 
        this: ComponentDefinitionId, defined_in: RootId, span: InputSpan,
 
        variant: ComponentVariant, identifier: Identifier, poly_vars: Vec<Identifier>
 
    ) -> Self {
 
        Self{ 
 
            this, defined_in, span, variant, identifier, poly_vars,
 
            parameters: Vec::new(), 
 
            body: BlockStatementId::new_invalid(),
 
            num_expressions_in_body: -1,
 
impl ProcedureDefinitionMonomorph {
 
    pub(crate) fn new_invalid() -> Self {
 
        return Self{
 
            argument_types: Vec::new(),
 
            expr_info: Vec::new(),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy)]
 
pub struct ExpressionInfo {
 
    pub type_id: TypeId,
 
    pub variant: ExpressionInfoVariant,
 
}
 

	
 
impl ExpressionInfo {
 
    pub(crate) fn new_invalid() -> Self {
 
        return Self{
 
            type_id: TypeId::new_invalid(),
 
            variant: ExpressionInfoVariant::Generic,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy)]
 
pub enum ExpressionInfoVariant {
 
    Generic,
 
    Procedure(TypeId, u32), // procedure TypeID and its monomorph index
 
    Select(i32), // index
 
}
 

	
 
impl ExpressionInfoVariant {
 
    pub(crate) fn as_select(&self) -> i32 {
 
        match self {
 
            ExpressionInfoVariant::Select(v) => *v,
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
    pub(crate) fn as_procedure(&self) -> (TypeId, u32) {
 
        match self {
 
            ExpressionInfoVariant::Procedure(type_id, monomorph_index) => (*type_id, *monomorph_index),
 
            _ => unreachable!(),
 
        }
 
    }
 
}
 

	
 
/// Generic storage for functions, primitive components and composite
 
/// components.
 
// Note that we will have function definitions for builtin functions as well. In
 
// that case the span, the identifier span and the body are all invalid.
 
#[derive(Debug, Clone)]
 
pub struct FunctionDefinition {
 
    pub this: FunctionDefinitionId,
 
#[derive(Debug)]
 
pub struct ProcedureDefinition {
 
    pub this: ProcedureDefinitionId,
 
    pub defined_in: RootId,
 
    // Symbol scanning
 
    pub builtin: bool,
 
    pub kind: ProcedureKind,
 
    pub span: InputSpan,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    // Parser
 
    pub return_types: Vec<ParserType>,
 
    pub return_type: Option<ParserType>, // present on functions, not components
 
    pub parameters: Vec<VariableId>,
 
    pub scope: ScopeId,
 
    pub body: BlockStatementId,
 
    // Validation/linking
 
    pub num_expressions_in_body: i32,
 
    // Monomorphization of typed procedures
 
    pub monomorphs: Vec<ProcedureDefinitionMonomorph>,
 
}
 

	
 
impl FunctionDefinition {
 
impl ProcedureDefinition {
 
    pub(crate) fn new_empty(
 
        this: FunctionDefinitionId, defined_in: RootId, span: InputSpan,
 
        identifier: Identifier, poly_vars: Vec<Identifier>
 
        this: ProcedureDefinitionId, defined_in: RootId, span: InputSpan,
 
        kind: ProcedureKind, identifier: Identifier, poly_vars: Vec<Identifier>
 
    ) -> Self {
 
        Self {
 
            this, defined_in,
 
            builtin: false,
 
            span, identifier, poly_vars,
 
            return_types: Vec::new(),
 
            span,
 
            kind, identifier, poly_vars,
 
            return_type: None,
 
            parameters: Vec::new(),
 
            scope: ScopeId::new_invalid(),
 
            body: BlockStatementId::new_invalid(),
 
            num_expressions_in_body: -1,
 
            monomorphs: Vec::new(),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Statement {
 
    Block(BlockStatement),
 
    EndBlock(EndBlockStatement),
 
    Local(LocalStatement),
 
    Labeled(LabeledStatement),
 
    If(IfStatement),
 
    EndIf(EndIfStatement),
 
    While(WhileStatement),
 
    EndWhile(EndWhileStatement),
 
    Break(BreakStatement),
 
    Continue(ContinueStatement),
 
    Synchronous(SynchronousStatement),
 
    EndSynchronous(EndSynchronousStatement),
 
    Fork(ForkStatement),
 
    EndFork(EndForkStatement),
 
    Select(SelectStatement),
 
    EndSelect(EndSelectStatement),
 
    Return(ReturnStatement),
 
    Goto(GotoStatement),
 
    New(NewStatement),
 
    Expression(ExpressionStatement),
 
}
 

	
 
impl Statement {
 
    pub fn as_block(&self) -> &BlockStatement {
 
        match self {
 
            Statement::Block(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `BlockStatement`"),
 
        }
 
    }
 
    pub fn as_local(&self) -> &LocalStatement {
 
        match self {
 
            Statement::Local(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `LocalStatement`"),
 
        }
 
    }
 
    pub fn as_memory(&self) -> &MemoryStatement {
 
        self.as_local().as_memory()
 
    }
 
    pub fn as_channel(&self) -> &ChannelStatement {
 
        self.as_local().as_channel()
 
    }
 

	
 
    pub fn as_new(&self) -> &NewStatement {
 
        match self {
 
            Statement::New(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `NewStatement`"),
 
        }
 
    }
 

	
 
    pub fn span(&self) -> InputSpan {
 
        match self {
 
            Statement::Block(v) => v.span,
 
            Statement::Local(v) => v.span(),
 
            Statement::Labeled(v) => v.label.span,
 
            Statement::If(v) => v.span,
 
            Statement::While(v) => v.span,
 
            Statement::Break(v) => v.span,
 
            Statement::Continue(v) => v.span,
 
            Statement::Synchronous(v) => v.span,
 
            Statement::Fork(v) => v.span,
 
            Statement::Select(v) => v.span,
 
            Statement::Return(v) => v.span,
 
            Statement::Goto(v) => v.span,
 
            Statement::New(v) => v.span,
 
            Statement::Expression(v) => v.span,
 
            Statement::EndBlock(_)
 
            | Statement::EndIf(_)
 
            | Statement::EndWhile(_)
 
            | Statement::EndSynchronous(_)
 
            | Statement::EndFork(_)
 
            | Statement::EndSelect(_) => unreachable!(),
 
        }
 
    }
 
    pub fn link_next(&mut self, next: StatementId) {
 
        match self {
 
            Statement::Block(stmt) => stmt.next = next,
 
            Statement::EndBlock(stmt) => stmt.next = next,
 
            Statement::Local(stmt) => match stmt {
 
                LocalStatement::Channel(stmt) => stmt.next = next,
 
                LocalStatement::Memory(stmt) => stmt.next = next,
 
            },
 
            Statement::EndIf(stmt) => stmt.next = next,
 
            Statement::EndWhile(stmt) => stmt.next = next,
 
            Statement::EndSynchronous(stmt) => stmt.next = next,
 
            Statement::EndFork(stmt) => stmt.next = next,
 
            Statement::EndSelect(stmt) => stmt.next = next,
 
            Statement::New(stmt) => stmt.next = next,
 
            Statement::Expression(stmt) => stmt.next = next,
 
            Statement::Return(_)
 
            | Statement::Break(_)
 
            | Statement::Continue(_)
 
            | Statement::Synchronous(_)
 
            | Statement::Fork(_)
 
            | Statement::Select(_)
 
            | Statement::Goto(_)
 
            | Statement::While(_)
 
            | Statement::Labeled(_)
 
            | Statement::If(_) => unreachable!(),
 
        }
 
    }
 

	
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct BlockStatement {
 
    pub this: BlockStatementId,
 
    // Phase 1: parser
 
    pub is_implicit: bool,
 
    pub span: InputSpan, // of the complete block
 
    pub statements: Vec<StatementId>,
 
    pub end_block: EndBlockStatementId,
 
    // Phase 2: linker
 
    pub scope_node: ScopeNode,
 
    pub first_unique_id_in_scope: i32, // Temporary fix until proper bytecode/asm is generated
 
    pub next_unique_id_in_scope: i32, // Temporary fix until proper bytecode/asm is generated
 
    pub locals: Vec<VariableId>,
 
    pub labels: Vec<LabeledStatementId>,
 
    pub scope: ScopeId,
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EndBlockStatement {
 
    pub this: EndBlockStatementId,
 
    // Parser
 
    pub start_block: BlockStatementId,
 
    // Validation/Linking
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum LocalStatement {
 
    Memory(MemoryStatement),
 
    Channel(ChannelStatement),
 
}
 

	
 
impl LocalStatement {
 
    pub fn this(&self) -> LocalStatementId {
 
        match self {
 
            LocalStatement::Memory(stmt) => stmt.this.upcast(),
 
            LocalStatement::Channel(stmt) => stmt.this.upcast(),
 
        }
 
    }
 
    pub fn as_memory(&self) -> &MemoryStatement {
 
        match self {
 
            LocalStatement::Memory(result) => result,
 
            _ => panic!("Unable to cast `LocalStatement` to `MemoryStatement`"),
 
        }
 
    }
 
    pub fn as_channel(&self) -> &ChannelStatement {
 
        match self {
 
            LocalStatement::Channel(result) => result,
 
            _ => panic!("Unable to cast `LocalStatement` to `ChannelStatement`"),
 
        }
 
    }
 
    pub fn span(&self) -> InputSpan {
 
        match self {
 
            LocalStatement::Channel(v) => v.span,
 
            LocalStatement::Memory(v) => v.span,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct MemoryStatement {
 
    pub this: MemoryStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan,
 
    pub variable: VariableId,
 
    pub initial_expr: AssignmentExpressionId,
 
    // Phase 2: linker
 
    pub next: StatementId,
 
}
 

	
 
/// ChannelStatement is the declaration of an input and output port associated
 
/// with the same channel. Note that the polarity of the ports are from the
 
/// point of view of the component. So an output port is something that a
 
/// component uses to send data over (i.e. it is the "input end" of the
 
/// channel), and vice versa.
 
#[derive(Debug, Clone)]
 
pub struct ChannelStatement {
 
    pub this: ChannelStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "channel" keyword
 
    pub from: VariableId, // output
 
    pub to: VariableId,   // input
 
    // Phase 2: linker
 
    pub relative_pos_in_block: i32,
 
    pub relative_pos_in_parent: i32,
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct LabeledStatement {
 
    pub this: LabeledStatementId,
 
    // Phase 1: parser
 
    pub label: Identifier,
 
    pub body: StatementId,
 
    // Phase 2: linker
 
    pub relative_pos_in_block: i32,
 
    pub relative_pos_in_parent: i32,
 
    pub in_sync: SynchronousStatementId, // may be invalid
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct IfStatement {
 
    pub this: IfStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "if" keyword
 
    pub test: ExpressionId,
 
    pub true_body: BlockStatementId,
 
    pub false_body: Option<BlockStatementId>,
 
    pub true_case: IfStatementCase,
 
    pub false_case: Option<IfStatementCase>,
 
    pub end_if: EndIfStatementId,
 
}
 

	
 
#[derive(Debug, Clone, Copy)]
 
pub struct IfStatementCase {
 
    pub body: StatementId,
 
    pub scope: ScopeId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EndIfStatement {
 
    pub this: EndIfStatementId,
 
    pub start_if: IfStatementId,
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct WhileStatement {
 
    pub this: WhileStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "while" keyword
 
    pub test: ExpressionId,
 
    pub body: BlockStatementId,
 
    pub scope: ScopeId,
 
    pub body: StatementId,
 
    pub end_while: EndWhileStatementId,
 
    pub in_sync: SynchronousStatementId, // may be invalid
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EndWhileStatement {
 
    pub this: EndWhileStatementId,
 
    pub start_while: WhileStatementId,
 
    // Phase 2: linker
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct BreakStatement {
 
    pub this: BreakStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "break" keyword
 
    pub label: Option<Identifier>,
 
    // Phase 2: linker
 
    pub target: EndWhileStatementId, // invalid if not yet set
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ContinueStatement {
 
    pub this: ContinueStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "continue" keyword
 
    pub label: Option<Identifier>,
 
    // Phase 2: linker
 
    pub target: WhileStatementId, // invalid if not yet set
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct SynchronousStatement {
 
    pub this: SynchronousStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "sync" keyword
 
    pub body: BlockStatementId,
 
    pub scope: ScopeId,
 
    pub body: StatementId,
 
    pub end_sync: EndSynchronousStatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EndSynchronousStatement {
 
    pub this: EndSynchronousStatementId,
 
    pub start_sync: SynchronousStatementId,
 
    // Phase 2: linker
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ForkStatement {
 
    pub this: ForkStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "fork" keyword
 
    pub left_body: BlockStatementId,
 
    pub right_body: Option<BlockStatementId>,
 
    pub left_body: StatementId,
 
    pub right_body: Option<StatementId>,
 
    pub end_fork: EndForkStatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EndForkStatement {
 
    pub this: EndForkStatementId,
 
    pub start_fork: ForkStatementId,
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct SelectStatement {
 
    pub this: SelectStatementId,
 
    pub span: InputSpan, // of the "select" keyword
 
    pub cases: Vec<SelectCase>,
 
    pub end_select: EndSelectStatementId,
 
    pub relative_pos_in_parent: i32,
 
    pub next: StatementId, // note: the select statement will be transformed into other AST elements, this `next` jumps to those replacement statements
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct SelectCase {
 
    // The guard statement of a `select` is either a MemoryStatement or an
 
    // ExpressionStatement. Nothing else is allowed by the initial parsing
 
    pub guard: StatementId,
 
    pub block: BlockStatementId,
 
    pub body: StatementId,
 
    pub scope: ScopeId,
 
    // Phase 2: Validation and Linking
 
    pub involved_ports: Vec<(CallExpressionId, ExpressionId)>, // call to `get` and its port argument
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EndSelectStatement {
 
    pub this: EndSelectStatementId,
 
    pub start_select: SelectStatementId,
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ReturnStatement {
 
    pub this: ReturnStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "return" keyword
 
    pub expressions: Vec<ExpressionId>,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct GotoStatement {
 
    pub this: GotoStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "goto" keyword
 
    pub label: Identifier,
 
    // Phase 2: linker
 
    pub target: LabeledStatementId, // invalid if not yet set
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct NewStatement {
 
    pub this: NewStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "new" keyword
 
    pub expression: CallExpressionId,
 
    // Phase 2: linker
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ExpressionStatement {
 
    pub this: ExpressionStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan,
 
    pub expression: ExpressionId,
 
    // Phase 2: linker
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
 
pub enum ExpressionParent {
 
    None, // only set during initial parsing
 
    Memory(MemoryStatementId),
 
    If(IfStatementId),
 
    While(WhileStatementId),
 
    Return(ReturnStatementId),
 
    New(NewStatementId),
 
    ExpressionStmt(ExpressionStatementId),
 
    Expression(ExpressionId, u32) // index within expression (e.g LHS or RHS of expression)
 
    Expression(ExpressionId, u32) // index within expression (e.g LHS or RHS of expression, or index in array literal, etc.)
 
}
 

	
 
impl ExpressionParent {
 
    pub fn is_new(&self) -> bool {
 
        match self {
 
            ExpressionParent::New(_) => true,
 
            _ => false,
 
        }
 
    }
 

	
 
    pub fn as_expression(&self) -> ExpressionId {
 
        match self {
 
            ExpressionParent::Expression(id, _) => *id,
 
            _ => panic!("called as_expression() on {:?}", self),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Expression {
 
    Assignment(AssignmentExpression),
 
    Binding(BindingExpression),
 
    Conditional(ConditionalExpression),
 
    Binary(BinaryExpression),
 
    Unary(UnaryExpression),
 
    Indexing(IndexingExpression),
 
    Slicing(SlicingExpression),
 
    Select(SelectExpression),
 
    Literal(LiteralExpression),
 
    Cast(CastExpression),
 
    Call(CallExpression),
 
    Variable(VariableExpression),
 
}
 

	
 
impl Expression {
 
    pub fn as_variable(&self) -> &VariableExpression {
 
        match self {
 
            Expression::Variable(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `VariableExpression`"),
 
        }
 
    }
 

	
 
    /// Returns operator span, function name, a binding's "let" span, etc. An
 
    /// indicator for the kind of expression that is being applied.
 
    pub fn operation_span(&self) -> InputSpan {
 
        match self {
 
            Expression::Assignment(expr) => expr.operator_span,
 
            Expression::Binding(expr) => expr.operator_span,
 
            Expression::Conditional(expr) => expr.operator_span,
 
            Expression::Binary(expr) => expr.operator_span,
 
            Expression::Unary(expr) => expr.operator_span,
 
            Expression::Indexing(expr) => expr.operator_span,
 
            Expression::Slicing(expr) => expr.slicing_span,
 
            Expression::Select(expr) => expr.operator_span,
 
            Expression::Literal(expr) => expr.span,
 
            Expression::Cast(expr) => expr.cast_span,
 
            Expression::Call(expr) => expr.func_span,
 
            Expression::Variable(expr) => expr.identifier.span,
 
        }
 
    }
 

	
 
    /// Returns the span covering the entire expression (i.e. including the
 
    /// spans of the arguments as well).
 
    pub fn full_span(&self) -> InputSpan {
 
        match self {
 
            Expression::Assignment(expr) => expr.full_span,
 
            Expression::Binding(expr) => expr.full_span,
 
            Expression::Conditional(expr) => expr.full_span,
 
            Expression::Binary(expr) => expr.full_span,
 
            Expression::Unary(expr) => expr.full_span,
 
            Expression::Indexing(expr) => expr.full_span,
 
            Expression::Slicing(expr) => expr.full_span,
 
            Expression::Select(expr) => expr.full_span,
 
            Expression::Literal(expr) => expr.span,
 
            Expression::Cast(expr) => expr.full_span,
 
            Expression::Call(expr) => expr.full_span,
 
            Expression::Variable(expr) => expr.identifier.span,
 
        }
 
    }
 

	
 
    pub fn parent(&self) -> &ExpressionParent {
 
        match self {
 
            Expression::Assignment(expr) => &expr.parent,
 
            Expression::Binding(expr) => &expr.parent,
 
            Expression::Conditional(expr) => &expr.parent,
 
            Expression::Binary(expr) => &expr.parent,
 
            Expression::Unary(expr) => &expr.parent,
 
            Expression::Indexing(expr) => &expr.parent,
 
            Expression::Slicing(expr) => &expr.parent,
 
            Expression::Select(expr) => &expr.parent,
 
            Expression::Literal(expr) => &expr.parent,
 
            Expression::Cast(expr) => &expr.parent,
 
            Expression::Call(expr) => &expr.parent,
 
            Expression::Variable(expr) => &expr.parent,
 
        }
 
    }
 

	
 
    pub fn parent_mut(&mut self) -> &mut ExpressionParent {
 
        match self {
 
            Expression::Assignment(expr) => &mut expr.parent,
 
            Expression::Binding(expr) => &mut expr.parent,
 
            Expression::Conditional(expr) => &mut expr.parent,
 
            Expression::Binary(expr) => &mut expr.parent,
 
            Expression::Unary(expr) => &mut expr.parent,
 
            Expression::Indexing(expr) => &mut expr.parent,
 
            Expression::Slicing(expr) => &mut expr.parent,
 
            Expression::Select(expr) => &mut expr.parent,
 
            Expression::Literal(expr) => &mut expr.parent,
 
            Expression::Cast(expr) => &mut expr.parent,
 
            Expression::Call(expr) => &mut expr.parent,
 
            Expression::Variable(expr) => &mut expr.parent,
 
        }
 
    }
 

	
 
    pub fn parent_expr_id(&self) -> Option<ExpressionId> {
 
        if let ExpressionParent::Expression(id, _) = self.parent() {
 
            Some(*id)
 
        } else {
 
            None
 
        }
 
    }
 

	
 
    pub fn get_unique_id_in_definition(&self) -> i32 {
 
    pub fn type_index(&self) -> i32 {
 
        match self {
 
            Expression::Assignment(expr) => expr.type_index,
 
            Expression::Binding(expr) => expr.type_index,
 
            Expression::Conditional(expr) => expr.type_index,
 
            Expression::Binary(expr) => expr.type_index,
 
            Expression::Unary(expr) => expr.type_index,
 
            Expression::Indexing(expr) => expr.type_index,
 
            Expression::Slicing(expr) => expr.type_index,
 
            Expression::Select(expr) => expr.type_index,
 
            Expression::Literal(expr) => expr.type_index,
 
            Expression::Cast(expr) => expr.type_index,
 
            Expression::Call(expr) => expr.type_index,
 
            Expression::Variable(expr) => expr.type_index,
 
        }
 
    }
 

	
 
    pub fn type_index_mut(&mut self) -> &mut i32 {
 
        match self {
 
            Expression::Assignment(expr) => expr.unique_id_in_definition,
 
            Expression::Binding(expr) => expr.unique_id_in_definition,
 
            Expression::Conditional(expr) => expr.unique_id_in_definition,
 
            Expression::Binary(expr) => expr.unique_id_in_definition,
 
            Expression::Unary(expr) => expr.unique_id_in_definition,
 
            Expression::Indexing(expr) => expr.unique_id_in_definition,
 
            Expression::Slicing(expr) => expr.unique_id_in_definition,
 
            Expression::Select(expr) => expr.unique_id_in_definition,
 
            Expression::Literal(expr) => expr.unique_id_in_definition,
 
            Expression::Cast(expr) => expr.unique_id_in_definition,
 
            Expression::Call(expr) => expr.unique_id_in_definition,
 
            Expression::Variable(expr) => expr.unique_id_in_definition,
 
            Expression::Assignment(expr) => &mut expr.type_index,
 
            Expression::Binding(expr) => &mut expr.type_index,
 
            Expression::Conditional(expr) => &mut expr.type_index,
 
            Expression::Binary(expr) => &mut expr.type_index,
 
            Expression::Unary(expr) => &mut expr.type_index,
 
            Expression::Indexing(expr) => &mut expr.type_index,
 
            Expression::Slicing(expr) => &mut expr.type_index,
 
            Expression::Select(expr) => &mut expr.type_index,
 
            Expression::Literal(expr) => &mut expr.type_index,
 
            Expression::Cast(expr) => &mut expr.type_index,
 
            Expression::Call(expr) => &mut expr.type_index,
 
            Expression::Variable(expr) => &mut expr.type_index,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy)]
 
pub enum AssignmentOperator {
 
    Set,
 
    Concatenated,
 
    Multiplied,
 
    Divided,
 
    Remained,
 
    Added,
 
    Subtracted,
 
    ShiftedLeft,
 
    ShiftedRight,
 
    BitwiseAnded,
 
    BitwiseXored,
 
    BitwiseOred,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct AssignmentExpression {
 
    pub this: AssignmentExpressionId,
 
    // Parsing
 
    pub operator_span: InputSpan,
 
    pub full_span: InputSpan,
 
    pub left: ExpressionId,
 
    pub operation: AssignmentOperator,
 
    pub right: ExpressionId,
 
    // Validator/Linker
 
    pub parent: ExpressionParent,
 
    pub unique_id_in_definition: i32,
 
    // Typing
 
    pub type_index: i32,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct BindingExpression {
 
    pub this: BindingExpressionId,
 
    // Parsing
 
    pub operator_span: InputSpan,
 
    pub full_span: InputSpan,
 
    pub bound_to: ExpressionId,
 
    pub bound_from: ExpressionId,
 
    // Validator/Linker
 
    pub parent: ExpressionParent,
 
    pub unique_id_in_definition: i32,
 
    // Typing
 
    pub type_index: i32,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ConditionalExpression {
 
    pub this: ConditionalExpressionId,
 
    // Parsing
 
    pub operator_span: InputSpan,
 
    pub full_span: InputSpan,
 
    pub test: ExpressionId,
 
    pub true_expression: ExpressionId,
 
    pub false_expression: ExpressionId,
 
    // Validator/Linking
 
    pub parent: ExpressionParent,
 
    pub unique_id_in_definition: i32,
 
    // Typing
 
    pub type_index: i32,
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
 
pub enum BinaryOperator {
 
    Concatenate,
 
    LogicalOr,
 
    LogicalAnd,
 
    BitwiseOr,
 
    BitwiseXor,
 
    BitwiseAnd,
 
    Equality,
 
    Inequality,
 
    LessThan,
 
    GreaterThan,
 
    LessThanEqual,
 
    GreaterThanEqual,
 
    ShiftLeft,
 
    ShiftRight,
 
    Add,
 
    Subtract,
 
    Multiply,
 
    Divide,
 
    Remainder,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct BinaryExpression {
 
    pub this: BinaryExpressionId,
 
    // Parsing
 
    pub operator_span: InputSpan,
 
    pub full_span: InputSpan,
 
    pub left: ExpressionId,
 
    pub operation: BinaryOperator,
 
    pub right: ExpressionId,
 
    // Validator/Linker
 
    pub parent: ExpressionParent,
 
    pub unique_id_in_definition: i32,
 
    // Typing
 
    pub type_index: i32,
 
}
 

	
 
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
 
pub enum UnaryOperator {
 
    Positive,
 
    Negative,
 
    BitwiseNot,
 
    LogicalNot,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct UnaryExpression {
 
    pub this: UnaryExpressionId,
 
    // Parsing
 
    pub operator_span: InputSpan,
 
    pub full_span: InputSpan,
 
    pub operation: UnaryOperator,
 
    pub expression: ExpressionId,
 
    // Validator/Linker
 
    pub parent: ExpressionParent,
 
    pub unique_id_in_definition: i32,
 
    // Typing
 
    pub type_index: i32,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct IndexingExpression {
 
    pub this: IndexingExpressionId,
 
    // Parsing
 
    pub operator_span: InputSpan,
 
    pub full_span: InputSpan,
 
    pub subject: ExpressionId,
 
    pub index: ExpressionId,
 
    // Validator/Linker
 
    pub parent: ExpressionParent,
 
    pub unique_id_in_definition: i32,
 
    // Typing
 
    pub type_index: i32,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct SlicingExpression {
 
    pub this: SlicingExpressionId,
 
    // Parsing
 
    pub slicing_span: InputSpan, // from '[' to ']'
 
    pub full_span: InputSpan, // includes subject
 
    pub subject: ExpressionId,
 
    pub from_index: ExpressionId,
 
    pub to_index: ExpressionId,
 
    // Validator/Linker
 
    pub parent: ExpressionParent,
 
    pub unique_id_in_definition: i32,
 
    // Typing
 
    pub type_index: i32,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum SelectKind {
 
    StructField(Identifier),
 
    TupleMember(u64), // u64 is overkill, but space is taken up by `StructField` variant anyway
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct SelectExpression {
 
    pub this: SelectExpressionId,
 
    // Parsing
 
    pub operator_span: InputSpan, // of the '.'
 
    pub full_span: InputSpan, // includes subject and field
 
    pub subject: ExpressionId,
 
    pub kind: SelectKind,
 
    // Validator/Linker
 
    pub parent: ExpressionParent,
 
    pub unique_id_in_definition: i32,
 
    // Typing
 
    pub type_index: i32,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct CastExpression {
 
    pub this: CastExpressionId,
 
    // Parsing
 
    pub cast_span: InputSpan, // of the "cast" keyword,
 
    pub full_span: InputSpan, // includes the cast subject
 
    pub to_type: ParserType,
 
    pub subject: ExpressionId,
 
    // Validator/linker
 
    pub parent: ExpressionParent,
 
    pub unique_id_in_definition: i32,
 
    // Typing
 
    pub type_index: i32,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct CallExpression {
 
    pub this: CallExpressionId,
 
    // Parsing
 
    pub func_span: InputSpan, // of the function name
 
    pub full_span: InputSpan, // includes the arguments and parentheses
 
    pub parser_type: ParserType, // of the function call, not the return type
 
    pub method: Method,
 
    pub arguments: Vec<ExpressionId>,
 
    pub definition: DefinitionId,
 
    pub procedure: ProcedureDefinitionId,
 
    // Validator/Linker
 
    pub parent: ExpressionParent,
 
    pub unique_id_in_definition: i32,
 
    // Typing
 
    pub type_index: i32,
 
}
 

	
 
#[derive(Debug, Clone, PartialEq, Eq)]
 
pub enum Method {
 
    // Builtin
 
    // Builtin, accessible by programmer
 
    Get,
 
    Put,
 
    Fires,
 
    Create,
 
    Length,
 
    Assert,
 
    Print,
 
    // Builtin, not accessible by programmer
 
    SelectStart, // SelectStart(total_num_cases, total_num_ports)
 
    SelectRegisterCasePort, // SelectRegisterCasePort(case_index, port_index, port_id)
 
    SelectWait, // SelectWait() -> u32
 
    // User-defined
 
    UserFunction,
 
    UserComponent,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct MethodSymbolic {
 
    pub(crate) parser_type: ParserType,
 
    pub(crate) definition: DefinitionId
 
impl Method {
 
    pub(crate) fn is_public_builtin(&self) -> bool {
 
        use Method::*;
 
        match self {
 
            Get | Put | Fires | Create | Length | Assert | Print => true,
 
            _ => false,
 
        }
 
    }
 

	
 
    pub(crate) fn is_user_defined(&self) -> bool {
 
        use Method::*;
 
        match self {
 
            UserFunction | UserComponent => true,
 
            _ => false,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct LiteralExpression {
 
    pub this: LiteralExpressionId,
 
    // Parsing
 
    pub span: InputSpan,
 
    pub value: Literal,
 
    // Validator/Linker
 
    pub parent: ExpressionParent,
 
    pub unique_id_in_definition: i32,
 
    // Typing
 
    pub type_index: i32,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Literal {
 
    Null, // message
 
    True,
 
    False,
 
    Character(char),
 
    String(StringRef<'static>),
 
    Integer(LiteralInteger),
 
    Struct(LiteralStruct),
 
    Enum(LiteralEnum),
 
    Union(LiteralUnion),
 
    Array(Vec<ExpressionId>),
 
    Tuple(Vec<ExpressionId>),
 
}
 

	
 
impl Literal {
 
    pub(crate) fn as_struct(&self) -> &LiteralStruct {
 
        if let Literal::Struct(literal) = self{
 
            literal
 
        } else {
 
            unreachable!("Attempted to obtain {:?} as Literal::Struct", self)
 
        }
 
    }
 

	
 
    pub(crate) fn as_enum(&self) -> &LiteralEnum {
 
        if let Literal::Enum(literal) = self {
 
            literal
 
        } else {
 
            unreachable!("Attempted to obtain {:?} as Literal::Enum", self)
 
        }
 
    }
 

	
 
    pub(crate) fn as_union(&self) -> &LiteralUnion {
 
        if let Literal::Union(literal) = self {
 
            literal
 
        } else {
 
            unreachable!("Attempted to obtain {:?} as Literal::Union", self)
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct LiteralInteger {
 
    pub(crate) unsigned_value: u64,
 
    pub(crate) negated: bool, // for constant expression evaluation, TODO: @Int
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct LiteralStructField {
 
    // Phase 1: parser
 
    pub(crate) identifier: Identifier,
 
    pub(crate) value: ExpressionId,
 
    // Phase 2: linker
 
    pub(crate) field_idx: usize, // in struct definition
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct LiteralStruct {
 
    // Phase 1: parser
 
    pub(crate) parser_type: ParserType,
 
    pub(crate) fields: Vec<LiteralStructField>,
 
    pub(crate) definition: DefinitionId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct LiteralEnum {
 
    // Phase 1: parser
 
    pub(crate) parser_type: ParserType,
 
    pub(crate) variant: Identifier,
 
    pub(crate) definition: DefinitionId,
 
    // Phase 2: linker
 
    pub(crate) variant_idx: usize, // as present in the type table
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct LiteralUnion {
 
    // Phase 1: parser
 
    pub(crate) parser_type: ParserType,
 
    pub(crate) variant: Identifier,
 
    pub(crate) values: Vec<ExpressionId>,
 
    pub(crate) definition: DefinitionId,
 
    // Phase 2: linker
 
    pub(crate) variant_idx: usize, // as present in type table
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct VariableExpression {
 
    pub this: VariableExpressionId,
 
    // Parsing
 
    pub identifier: Identifier,
 
    // Validator/Linker
 
    pub declaration: Option<VariableId>,
 
    pub used_as_binding_target: bool,
 
    pub parent: ExpressionParent,
 
    pub unique_id_in_definition: i32,
 
    // Typing
 
    pub type_index: i32,
 
}
 
\ No newline at end of file
src/protocol/ast_printer.rs
Show inline comments
 
@@ -252,776 +252,768 @@ impl ASTWriter {
 
                self.kv(indent).with_id(PREFIX_IMPORT_ID, import.this.index)
 
                    .with_s_key("ImportSymbol");
 

	
 
                self.kv(indent2).with_s_key("Name").with_identifier_val(&import.module);
 
                self.kv(indent2).with_s_key("Target").with_disp_val(&import.module_id.index);
 

	
 
                self.kv(indent2).with_s_key("Symbols");
 

	
 
                let indent3 = indent2 + 1;
 
                let indent4 = indent3 + 1;
 
                for symbol in &import.symbols {
 
                    self.kv(indent3).with_s_key("AliasedSymbol");
 
                    self.kv(indent4).with_s_key("Name").with_identifier_val(&symbol.name);
 
                    self.kv(indent4).with_s_key("Alias").with_opt_identifier_val(symbol.alias.as_ref());
 
                    self.kv(indent4).with_s_key("Definition").with_disp_val(&symbol.definition_id.index);
 
                }
 
            }
 
        }
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Top-level definition writing
 
    //--------------------------------------------------------------------------
 

	
 
    fn write_definition(&mut self, heap: &Heap, def_id: DefinitionId, indent: usize) {
 
        self.cur_definition = Some(def_id);
 
        let indent2 = indent + 1;
 
        let indent3 = indent2 + 1;
 
        let indent4 = indent3 + 1;
 

	
 
        match &heap[def_id] {
 
            Definition::Struct(def) => {
 
                self.kv(indent).with_id(PREFIX_STRUCT_ID, def.this.0.index)
 
                    .with_s_key("DefinitionStruct");
 

	
 
                self.kv(indent2).with_s_key("Name").with_identifier_val(&def.identifier);
 
                for poly_var_id in &def.poly_vars {
 
                    self.kv(indent3).with_s_key("PolyVar").with_identifier_val(&poly_var_id);
 
                }
 

	
 
                self.kv(indent2).with_s_key("Fields");
 
                for field in &def.fields {
 
                    self.kv(indent3).with_s_key("Field");
 
                    self.kv(indent4).with_s_key("Name")
 
                        .with_identifier_val(&field.field);
 
                    self.kv(indent4).with_s_key("Type")
 
                        .with_custom_val(|s| write_parser_type(s, heap, &field.parser_type));
 
                }
 
            },
 
            Definition::Enum(def) => {
 
                self.kv(indent).with_id(PREFIX_ENUM_ID, def.this.0.index)
 
                    .with_s_key("DefinitionEnum");
 

	
 
                self.kv(indent2).with_s_key("Name").with_identifier_val(&def.identifier);
 
                for poly_var_id in &def.poly_vars {
 
                    self.kv(indent3).with_s_key("PolyVar").with_identifier_val(&poly_var_id);
 
                }
 

	
 
                self.kv(indent2).with_s_key("Variants");
 
                for variant in &def.variants {
 
                    self.kv(indent3).with_s_key("Variant");
 
                    self.kv(indent4).with_s_key("Name")
 
                        .with_identifier_val(&variant.identifier);
 
                    let variant_value = self.kv(indent4).with_s_key("Value");
 
                    match &variant.value {
 
                        EnumVariantValue::None => variant_value.with_s_val("None"),
 
                        EnumVariantValue::Integer(value) => variant_value.with_disp_val(value),
 
                    };
 
                }
 
            },
 
            Definition::Union(def) => {
 
                self.kv(indent).with_id(PREFIX_UNION_ID, def.this.0.index)
 
                    .with_s_key("DefinitionUnion");
 

	
 
                self.kv(indent2).with_s_key("Name").with_identifier_val(&def.identifier);
 
                for poly_var_id in &def.poly_vars {
 
                    self.kv(indent3).with_s_key("PolyVar").with_identifier_val(&poly_var_id);
 
                }
 

	
 
                self.kv(indent2).with_s_key("Variants");
 
                for variant in &def.variants {
 
                    self.kv(indent3).with_s_key("Variant");
 
                    self.kv(indent4).with_s_key("Name")
 
                        .with_identifier_val(&variant.identifier);
 
                        
 
                    if variant.value.is_empty() {
 
                        self.kv(indent4).with_s_key("Value").with_s_val("None");
 
                    } else {
 
                        self.kv(indent4).with_s_key("Values");
 
                        for embedded in &variant.value {
 
                            self.kv(indent4+1).with_s_key("Value")
 
                                .with_custom_val(|v| write_parser_type(v, heap, embedded));
 
                        }
 
                    }
 
                }
 
            }
 
            Definition::Function(def) => {
 
            Definition::Procedure(def) => {
 
                self.kv(indent).with_id(PREFIX_FUNCTION_ID, def.this.0.index)
 
                    .with_s_key("DefinitionFunction");
 

	
 
                self.kv(indent2).with_s_key("Name").with_identifier_val(&def.identifier);
 
                for poly_var_id in &def.poly_vars {
 
                    self.kv(indent3).with_s_key("PolyVar").with_identifier_val(&poly_var_id);
 
                }
 

	
 
                self.kv(indent2).with_s_key("ReturnParserTypes");
 
                for return_type in &def.return_types {
 
                    self.kv(indent3).with_s_key("ReturnParserType")
 
                        .with_custom_val(|s| write_parser_type(s, heap, return_type));
 
                self.kv(indent2).with_s_key("Kind").with_debug_val(&def.kind);
 
                if let Some(parser_type) = &def.return_type {
 
                    self.kv(indent2).with_s_key("ReturnParserType")
 
                        .with_custom_val(|s| write_parser_type(s, heap, parser_type));
 
                }
 

	
 
                self.kv(indent2).with_s_key("Parameters");
 
                for variable_id in &def.parameters {
 
                    self.write_variable(heap, *variable_id, indent3);
 
                }
 

	
 
                self.kv(indent2).with_s_key("Body");
 
                self.write_stmt(heap, def.body.upcast(), indent3);
 
            },
 
            Definition::Component(def) => {
 
                self.kv(indent).with_id(PREFIX_COMPONENT_ID,def.this.0.index)
 
                    .with_s_key("DefinitionComponent");
 

	
 
                self.kv(indent2).with_s_key("Name").with_identifier_val(&def.identifier);
 
                self.kv(indent2).with_s_key("Variant").with_debug_val(&def.variant);
 

	
 
                self.kv(indent2).with_s_key("PolymorphicVariables");
 
                for poly_var_id in &def.poly_vars {
 
                    self.kv(indent3).with_s_key("PolyVar").with_identifier_val(&poly_var_id);
 
                }
 

	
 
                self.kv(indent2).with_s_key("Parameters");
 
                for variable_id in &def.parameters {
 
                    self.write_variable(heap, *variable_id, indent3)
 
                }
 

	
 
                self.kv(indent2).with_s_key("Body");
 
                self.write_stmt(heap, def.body.upcast(), indent3);
 
            }
 
        }
 
    }
 

	
 
    fn write_stmt(&mut self, heap: &Heap, stmt_id: StatementId, indent: usize) {
 
        let stmt = &heap[stmt_id];
 
        let indent2 = indent + 1;
 
        let indent3 = indent2 + 1;
 

	
 
        match stmt {
 
            Statement::Block(stmt) => {
 
                self.kv(indent).with_id(PREFIX_BLOCK_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Block");
 
                self.kv(indent2).with_s_key("EndBlockID").with_disp_val(&stmt.end_block.0.index);
 
                self.kv(indent2).with_s_key("FirstUniqueScopeID").with_disp_val(&stmt.first_unique_id_in_scope);
 
                self.kv(indent2).with_s_key("NextUniqueScopeID").with_disp_val(&stmt.next_unique_id_in_scope);
 
                self.kv(indent2).with_s_key("RelativePos").with_disp_val(&stmt.scope_node.relative_pos_in_parent);
 
                self.kv(indent2).with_s_key("ScopeID").with_disp_val(&stmt.scope.index);
 

	
 
                self.kv(indent2).with_s_key("Statements");
 
                for stmt_id in &stmt.statements {
 
                    self.write_stmt(heap, *stmt_id, indent3);
 
                }
 
            },
 
            Statement::EndBlock(stmt) => {
 
                self.kv(indent).with_id(PREFIX_ENDBLOCK_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndBlock");
 
                self.kv(indent2).with_s_key("StartBlockID").with_disp_val(&stmt.start_block.0.index);
 
            }
 
            Statement::Local(stmt) => {
 
                match stmt {
 
                    LocalStatement::Channel(stmt) => {
 
                        self.kv(indent).with_id(PREFIX_CHANNEL_STMT_ID, stmt.this.0.0.index)
 
                            .with_s_key("LocalChannel");
 

	
 
                        self.kv(indent2).with_s_key("From");
 
                        self.write_variable(heap, stmt.from, indent3);
 
                        self.kv(indent2).with_s_key("To");
 
                        self.write_variable(heap, stmt.to, indent3);
 
                        self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
                    },
 
                    LocalStatement::Memory(stmt) => {
 
                        self.kv(indent).with_id(PREFIX_MEM_STMT_ID, stmt.this.0.0.index)
 
                            .with_s_key("LocalMemory");
 

	
 
                        self.kv(indent2).with_s_key("Variable");
 
                        self.write_variable(heap, stmt.variable, indent3);
 
                        self.kv(indent2).with_s_key("InitialValue");
 
                        self.write_expr(heap, stmt.initial_expr.upcast(), indent3);
 
                        self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
                    }
 
                }
 
            },
 
            Statement::Labeled(stmt) => {
 
                self.kv(indent).with_id(PREFIX_LABELED_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Labeled");
 

	
 
                self.kv(indent2).with_s_key("Label").with_identifier_val(&stmt.label);
 
                self.kv(indent2).with_s_key("Statement");
 
                self.write_stmt(heap, stmt.body, indent3);
 
            },
 
            Statement::If(stmt) => {
 
                self.kv(indent).with_id(PREFIX_IF_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("If");
 

	
 
                self.kv(indent2).with_s_key("EndIf").with_disp_val(&stmt.end_if.0.index);
 

	
 
                self.kv(indent2).with_s_key("Condition");
 
                self.write_expr(heap, stmt.test, indent3);
 

	
 
                self.kv(indent2).with_s_key("TrueBody");
 
                self.write_stmt(heap, stmt.true_body.upcast(), indent3);
 
                self.write_stmt(heap, stmt.true_case.body, indent3);
 

	
 
                if let Some(false_body) = stmt.false_body {
 
                if let Some(false_body) = stmt.false_case {
 
                    self.kv(indent2).with_s_key("FalseBody");
 
                    self.write_stmt(heap, false_body.upcast(), indent3);
 
                    self.write_stmt(heap, false_body.body, indent3);
 
                }
 
            },
 
            Statement::EndIf(stmt) => {
 
                self.kv(indent).with_id(PREFIX_ENDIF_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndIf");
 
                self.kv(indent2).with_s_key("StartIf").with_disp_val(&stmt.start_if.0.index);
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            },
 
            Statement::While(stmt) => {
 
                self.kv(indent).with_id(PREFIX_WHILE_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("While");
 

	
 
                self.kv(indent2).with_s_key("EndWhile").with_disp_val(&stmt.end_while.0.index);
 
                self.kv(indent2).with_s_key("InSync")
 
                    .with_disp_val(&stmt.in_sync.0.index);
 
                self.kv(indent2).with_s_key("Condition");
 
                self.write_expr(heap, stmt.test, indent3);
 
                self.kv(indent2).with_s_key("Body");
 
                self.write_stmt(heap, stmt.body.upcast(), indent3);
 
                self.write_stmt(heap, stmt.body, indent3);
 
            },
 
            Statement::EndWhile(stmt) => {
 
                self.kv(indent).with_id(PREFIX_ENDWHILE_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndWhile");
 
                self.kv(indent2).with_s_key("StartWhile").with_disp_val(&stmt.start_while.0.index);
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            },
 
            Statement::Break(stmt) => {
 
                self.kv(indent).with_id(PREFIX_BREAK_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Break");
 
                self.kv(indent2).with_s_key("Label")
 
                    .with_opt_identifier_val(stmt.label.as_ref());
 
                self.kv(indent2).with_s_key("Target")
 
                    .with_disp_val(&stmt.target.0.index);
 
            },
 
            Statement::Continue(stmt) => {
 
                self.kv(indent).with_id(PREFIX_CONTINUE_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Continue");
 
                self.kv(indent2).with_s_key("Label")
 
                    .with_opt_identifier_val(stmt.label.as_ref());
 
                self.kv(indent2).with_s_key("Target")
 
                    .with_disp_val(&stmt.target.0.index);
 
            },
 
            Statement::Synchronous(stmt) => {
 
                self.kv(indent).with_id(PREFIX_SYNC_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Synchronous");
 
                self.kv(indent2).with_s_key("EndSync").with_disp_val(&stmt.end_sync.0.index);
 
                self.kv(indent2).with_s_key("Body");
 
                self.write_stmt(heap, stmt.body.upcast(), indent3);
 
                self.write_stmt(heap, stmt.body, indent3);
 
            },
 
            Statement::EndSynchronous(stmt) => {
 
                self.kv(indent).with_id(PREFIX_ENDSYNC_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndSynchronous");
 
                self.kv(indent2).with_s_key("StartSync").with_disp_val(&stmt.start_sync.0.index);
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            },
 
            Statement::Fork(stmt) => {
 
                self.kv(indent).with_id(PREFIX_FORK_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Fork");
 
                self.kv(indent2).with_s_key("EndFork").with_disp_val(&stmt.end_fork.0.index);
 
                self.kv(indent2).with_s_key("LeftBody");
 
                self.write_stmt(heap, stmt.left_body.upcast(), indent3);
 
                self.write_stmt(heap, stmt.left_body, indent3);
 

	
 
                if let Some(right_body_id) = stmt.right_body {
 
                    self.kv(indent2).with_s_key("RightBody");
 
                    self.write_stmt(heap, right_body_id.upcast(), indent3);
 
                    self.write_stmt(heap, right_body_id, indent3);
 
                }
 
            },
 
            Statement::EndFork(stmt) => {
 
                self.kv(indent).with_id(PREFIX_END_FORK_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndFork");
 
                self.kv(indent2).with_s_key("StartFork").with_disp_val(&stmt.start_fork.0.index);
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            },
 
            Statement::Select(stmt) => {
 
                self.kv(indent).with_id(PREFIX_SELECT_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Select");
 
                self.kv(indent2).with_s_key("EndSelect").with_disp_val(&stmt.end_select.0.index);
 
                self.kv(indent2).with_s_key("Cases");
 
                let indent3 = indent2 + 1;
 
                let indent4 = indent3 + 1;
 
                for case in &stmt.cases {
 
                    self.kv(indent3).with_s_key("Guard");
 
                    self.write_stmt(heap, case.guard, indent4);
 

	
 
                    self.kv(indent3).with_s_key("Block");
 
                    self.write_stmt(heap, case.block.upcast(), indent4);
 
                    self.write_stmt(heap, case.body, indent4);
 
                }
 
                self.kv(indent2).with_s_key("Replacement");
 
                self.write_stmt(heap, stmt.next, indent3);
 
            },
 
            Statement::EndSelect(stmt) => {
 
                self.kv(indent).with_id(PREFIX_END_SELECT_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndSelect");
 
                self.kv(indent2).with_s_key("StartSelect").with_disp_val(&stmt.start_select.0.index);
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            }
 
            Statement::Return(stmt) => {
 
                self.kv(indent).with_id(PREFIX_RETURN_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Return");
 
                self.kv(indent2).with_s_key("Expressions");
 
                for expr_id in &stmt.expressions {
 
                    self.write_expr(heap, *expr_id, indent3);
 
                }
 
            },
 
            Statement::Goto(stmt) => {
 
                self.kv(indent).with_id(PREFIX_GOTO_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Goto");
 
                self.kv(indent2).with_s_key("Label").with_identifier_val(&stmt.label);
 
                self.kv(indent2).with_s_key("Target")
 
                    .with_disp_val(&stmt.target.0.index);
 
            },
 
            Statement::New(stmt) => {
 
                self.kv(indent).with_id(PREFIX_NEW_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("New");
 
                self.kv(indent2).with_s_key("Expression");
 
                self.write_expr(heap, stmt.expression.upcast(), indent3);
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            },
 
            Statement::Expression(stmt) => {
 
                self.kv(indent).with_id(PREFIX_EXPR_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("ExpressionStatement");
 
                self.write_expr(heap, stmt.expression, indent2);
 
                self.kv(indent2).with_s_key("Next").with_disp_val(&stmt.next.index);
 
            }
 
        }
 
    }
 

	
 
    fn write_expr(&mut self, heap: &Heap, expr_id: ExpressionId, indent: usize) {
 
        let expr = &heap[expr_id];
 
        let indent2 = indent + 1;
 
        let indent3 = indent2 + 1;
 

	
 
        match expr {
 
            Expression::Assignment(expr) => {
 
                self.kv(indent).with_id(PREFIX_ASSIGNMENT_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("AssignmentExpr");
 
                self.kv(indent2).with_s_key("TypeIndex").with_disp_val(&expr.type_index);
 
                self.kv(indent2).with_s_key("Operation").with_debug_val(&expr.operation);
 
                self.kv(indent2).with_s_key("Left");
 
                self.write_expr(heap, expr.left, indent3);
 
                self.kv(indent2).with_s_key("Right");
 
                self.write_expr(heap, expr.right, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Binding(expr) => {
 
                self.kv(indent).with_id(PREFIX_BINARY_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("BindingExpr");
 
                self.kv(indent2).with_s_key("TypeIndex").with_disp_val(&expr.type_index);
 
                self.kv(indent2).with_s_key("BindToExpression");
 
                self.write_expr(heap, expr.bound_to, indent3);
 
                self.kv(indent2).with_s_key("BindFromExpression");
 
                self.write_expr(heap, expr.bound_from, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Conditional(expr) => {
 
                self.kv(indent).with_id(PREFIX_CONDITIONAL_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("ConditionalExpr");
 
                self.kv(indent2).with_s_key("TypeIndex").with_disp_val(&expr.type_index);
 
                self.kv(indent2).with_s_key("Condition");
 
                self.write_expr(heap, expr.test, indent3);
 
                self.kv(indent2).with_s_key("TrueExpression");
 
                self.write_expr(heap, expr.true_expression, indent3);
 
                self.kv(indent2).with_s_key("FalseExpression");
 
                self.write_expr(heap, expr.false_expression, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Binary(expr) => {
 
                self.kv(indent).with_id(PREFIX_BINARY_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("BinaryExpr");
 
                self.kv(indent2).with_s_key("TypeIndex").with_disp_val(&expr.type_index);
 
                self.kv(indent2).with_s_key("Operation").with_debug_val(&expr.operation);
 
                self.kv(indent2).with_s_key("Left");
 
                self.write_expr(heap, expr.left, indent3);
 
                self.kv(indent2).with_s_key("Right");
 
                self.write_expr(heap, expr.right, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Unary(expr) => {
 
                self.kv(indent).with_id(PREFIX_UNARY_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("UnaryExpr");
 
                self.kv(indent2).with_s_key("TypeIndex").with_disp_val(&expr.type_index);
 
                self.kv(indent2).with_s_key("Operation").with_debug_val(&expr.operation);
 
                self.kv(indent2).with_s_key("Argument");
 
                self.write_expr(heap, expr.expression, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Indexing(expr) => {
 
                self.kv(indent).with_id(PREFIX_INDEXING_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("IndexingExpr");
 
                self.kv(indent2).with_s_key("TypeIndex").with_disp_val(&expr.type_index);
 
                self.kv(indent2).with_s_key("Subject");
 
                self.write_expr(heap, expr.subject, indent3);
 
                self.kv(indent2).with_s_key("Index");
 
                self.write_expr(heap, expr.index, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Slicing(expr) => {
 
                self.kv(indent).with_id(PREFIX_SLICING_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("SlicingExpr");
 
                self.kv(indent2).with_s_key("TypeIndex").with_disp_val(&expr.type_index);
 
                self.kv(indent2).with_s_key("Subject");
 
                self.write_expr(heap, expr.subject, indent3);
 
                self.kv(indent2).with_s_key("FromIndex");
 
                self.write_expr(heap, expr.from_index, indent3);
 
                self.kv(indent2).with_s_key("ToIndex");
 
                self.write_expr(heap, expr.to_index, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Select(expr) => {
 
                self.kv(indent).with_id(PREFIX_SELECT_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("SelectExpr");
 
                self.kv(indent2).with_s_key("TypeIndex").with_disp_val(&expr.type_index);
 
                self.kv(indent2).with_s_key("Subject");
 
                self.write_expr(heap, expr.subject, indent3);
 

	
 
                match &expr.kind {
 
                    SelectKind::StructField(field_name) => {
 
                        self.kv(indent2).with_s_key("StructField").with_identifier_val(field_name);
 
                    },
 
                    SelectKind::TupleMember(member_index) => {
 
                        self.kv(indent2).with_s_key("TupleMember").with_disp_val(member_index);
 
                    },
 
                }
 

	
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Literal(expr) => {
 
                self.kv(indent).with_id(PREFIX_LITERAL_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("LiteralExpr");
 

	
 
                self.kv(indent2).with_s_key("TypeIndex").with_disp_val(&expr.type_index);
 
                let val = self.kv(indent2).with_s_key("Value");
 
                match &expr.value {
 
                    Literal::Null => { val.with_s_val("null"); },
 
                    Literal::True => { val.with_s_val("true"); },
 
                    Literal::False => { val.with_s_val("false"); },
 
                    Literal::Character(data) => { val.with_disp_val(data); },
 
                    Literal::String(data) => {
 
                        // Stupid hack
 
                        let string = String::from(data.as_str());
 
                        val.with_disp_val(&string);
 
                    },
 
                    Literal::Integer(data) => { val.with_debug_val(data); },
 
                    Literal::Struct(data) => {
 
                        val.with_s_val("Struct");
 
                        let indent4 = indent3 + 1;
 

	
 
                        self.kv(indent3).with_s_key("ParserType")
 
                            .with_custom_val(|t| write_parser_type(t, heap, &data.parser_type));
 
                        self.kv(indent3).with_s_key("Definition").with_disp_val(&data.definition.index);
 

	
 
                        for field in &data.fields {
 
                            self.kv(indent3).with_s_key("Field");
 
                            self.kv(indent4).with_s_key("Name").with_identifier_val(&field.identifier);
 
                            self.kv(indent4).with_s_key("Index").with_disp_val(&field.field_idx);
 
                            self.kv(indent4).with_s_key("ParserType");
 
                            self.write_expr(heap, field.value, indent4 + 1);
 
                        }
 
                    },
 
                    Literal::Enum(data) => {
 
                        val.with_s_val("Enum");
 

	
 
                        self.kv(indent3).with_s_key("ParserType")
 
                            .with_custom_val(|t| write_parser_type(t, heap, &data.parser_type));
 
                        self.kv(indent3).with_s_key("Definition").with_disp_val(&data.definition.index);
 
                        self.kv(indent3).with_s_key("VariantIdx").with_disp_val(&data.variant_idx);
 
                    },
 
                    Literal::Union(data) => {
 
                        val.with_s_val("Union");
 
                        let indent4 = indent3 + 1;
 

	
 
                        self.kv(indent3).with_s_key("ParserType")
 
                            .with_custom_val(|t| write_parser_type(t, heap, &data.parser_type));
 
                        self.kv(indent3).with_s_key("Definition").with_disp_val(&data.definition.index);
 
                        self.kv(indent3).with_s_key("VariantIdx").with_disp_val(&data.variant_idx);
 

	
 
                        for value in &data.values {
 
                            self.kv(indent3).with_s_key("Value");
 
                            self.write_expr(heap, *value, indent4);
 
                        }
 
                    },
 
                    Literal::Array(data) => {
 
                        val.with_s_val("Array");
 
                        let indent4 = indent3 + 1;
 

	
 
                        self.kv(indent3).with_s_key("Elements");
 
                        for expr_id in data {
 
                            self.write_expr(heap, *expr_id, indent4);
 
                        }
 
                    },
 
                    Literal::Tuple(data) => {
 
                        val.with_s_val("Tuple");
 
                        let indent4 = indent3 + 1;
 
                        self.kv(indent3).with_s_key("Elements");
 
                        for expr_id in data {
 
                            self.write_expr(heap, *expr_id, indent4);
 
                        }
 
                    }
 
                }
 

	
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Cast(expr) => {
 
                self.kv(indent).with_id(PREFIX_CAST_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("CallExpr");
 
                self.kv(indent2).with_s_key("TypeIndex").with_disp_val(&expr.type_index);
 
                self.kv(indent2).with_s_key("ToType")
 
                    .with_custom_val(|t| write_parser_type(t, heap, &expr.to_type));
 
                self.kv(indent2).with_s_key("Subject");
 
                self.write_expr(heap, expr.subject, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            }
 
            Expression::Call(expr) => {
 
                self.kv(indent).with_id(PREFIX_CALL_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("CallExpr");
 

	
 
                let definition = &heap[expr.definition];
 
                match definition {
 
                    Definition::Component(definition) => {
 
                        self.kv(indent2).with_s_key("BuiltIn").with_disp_val(&false);
 
                        self.kv(indent2).with_s_key("Variant").with_debug_val(&definition.variant);
 
                    },
 
                    Definition::Function(definition) => {
 
                self.kv(indent2).with_s_key("TypeIndex").with_disp_val(&expr.type_index);
 
                self.kv(indent2).with_s_key("Method").with_debug_val(&expr.method);
 
                if !expr.procedure.is_invalid() {
 
                    let definition = &heap[expr.procedure];
 
                    self.kv(indent2).with_s_key("BuiltIn").with_disp_val(&definition.builtin);
 
                        self.kv(indent2).with_s_key("Variant").with_s_val("Function");
 
                    },
 
                    _ => unreachable!()
 
                }
 
                self.kv(indent2).with_s_key("MethodName").with_identifier_val(definition.identifier());
 
                    self.kv(indent2).with_s_key("Variant").with_debug_val(&definition.kind);
 
                    self.kv(indent2).with_s_key("MethodName").with_identifier_val(&definition.identifier);
 
                    self.kv(indent2).with_s_key("ParserType")
 
                        .with_custom_val(|t| write_parser_type(t, heap, &expr.parser_type));
 
                }
 

	
 
                // Arguments
 
                self.kv(indent2).with_s_key("Arguments");
 
                for arg_id in &expr.arguments {
 
                    self.write_expr(heap, *arg_id, indent3);
 
                }
 

	
 
                // Parent
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            },
 
            Expression::Variable(expr) => {
 
                self.kv(indent).with_id(PREFIX_VARIABLE_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("VariableExpr");
 
                self.kv(indent2).with_s_key("TypeIndex").with_disp_val(&expr.type_index);
 
                self.kv(indent2).with_s_key("Name").with_identifier_val(&expr.identifier);
 
                self.kv(indent2).with_s_key("Definition")
 
                    .with_opt_disp_val(expr.declaration.as_ref().map(|v| &v.index));
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
            }
 
        }
 
    }
 

	
 
    fn write_variable(&mut self, heap: &Heap, variable_id: VariableId, indent: usize) {
 
        let var = &heap[variable_id];
 
        let indent2 = indent + 1;
 

	
 
        self.kv(indent).with_id(PREFIX_VARIABLE_ID, variable_id.index)
 
            .with_s_key("Variable");
 

	
 
        self.kv(indent2).with_s_key("Name").with_identifier_val(&var.identifier);
 
        self.kv(indent2).with_s_key("Kind").with_debug_val(&var.kind);
 
        self.kv(indent2).with_s_key("ParserType")
 
            .with_custom_val(|w| write_parser_type(w, heap, &var.parser_type));
 
        self.kv(indent2).with_s_key("RelativePos").with_disp_val(&var.relative_pos_in_block);
 
        self.kv(indent2).with_s_key("RelativePos").with_disp_val(&var.relative_pos_in_parent);
 
        self.kv(indent2).with_s_key("UniqueScopeID").with_disp_val(&var.unique_id_in_scope);
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Printing Utilities
 
    //--------------------------------------------------------------------------
 

	
 
    fn kv(&mut self, indent: usize) -> KV {
 
        KV::new(&mut self.buffer, &mut self.temp1, &mut self.temp2, indent)
 
    }
 

	
 
    fn flush<W: IOWrite>(&mut self, w: &mut W) {
 
        w.write(self.buffer.as_bytes()).unwrap();
 
        self.buffer.clear()
 
    }
 
}
 

	
 
fn write_option<V: Display>(target: &mut String, value: Option<V>) {
 
    target.clear();
 
    match &value {
 
        Some(v) => target.push_str(&format!("Some({})", v)),
 
        None => target.push_str("None")
 
    };
 
}
 

	
 
fn write_parser_type(target: &mut String, heap: &Heap, t: &ParserType) {
 
    use ParserTypeVariant as PTV;
 

	
 
    if t.elements.is_empty() {
 
        target.push_str("no elements in ParserType (can happen due to compiler-inserted AST nodes)");
 
        return;
 
    }
 

	
 
    fn write_element(target: &mut String, heap: &Heap, t: &ParserType, mut element_idx: usize) -> usize {
 
        let element = &t.elements[element_idx];
 
        match &element.variant {
 
            PTV::Void => target.push_str("void"),
 
            PTV::InputOrOutput => {
 
                target.push_str("portlike<");
 
                element_idx = write_element(target, heap, t, element_idx + 1);
 
                target.push('>');
 
            },
 
            PTV::ArrayLike => {
 
                element_idx = write_element(target, heap, t, element_idx + 1);
 
                target.push_str("[???]");
 
            },
 
            PTV::IntegerLike => target.push_str("integerlike"),
 
            PTV::Message => { target.push_str(KW_TYPE_MESSAGE_STR); },
 
            PTV::Bool => { target.push_str(KW_TYPE_BOOL_STR); },
 
            PTV::UInt8 => { target.push_str(KW_TYPE_UINT8_STR); },
 
            PTV::UInt16 => { target.push_str(KW_TYPE_UINT16_STR); },
 
            PTV::UInt32 => { target.push_str(KW_TYPE_UINT32_STR); },
 
            PTV::UInt64 => { target.push_str(KW_TYPE_UINT64_STR); },
 
            PTV::SInt8 => { target.push_str(KW_TYPE_SINT8_STR); },
 
            PTV::SInt16 => { target.push_str(KW_TYPE_SINT16_STR); },
 
            PTV::SInt32 => { target.push_str(KW_TYPE_SINT32_STR); },
 
            PTV::SInt64 => { target.push_str(KW_TYPE_SINT64_STR); },
 
            PTV::Character => { target.push_str(KW_TYPE_CHAR_STR); },
 
            PTV::String => { target.push_str(KW_TYPE_STRING_STR); },
 
            PTV::IntegerLiteral => { target.push_str("int_literal"); },
 
            PTV::Inferred => { target.push_str(KW_TYPE_INFERRED_STR); },
 
            PTV::Array => {
 
                element_idx = write_element(target, heap, t, element_idx + 1);
 
                target.push_str("[]");
 
            },
 
            PTV::Input => {
 
                target.push_str(KW_TYPE_IN_PORT_STR);
 
                target.push('<');
 
                element_idx = write_element(target, heap, t, element_idx + 1);
 
                target.push('>');
 
            },
 
            PTV::Output => {
 
                target.push_str(KW_TYPE_OUT_PORT_STR);
 
                target.push('<');
 
                element_idx = write_element(target, heap, t, element_idx + 1);
 
                target.push('>');
 
            },
 
            PTV::Tuple(num_embedded) => {
 
                target.push('(');
 
                let num_embedded = *num_embedded;
 
                for embedded_idx in 0..num_embedded {
 
                    if embedded_idx != 0 {
 
                        target.push(',');
 
                    }
 
                    element_idx = write_element(target, heap, t, element_idx + 1);
 
                }
 
                target.push(')');
 
            }
 
            PTV::PolymorphicArgument(definition_id, arg_idx) => {
 
                let definition = &heap[*definition_id];
 
                let poly_var = &definition.poly_vars()[*arg_idx as usize].value;
 
                target.push_str(poly_var.as_str());
 
            },
 
            PTV::Definition(definition_id, num_embedded) => {
 
                let definition = &heap[*definition_id];
 
                let definition_ident = definition.identifier().value.as_str();
 
                target.push_str(definition_ident);
 

	
 
                let num_embedded = *num_embedded;
 
                if num_embedded != 0 {
 
                    target.push('<');
 
                    for embedded_idx in 0..num_embedded {
 
                        if embedded_idx != 0 {
 
                            target.push(',');
 
                        }
 
                        element_idx = write_element(target, heap, t, element_idx + 1);
 
                    }
 
                    target.push('>');
 
                }
 
            }
 
        }
 

	
 
        element_idx
 
    }
 

	
 
    write_element(target, heap, t, 0);
 
}
 

	
 
fn write_concrete_type(target: &mut String, heap: &Heap, def_id: DefinitionId, t: &ConcreteType) {
 
    use ConcreteTypePart as CTP;
 

	
 
    fn write_concrete_part(target: &mut String, heap: &Heap, def_id: DefinitionId, t: &ConcreteType, mut idx: usize) -> usize {
 
        if idx >= t.parts.len() {
 
            return idx;
 
        }
 

	
 
        match &t.parts[idx] {
 
            CTP::Void => target.push_str("void"),
 
            CTP::Message => target.push_str("msg"),
 
            CTP::Bool => target.push_str("bool"),
 
            CTP::Bool => target.push_str(KW_TYPE_BOOL_STR),
 
            CTP::UInt8 => target.push_str(KW_TYPE_UINT8_STR),
 
            CTP::UInt16 => target.push_str(KW_TYPE_UINT16_STR),
 
            CTP::UInt32 => target.push_str(KW_TYPE_UINT32_STR),
 
            CTP::UInt64 => target.push_str(KW_TYPE_UINT64_STR),
 
            CTP::SInt8 => target.push_str(KW_TYPE_SINT8_STR),
 
            CTP::SInt16 => target.push_str(KW_TYPE_SINT16_STR),
 
            CTP::SInt32 => target.push_str(KW_TYPE_SINT32_STR),
 
            CTP::SInt64 => target.push_str(KW_TYPE_SINT64_STR),
 
            CTP::Character => target.push_str(KW_TYPE_CHAR_STR),
 
            CTP::String => target.push_str(KW_TYPE_STRING_STR),
 
            CTP::Pointer => target.push('*'),
 
            CTP::Array => {
 
                idx = write_concrete_part(target, heap, def_id, t, idx + 1);
 
                target.push_str("[]");
 
            },
 
            CTP::Slice => {
 
                idx = write_concrete_part(target, heap, def_id, t, idx + 1);
 
                target.push_str("[..]");
 
            }
 
            CTP::Input => {
 
                target.push_str("in<");
 
                idx = write_concrete_part(target, heap, def_id, t, idx + 1);
 
                target.push('>');
 
            },
 
            CTP::Output => {
 
                target.push_str("out<");
 
                idx = write_concrete_part(target, heap, def_id, t, idx + 1);
 
                target.push('>')
 
            },
 
            CTP::Tuple(num_embedded) => {
 
                target.push('(');
 
                for idx_embedded in 0..*num_embedded {
 
                    if idx_embedded != 0 {
 
                        target.push_str(", ");
 
                    }
 
                    idx = write_concrete_part(target, heap, def_id, t, idx + 1);
 
                }
 
                target.push(')');
 
            },
 
            CTP::Instance(definition_id, num_embedded) => {
 
                let identifier = heap[*definition_id].identifier();
 
                target.push_str(identifier.value.as_str());
 
                target.push('<');
 
                for idx_embedded in 0..*num_embedded {
 
                    if idx_embedded != 0 {
 
                        target.push_str(", ");
 
                    }
 
                    idx = write_concrete_part(target, heap, def_id, t, idx + 1);
 
                }
 
                target.push('>');
 
            },
 
            CTP::Function(_, _) => todo!("AST printer for ConcreteTypePart::Function"),
 
            CTP::Component(_, _) => todo!("AST printer for ConcreteTypePart::Component"),
 
        }
 

	
 
        idx + 1
 
    }
 

	
 
    write_concrete_part(target, heap, def_id, t, 0);
 
}
 

	
 
fn write_expression_parent(target: &mut String, parent: &ExpressionParent) {
 
    use ExpressionParent as EP;
 

	
 
    *target = match parent {
 
        EP::None => String::from("None"),
 
        EP::Memory(id) => format!("MemStmt({})", id.0.0.index),
 
        EP::If(id) => format!("IfStmt({})", id.0.index),
 
        EP::While(id) => format!("WhileStmt({})", id.0.index),
 
        EP::Return(id) => format!("ReturnStmt({})", id.0.index),
 
        EP::New(id) => format!("NewStmt({})", id.0.index),
 
        EP::ExpressionStmt(id) => format!("ExprStmt({})", id.0.index),
 
        EP::Expression(id, idx) => format!("Expr({}, {})", id.index, idx)
 
    };
 
}
 
\ No newline at end of file
src/protocol/eval/error.rs
Show inline comments
 
use std::fmt;
 

	
 
use crate::protocol::{
 
    ast::*,
 
    Module,
 
    input_source::{ErrorStatement, StatementKind}
 
};
 
use super::executor::*;
 

	
 
/// Represents a stack frame recorded in an error
 
#[derive(Debug)]
 
pub struct EvalFrame {
 
    pub line: u32,
 
    pub module_name: String,
 
    pub procedure: String, // function or component
 
    pub is_func: bool,
 
}
 

	
 
impl fmt::Display for EvalFrame {
 
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 
        let func_or_comp = if self.is_func {
 
            "function "
 
        } else {
 
            "component"
 
        };
 

	
 
        if self.module_name.is_empty() {
 
            write!(f, "{} {}:{}", func_or_comp, &self.procedure, self.line)
 
        } else {
 
            write!(f, "{} {}:{}:{}", func_or_comp, &self.module_name, &self.procedure, self.line)
 
        }
 
    }
 
}
 

	
 
/// Represents an error that ocurred during evaluation. Contains error
 
/// statements just like in parsing errors. Additionally may display the current
 
/// execution state.
 
#[derive(Debug)]
 
pub struct EvalError {
 
    pub(crate) statements: Vec<ErrorStatement>,
 
    pub(crate) frames: Vec<EvalFrame>,
 
}
 

	
 
impl EvalError {
 
    pub(crate) fn new_error_at_expr(prompt: &Prompt, modules: &[Module], heap: &Heap, expr_id: ExpressionId, msg: String) -> EvalError {
 
        // Create frames
 
        debug_assert!(!prompt.frames.is_empty());
 
        let mut frames = Vec::with_capacity(prompt.frames.len());
 
        let mut last_module_source = &modules[0].source;
 
        for frame in prompt.frames.iter() {
 
            let definition = &heap[frame.definition];
 
            let statement = &heap[frame.position];
 
            let statement_span = statement.span();
 

	
 
            let (root_id, procedure, is_func) = match definition {
 
                Definition::Function(def) => {
 
                    (def.defined_in, def.identifier.value.as_str().to_string(), true)
 
                },
 
                Definition::Component(def) => {
 
                    (def.defined_in, def.identifier.value.as_str().to_string(), false)
 
                },
 
                _ => unreachable!("construct stack frame with definition pointing to data type")
 
            };
 

	
 
            // Lookup module name, if it has one
 
            let module = modules.iter().find(|m| m.root_id == root_id).unwrap();
 
            let module = modules.iter().find(|m| m.root_id == definition.defined_in).unwrap();
 
            let module_name = if let Some(name) = &module.name {
 
                name.as_str().to_string()
 
            } else {
 
                String::new()
 
            };
 

	
 
            last_module_source = &module.source;
 
            frames.push(EvalFrame{
 
                line: statement_span.begin.line,
 
                module_name,
 
                procedure,
 
                is_func
 
                procedure: definition.identifier.value.as_str().to_string(),
 
                is_func: definition.kind == ProcedureKind::Function,
 
            });
 
        }
 

	
 
        let expr = &heap[expr_id];
 
        let statements = vec![
 
            ErrorStatement::from_source_at_span(StatementKind::Error, last_module_source, expr.full_span(), msg)
 
        ];
 

	
 
        EvalError{ statements, frames }
 
    }
 
}
 

	
 
impl fmt::Display for EvalError {
 
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 
        // Display error statement(s)
 
        self.statements[0].fmt(f)?;
 
        for statement in self.statements.iter().skip(1) {
 
            writeln!(f)?;
 
            statement.fmt(f)?;
 
        }
 

	
 
        // Display stack trace
 
        writeln!(f)?;
 
        writeln!(f, " +-  Stack trace:")?;
 
        for frame in self.frames.iter().rev() {
 
            write!(f, " | ")?;
 
            frame.fmt(f)?;
 
            writeln!(f)?;
 
        }
 

	
 
        Ok(())
 
    }
 
}
 
\ No newline at end of file
src/protocol/eval/executor.rs
Show inline comments
 

	
 
use std::collections::VecDeque;
 

	
 
use super::value::*;
 
use super::store::*;
 
use super::error::*;
 
use crate::protocol::*;
 
use crate::protocol::ast::*;
 
use crate::protocol::type_table::*;
 

	
 
macro_rules! debug_enabled { () => { false }; }
 
macro_rules! debug_log {
 
    ($format:literal) => {
 
        enabled_debug_print!(false, "exec", $format);
 
    };
 
    ($format:literal, $($args:expr),*) => {
 
        enabled_debug_print!(false, "exec", $format, $($args),*);
 
    };
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub(crate) enum ExprInstruction {
 
    EvalExpr(ExpressionId),
 
    PushValToFront,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub(crate) struct Frame {
 
    pub(crate) definition: DefinitionId,
 
    pub(crate) monomorph_idx: i32,
 
    pub(crate) definition: ProcedureDefinitionId,
 
    pub(crate) monomorph_type_id: TypeId,
 
    pub(crate) monomorph_index: usize,
 
    pub(crate) position: StatementId,
 
    pub(crate) expr_stack: VecDeque<ExprInstruction>, // hack for expression evaluation, evaluated by popping from back
 
    pub(crate) expr_values: VecDeque<Value>, // hack for expression results, evaluated by popping from front/back
 
    pub(crate) max_stack_size: u32,
 
}
 

	
 
impl Frame {
 
    /// Creates a new execution frame. Does not modify the stack in any way.
 
    pub fn new(heap: &Heap, definition_id: DefinitionId, monomorph_idx: i32) -> Self {
 
    pub fn new(heap: &Heap, definition_id: ProcedureDefinitionId, monomorph_type_id: TypeId, monomorph_index: u32) -> Self {
 
        let definition = &heap[definition_id];
 
        let first_statement = match definition {
 
            Definition::Component(definition) => definition.body,
 
            Definition::Function(definition) => definition.body,
 
            _ => unreachable!("initializing frame with {:?} instead of a function/component", definition),
 
        };
 
        let outer_scope_id = definition.scope;
 
        let first_statement_id = definition.body;
 

	
 
        // Another not-so-pretty thing that has to be replaced somewhere in the
 
        // future...
 
        fn determine_max_stack_size(heap: &Heap, block_id: BlockStatementId, max_size: &mut u32) {
 
            let block_stmt = &heap[block_id];
 
            debug_assert!(block_stmt.next_unique_id_in_scope >= 0);
 
        fn determine_max_stack_size(heap: &Heap, scope_id: ScopeId, max_size: &mut u32) {
 
            let scope = &heap[scope_id];
 

	
 
            // Check current block
 
            let cur_size = block_stmt.next_unique_id_in_scope as u32;
 
            let cur_size = scope.next_unique_id_in_scope as u32;
 
            if cur_size > *max_size { *max_size = cur_size; }
 

	
 
            // And child blocks
 
            for child_scope in &block_stmt.scope_node.nested {
 
                determine_max_stack_size(heap, child_scope.to_block(), max_size);
 
            for child_scope in &scope.nested {
 
                determine_max_stack_size(heap, *child_scope, max_size);
 
            }
 
        }
 

	
 
        let mut max_stack_size = 0;
 
        determine_max_stack_size(heap, first_statement, &mut max_stack_size);
 
        determine_max_stack_size(heap, outer_scope_id, &mut max_stack_size);
 

	
 
        Frame{
 
            definition: definition_id,
 
            monomorph_idx,
 
            position: first_statement.upcast(),
 
            monomorph_type_id,
 
            monomorph_index: monomorph_index as usize,
 
            position: first_statement_id.upcast(),
 
            expr_stack: VecDeque::with_capacity(128),
 
            expr_values: VecDeque::with_capacity(128),
 
            max_stack_size,
 
        }
 
    }
 

	
 
    /// Prepares a single expression for execution. This involves walking the
 
    /// expression tree and putting them in the `expr_stack` such that
 
    /// continuously popping from its back will evaluate the expression. The
 
    /// results of each expression will be stored by pushing onto `expr_values`.
 
    pub fn prepare_single_expression(&mut self, heap: &Heap, expr_id: ExpressionId) {
 
        debug_assert!(self.expr_stack.is_empty());
 
        self.expr_values.clear(); // May not be empty if last expression result(s) were discarded
 

	
 
        self.serialize_expression(heap, expr_id);
 
    }
 

	
 
    /// Prepares multiple expressions for execution (i.e. evaluating all
 
    /// function arguments or all elements of an array/union literal). Per
 
    /// expression this works the same as `prepare_single_expression`. However
 
    /// after each expression is evaluated we insert a `PushValToFront`
 
    /// instruction
 
    pub fn prepare_multiple_expressions(&mut self, heap: &Heap, expr_ids: &[ExpressionId]) {
 
        debug_assert!(self.expr_stack.is_empty());
 
        self.expr_values.clear();
 

	
 
        for expr_id in expr_ids {
 
            self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
            self.serialize_expression(heap, *expr_id);
 
        }
 
    }
 

	
 
    /// Performs depth-first serialization of expression tree. Let's not care
 
    /// about performance for a temporary runtime implementation
 
    fn serialize_expression(&mut self, heap: &Heap, id: ExpressionId) {
 
        self.expr_stack.push_back(ExprInstruction::EvalExpr(id));
 

	
 
        match &heap[id] {
 
            Expression::Assignment(expr) => {
 
                self.serialize_expression(heap, expr.left);
 
                self.serialize_expression(heap, expr.right);
 
            },
 
            Expression::Binding(expr) => {
 
                self.serialize_expression(heap, expr.bound_to);
 
                self.serialize_expression(heap, expr.bound_from);
 
            },
 
            Expression::Conditional(expr) => {
 
                self.serialize_expression(heap, expr.test);
 
            },
 
            Expression::Binary(expr) => {
 
                self.serialize_expression(heap, expr.left);
 
                self.serialize_expression(heap, expr.right);
 
            },
 
            Expression::Unary(expr) => {
 
                self.serialize_expression(heap, expr.expression);
 
            },
 
            Expression::Indexing(expr) => {
 
                self.serialize_expression(heap, expr.index);
 
                self.serialize_expression(heap, expr.subject);
 
            },
 
            Expression::Slicing(expr) => {
 
                self.serialize_expression(heap, expr.from_index);
 
                self.serialize_expression(heap, expr.to_index);
 
                self.serialize_expression(heap, expr.subject);
 
            },
 
            Expression::Select(expr) => {
 
                self.serialize_expression(heap, expr.subject);
 
            },
 
            Expression::Literal(expr) => {
 
                // Here we only care about literals that have subexpressions
 
                match &expr.value {
 
                    Literal::Null | Literal::True | Literal::False |
 
                    Literal::Character(_) | Literal::String(_) |
 
                    Literal::Integer(_) | Literal::Enum(_) => {
 
                        // No subexpressions
 
                    },
 
                    Literal::Struct(literal) => {
 
                        // Note: fields expressions are evaluated in programmer-
 
                        // specified order. But struct construction expects them
 
                        // in type-defined order. I might want to come back to
 
                        // this.
 
                        let mut _num_pushed = 0;
 
                        for want_field_idx in 0..literal.fields.len() {
 
                            for field in &literal.fields {
 
                                if field.field_idx == want_field_idx {
 
                                    _num_pushed += 1;
 
                                    self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                                    self.serialize_expression(heap, field.value);
 
                                }
 
                            }
 
                        }
 
                        debug_assert_eq!(_num_pushed, literal.fields.len())
 
                    },
 
                    Literal::Union(literal) => {
 
                        for value_expr_id in &literal.values {
 
                            self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                            self.serialize_expression(heap, *value_expr_id);
 
                        }
 
                    },
 
                    Literal::Array(value_expr_ids) => {
 
                        for value_expr_id in value_expr_ids {
 
                            self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                            self.serialize_expression(heap, *value_expr_id);
 
                        }
 
                    },
 
                    Literal::Tuple(value_expr_ids) => {
 
                        for value_expr_id in value_expr_ids {
 
                            self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                            self.serialize_expression(heap, *value_expr_id);
 
                        }
 
                    }
 
                }
 
            },
 
            Expression::Cast(expr) => {
 
                self.serialize_expression(heap, expr.subject);
 
            }
 
            Expression::Call(expr) => {
 
                for arg_expr_id in &expr.arguments {
 
                    self.expr_stack.push_back(ExprInstruction::PushValToFront);
 
                    self.serialize_expression(heap, *arg_expr_id);
 
                }
 
            },
 
            Expression::Variable(_expr) => {
 
                // No subexpressions
 
            }
 
        }
 
    }
 
}
 

	
 
pub type EvalResult = Result<EvalContinuation, EvalError>;
 

	
 
#[derive(Debug)]
 
pub enum EvalContinuation {
 
    // Returned in both sync and non-sync modes
 
    Stepping,
 
    // Returned only in sync mode
 
    BranchInconsistent,
 
    SyncBlockEnd,
 
    NewFork,
 
    BlockFires(PortId),
 
    BlockGet(PortId),
 
    Put(PortId, ValueGroup),
 
    SelectStart(u32, u32), // (num_cases, num_ports_total)
 
    SelectRegisterPort(u32, u32, PortId), // (case_index, port_index_in_case, port_id)
 
    SelectWait, // wait until select can continue
 
    // Returned only in non-sync mode
 
    ComponentTerminated,
 
    SyncBlockStart,
 
    NewComponent(DefinitionId, i32, ValueGroup),
 
    NewComponent(ProcedureDefinitionId, TypeId, ValueGroup),
 
    NewChannel,
 
}
 

	
 
// Note: cloning is fine, methinks. cloning all values and the heap regions then
 
// we end up with valid "pointers" to heap regions.
 
#[derive(Debug, Clone)]
 
pub struct Prompt {
 
    pub(crate) frames: Vec<Frame>,
 
    pub(crate) store: Store,
 
}
 

	
 
impl Prompt {
 
    pub fn new(_types: &TypeTable, heap: &Heap, def: DefinitionId, monomorph_idx: i32, args: ValueGroup) -> Self {
 
    pub fn new(types: &TypeTable, heap: &Heap, def: ProcedureDefinitionId, type_id: TypeId, args: ValueGroup) -> Self {
 
        let mut prompt = Self{
 
            frames: Vec::new(),
 
            store: Store::new(),
 
        };
 

	
 
        // Maybe do typechecking in the future?
 
        let new_frame = Frame::new(heap, def, monomorph_idx);
 
        let monomorph_index = types.get_monomorph(type_id).variant.as_procedure().monomorph_index;
 
        let new_frame = Frame::new(heap, def, type_id, monomorph_index);
 
        let max_stack_size = new_frame.max_stack_size;
 
        prompt.frames.push(new_frame);
 
        args.into_store(&mut prompt.store);
 
        prompt.store.reserve_stack(max_stack_size);
 

	
 
        prompt
 
    }
 

	
 
    /// Big 'ol function right here. Didn't want to break it up unnecessarily.
 
    /// It consists of, in sequence: executing any expressions that should be
 
    /// executed before the next statement can be evaluated, then a section that
 
    /// performs debug printing, and finally a section that takes the next
 
    /// statement and executes it. If the statement requires any expressions to
 
    /// be evaluated, then they will be added such that the next time `step` is
 
    /// called, all of these expressions are indeed evaluated.
 
    pub(crate) fn step(&mut self, types: &TypeTable, heap: &Heap, modules: &[Module], ctx: &mut impl RunContext) -> EvalResult {
 
        // Helper function to transfer multiple values from the expression value
 
        // array into a heap region (e.g. constructing arrays or structs).
 
        fn transfer_expression_values_front_into_heap(cur_frame: &mut Frame, store: &mut Store, num_values: usize) -> HeapPos {
 
            let heap_pos = store.alloc_heap();
 

	
 
            // Do the transformation first (because Rust...)
 
            for val_idx in 0..num_values {
 
                cur_frame.expr_values[val_idx] = store.read_take_ownership(cur_frame.expr_values[val_idx].clone());
 
            }
 

	
 
            // And now transfer to the heap region
 
            let values = &mut store.heap_regions[heap_pos as usize].values;
 
            debug_assert!(values.is_empty());
 
            values.reserve(num_values);
 
            for _ in 0..num_values {
 
                values.push(cur_frame.expr_values.pop_front().unwrap());
 
            }
 

	
 
            heap_pos
 
        }
 

	
 
        // Helper function to make sure that an index into an aray is valid.
 
        fn array_inclusive_index_is_invalid(store: &Store, array_heap_pos: u32, idx: i64) -> bool {
 
            let array_len = store.heap_regions[array_heap_pos as usize].values.len();
 
            return idx < 0 || idx >= array_len as i64;
 
        }
 

	
 
        fn array_exclusive_index_is_invalid(store: &Store, array_heap_pos: u32, idx: i64) -> bool {
 
            let array_len = store.heap_regions[array_heap_pos as usize].values.len();
 
            return idx < 0 || idx > array_len as i64;
 
        }
 

	
 
        fn construct_array_error(prompt: &Prompt, modules: &[Module], heap: &Heap, expr_id: ExpressionId, heap_pos: u32, idx: i64) -> EvalError {
 
            let array_len = prompt.store.heap_regions[heap_pos as usize].values.len();
 
            return EvalError::new_error_at_expr(
 
                prompt, modules, heap, expr_id,
 
                format!("index {} is out of bounds: array length is {}", idx, array_len)
 
            )
 
        }
 

	
 
        // Checking if we're at the end of execution
 
        let cur_frame = self.frames.last_mut().unwrap();
 
        if cur_frame.position.is_invalid() {
 
            if heap[cur_frame.definition].is_function() {
 
            if heap[cur_frame.definition].kind == ProcedureKind::Function {
 
                todo!("End of function without return, return an evaluation error");
 
            }
 
            return Ok(EvalContinuation::ComponentTerminated);
 
        }
 

	
 
        debug_log!("Taking step in '{}'", heap[cur_frame.definition].identifier().value.as_str());
 
        debug_log!("Taking step in '{}'", heap[cur_frame.definition].identifier.value.as_str());
 

	
 
        // Execute all pending expressions
 
        while !cur_frame.expr_stack.is_empty() {
 
            let next = cur_frame.expr_stack.pop_back().unwrap();
 
            debug_log!("Expr stack: {:?}", next);
 
            match next {
 
                ExprInstruction::PushValToFront => {
 
                    cur_frame.expr_values.rotate_right(1);
 
                },
 
                ExprInstruction::EvalExpr(expr_id) => {
 
                    let expr = &heap[expr_id];
 
                    match expr {
 
                        Expression::Assignment(expr) => {
 
                            let to = cur_frame.expr_values.pop_back().unwrap().as_ref();
 
                            let rhs = cur_frame.expr_values.pop_back().unwrap();
 

	
 
                            // Note: although not pretty, the assignment operator takes ownership
 
                            // of the right-hand side value when possible. So we do not drop the
 
                            // rhs's optionally owned heap data.
 
                            let rhs = self.store.read_take_ownership(rhs);
 
                            apply_assignment_operator(&mut self.store, to, expr.operation, rhs);
 
                        },
 
                        Expression::Binding(_expr) => {
 
                            let bind_to = cur_frame.expr_values.pop_back().unwrap();
 
                            let bind_from = cur_frame.expr_values.pop_back().unwrap();
 
                            let bind_to_heap_pos = bind_to.get_heap_pos();
 
                            let bind_from_heap_pos = bind_from.get_heap_pos();
 

	
 
                            let result = apply_binding_operator(&mut self.store, bind_to, bind_from);
 
                            self.store.drop_value(bind_to_heap_pos);
 
                            self.store.drop_value(bind_from_heap_pos);
 
                            cur_frame.expr_values.push_back(Value::Bool(result));
 
                        },
 
                        Expression::Conditional(expr) => {
 
                            // Evaluate testing expression, then extend the
 
                            // expression stack with the appropriate expression
 
                            let test_result = cur_frame.expr_values.pop_back().unwrap().as_bool();
 
                            if test_result {
 
                                cur_frame.serialize_expression(heap, expr.true_expression);
 
                            } else {
 
                                cur_frame.serialize_expression(heap, expr.false_expression);
 
                            }
 
                        },
 
                        Expression::Binary(expr) => {
 
                            let lhs = cur_frame.expr_values.pop_back().unwrap();
 
                            let rhs = cur_frame.expr_values.pop_back().unwrap();
 
                            let result = apply_binary_operator(&mut self.store, &lhs, expr.operation, &rhs);
 
                            cur_frame.expr_values.push_back(result);
 
                            self.store.drop_value(lhs.get_heap_pos());
 
                            self.store.drop_value(rhs.get_heap_pos());
 
                        },
 
                        Expression::Unary(expr) => {
 
                            let val = cur_frame.expr_values.pop_back().unwrap();
 
                            let result = apply_unary_operator(&mut self.store, expr.operation, &val);
 
                            cur_frame.expr_values.push_back(result);
 
                            self.store.drop_value(val.get_heap_pos());
 
                        },
 
                        Expression::Indexing(_expr) => {
 
                            // Evaluate index. Never heap allocated so we do
 
                            // not have to drop it.
 
                            let index = cur_frame.expr_values.pop_back().unwrap();
 
                            let index = self.store.maybe_read_ref(&index);
 

	
 
                            debug_assert!(index.is_integer());
 
                            let index = if index.is_signed_integer() {
 
                                index.as_signed_integer() as i64
 
                            } else {
 
                                index.as_unsigned_integer() as i64
 
                            };
 

	
 
                            let subject = cur_frame.expr_values.pop_back().unwrap();
 

	
 
                            let (deallocate_heap_pos, value_to_push) = match subject {
 
                                Value::Ref(value_ref) => {
 
                                    // Our expression stack value is a reference to something that
 
                                    // exists in the normal stack/heap. We don't want to deallocate
 
                                    // this thing. Rather we want to return a reference to it.
 
                                    let subject = self.store.read_ref(value_ref);
 
                                    let subject_heap_pos = match subject {
 
                                        Value::String(v) => *v,
 
                                        Value::Array(v) => *v,
 
                                        Value::Message(v) => *v,
 
                                        _ => unreachable!(),
 
                                    };
 

	
 
                                    if array_inclusive_index_is_invalid(&self.store, subject_heap_pos, index) {
 
                                        return Err(construct_array_error(self, modules, heap, expr_id, subject_heap_pos, index));
 
                                    }
 

	
 
                                    (None, Value::Ref(ValueId::Heap(subject_heap_pos, index as u32)))
 
                                },
 
                                _ => {
 
                                    // Our value lives on the expression stack, hence we need to
 
                                    // clone whatever we're referring to. Then drop the subject.
 
                                    let subject_heap_pos = match &subject {
 
                                        Value::String(v) => *v,
 
                                        Value::Array(v) => *v,
 
                                        Value::Message(v) => *v,
 
                                        _ => unreachable!(),
 
                                    };
 

	
 
                                    if array_inclusive_index_is_invalid(&self.store, subject_heap_pos, index) {
 
                                        return Err(construct_array_error(self, modules, heap, expr_id, subject_heap_pos, index));
 
                                    }
 

	
 
                                    let subject_indexed = Value::Ref(ValueId::Heap(subject_heap_pos, index as u32));
 
                                    (Some(subject_heap_pos), self.store.clone_value(subject_indexed))
 
                                },
 
                            };
 

	
 
                            cur_frame.expr_values.push_back(value_to_push);
 
                            self.store.drop_value(deallocate_heap_pos);
 
                        },
 
                        Expression::Slicing(expr) => {
 
                            // Evaluate indices
 
                            let from_index = cur_frame.expr_values.pop_back().unwrap();
 
                            let from_index = self.store.maybe_read_ref(&from_index);
 
                            let to_index = cur_frame.expr_values.pop_back().unwrap();
 
                            let to_index = self.store.maybe_read_ref(&to_index);
 

	
 
                            debug_assert!(from_index.is_integer() && to_index.is_integer());
 
                            let from_index = if from_index.is_signed_integer() {
 
                                from_index.as_signed_integer()
 
                            } else {
 
                                from_index.as_unsigned_integer() as i64
 
                            };
 
                            let to_index = if to_index.is_signed_integer() {
 
                                to_index.as_signed_integer()
 
                            } else {
 
                                to_index.as_unsigned_integer() as i64
 
                            };
 

	
 
                            // Dereference subject if needed
 
                            let subject = cur_frame.expr_values.pop_back().unwrap();
 
                            let deref_subject = self.store.maybe_read_ref(&subject);
 

	
 
                            // Slicing needs to produce a copy anyway (with the
 
                            // current evaluator implementation)
 
                            enum ValueKind{ Array, String, Message }
 
                            let (value_kind, array_heap_pos) = match deref_subject {
 
                                Value::Array(v) => (ValueKind::Array, *v),
 
                                Value::String(v) => (ValueKind::String, *v),
 
                                Value::Message(v) => (ValueKind::Message, *v),
 
                                _ => unreachable!()
 
                            };
 

	
 
                            if array_inclusive_index_is_invalid(&self.store, array_heap_pos, from_index) {
 
                                return Err(construct_array_error(self, modules, heap, expr.from_index, array_heap_pos, from_index));
 
                            }
 
                            if array_exclusive_index_is_invalid(&self.store, array_heap_pos, to_index) {
 
                                return Err(construct_array_error(self, modules, heap, expr.to_index, array_heap_pos, to_index));
 
                            }
 

	
 
                            // Again: would love to push directly, but rust...
 
                            let new_heap_pos = self.store.alloc_heap();
 
                            debug_assert!(self.store.heap_regions[new_heap_pos as usize].values.is_empty());
 
                            if to_index > from_index {
 
                                let from_index = from_index as usize;
 
                                let to_index = to_index as usize;
 
                                let mut values = Vec::with_capacity(to_index - from_index);
 
                                for idx in from_index..to_index {
 
                                    let value = self.store.heap_regions[array_heap_pos as usize].values[idx].clone();
 
                                    values.push(self.store.clone_value(value));
 
                                }
 

	
 
                                self.store.heap_regions[new_heap_pos as usize].values = values;
 

	
 
                            } // else: empty range
 

	
 
                            cur_frame.expr_values.push_back(match value_kind {
 
                                ValueKind::Array => Value::Array(new_heap_pos),
 
                                ValueKind::String => Value::String(new_heap_pos),
 
                                ValueKind::Message => Value::Message(new_heap_pos),
 
                            });
 

	
 
                            // Dropping the original subject, because we don't
 
                            // want to drop something on the stack
 
                            self.store.drop_value(subject.get_heap_pos());
 
                        },
 
                        Expression::Select(expr) => {
 
                            let subject= cur_frame.expr_values.pop_back().unwrap();
 
                            let mono_data = types.get_procedure_monomorph(cur_frame.monomorph_idx);
 
                            let field_idx = mono_data.expr_data[expr.unique_id_in_definition as usize].field_or_monomorph_idx as u32;
 
                            let mono_data = &heap[cur_frame.definition].monomorphs[cur_frame.monomorph_index];
 
                            let field_idx = mono_data.expr_info[expr.type_index as usize].variant.as_select() as u32;
 

	
 
                            // Note: same as above: clone if value lives on expr stack, simply
 
                            // refer to it if it already lives on the stack/heap.
 
                            let (deallocate_heap_pos, value_to_push) = match subject {
 
                                Value::Ref(value_ref) => {
 
                                    let subject = self.store.read_ref(value_ref);
 
                                    let subject_heap_pos = match expr.kind {
 
                                        SelectKind::StructField(_) => subject.as_struct(),
 
                                        SelectKind::TupleMember(_) => subject.as_tuple(),
 
                                    };
 

	
 
                                    (None, Value::Ref(ValueId::Heap(subject_heap_pos, field_idx)))
 
                                },
 
                                _ => {
 
                                    let subject_heap_pos = match expr.kind {
 
                                        SelectKind::StructField(_) => subject.as_struct(),
 
                                        SelectKind::TupleMember(_) => subject.as_tuple(),
 
                                    };
 
                                    let subject_indexed = Value::Ref(ValueId::Heap(subject_heap_pos, field_idx));
 
                                    (Some(subject_heap_pos), self.store.clone_value(subject_indexed))
 
                                },
 
                            };
 

	
 
                            cur_frame.expr_values.push_back(value_to_push);
 
                            self.store.drop_value(deallocate_heap_pos);
 
                        },
 
                        Expression::Literal(expr) => {
 
                            let value = match &expr.value {
 
                                Literal::Null => Value::Null,
 
                                Literal::True => Value::Bool(true),
 
                                Literal::False => Value::Bool(false),
 
                                Literal::Character(lit_value) => Value::Char(*lit_value),
 
                                Literal::String(lit_value) => {
 
                                    let heap_pos = self.store.alloc_heap();
 
                                    let values = &mut self.store.heap_regions[heap_pos as usize].values;
 
                                    let value = lit_value.as_str();
 
                                    debug_assert!(values.is_empty());
 
                                    values.reserve(value.len());
 
                                    for character in value.as_bytes() {
 
                                        debug_assert!(character.is_ascii());
 
                                        values.push(Value::Char(*character as char));
 
                                    }
 
                                    Value::String(heap_pos)
 
                                }
 
                                Literal::Integer(lit_value) => {
 
                                    use ConcreteTypePart as CTP;
 
                                    let def_types = types.get_procedure_monomorph(cur_frame.monomorph_idx);
 
                                    let concrete_type = &def_types.expr_data[expr.unique_id_in_definition as usize].expr_type;
 
                                    let mono_data = &heap[cur_frame.definition].monomorphs[cur_frame.monomorph_index];
 
                                    let type_id = mono_data.expr_info[expr.type_index as usize].type_id;
 
                                    let concrete_type = &types.get_monomorph(type_id).concrete_type;
 

	
 
                                    debug_assert_eq!(concrete_type.parts.len(), 1);
 
                                    match concrete_type.parts[0] {
 
                                        CTP::UInt8  => Value::UInt8(lit_value.unsigned_value as u8),
 
                                        CTP::UInt16 => Value::UInt16(lit_value.unsigned_value as u16),
 
                                        CTP::UInt32 => Value::UInt32(lit_value.unsigned_value as u32),
 
                                        CTP::UInt64 => Value::UInt64(lit_value.unsigned_value as u64),
 
                                        CTP::SInt8  => Value::SInt8(lit_value.unsigned_value as i8),
 
                                        CTP::SInt16 => Value::SInt16(lit_value.unsigned_value as i16),
 
                                        CTP::SInt32 => Value::SInt32(lit_value.unsigned_value as i32),
 
                                        CTP::SInt64 => Value::SInt64(lit_value.unsigned_value as i64),
 
                                        _ => unreachable!("got concrete type {:?} for integer literal at expr {:?}", concrete_type, expr_id),
 
                                    }
 
                                }
 
                                Literal::Struct(lit_value) => {
 
                                    let heap_pos = transfer_expression_values_front_into_heap(
 
                                        cur_frame, &mut self.store, lit_value.fields.len()
 
                                    );
 
                                    Value::Struct(heap_pos)
 
                                }
 
                                Literal::Enum(lit_value) => {
 
                                    Value::Enum(lit_value.variant_idx as i64)
 
                                }
 
                                Literal::Union(lit_value) => {
 
                                    let heap_pos = transfer_expression_values_front_into_heap(
 
                                        cur_frame, &mut self.store, lit_value.values.len()
 
                                    );
 
                                    Value::Union(lit_value.variant_idx as i64, heap_pos)
 
                                }
 
                                Literal::Array(lit_value) => {
 
                                    let heap_pos = transfer_expression_values_front_into_heap(
 
                                        cur_frame, &mut self.store, lit_value.len()
 
                                    );
 
                                    Value::Array(heap_pos)
 
                                }
 
                                Literal::Tuple(lit_value) => {
 
                                    let heap_pos = transfer_expression_values_front_into_heap(
 
                                        cur_frame, &mut self.store, lit_value.len()
 
                                    );
 
                                    Value::Tuple(heap_pos)
 
                                }
 
                            };
 

	
 
                            cur_frame.expr_values.push_back(value);
 
                        },
 
                        Expression::Cast(expr) => {
 
                            let mono_data = types.get_procedure_monomorph(cur_frame.monomorph_idx);
 
                            let output_type = &mono_data.expr_data[expr.unique_id_in_definition as usize].expr_type;
 
                            let mono_data = &heap[cur_frame.definition].monomorphs[cur_frame.monomorph_index];
 
                            let type_id = mono_data.expr_info[expr.type_index as usize].type_id;
 
                            let concrete_type = &types.get_monomorph(type_id).concrete_type;
 

	
 
                            // Typechecking reduced this to two cases: either we
 
                            // have casting noop (same types), or we're casting
 
                            // between integer/bool/char types.
 
                            let subject = cur_frame.expr_values.pop_back().unwrap();
 
                            match apply_casting(&mut self.store, output_type, &subject) {
 
                            match apply_casting(&mut self.store, concrete_type, &subject) {
 
                                Ok(value) => cur_frame.expr_values.push_back(value),
 
                                Err(msg) => {
 
                                    return Err(EvalError::new_error_at_expr(self, modules, heap, expr.this.upcast(), msg));
 
                                }
 
                            }
 

	
 
                            self.store.drop_value(subject.get_heap_pos());
 
                        }
 
                        Expression::Call(expr) => {
 
                            // If we're dealing with a builtin we don't do any
 
                            // fancy shenanigans at all, just push the result.
 
                            match expr.method {
 
                                Method::Get => {
 
                                    let value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let value = self.store.maybe_read_ref(&value).clone();
 

	
 
                                    let port_id = if let Value::Input(port_id) = value {
 
                                        port_id
 
                                    } else {
 
                                        unreachable!("executor calling 'get' on value {:?}", value)
 
                                    };
 

	
 
                                    match ctx.performed_get(port_id) {
 
                                        Some(result) => {
 
                                            // We have the result. Merge the `ValueGroup` with the
 
                                            // stack/heap storage.
 
                                            debug_assert_eq!(result.values.len(), 1);
 
                                            result.into_stack(&mut cur_frame.expr_values, &mut self.store);
 
                                        },
 
                                        None => {
 
                                            // Don't have the result yet, prepare the expression to
 
                                            // get run again after we've received a message.
 
                                            cur_frame.expr_values.push_front(value.clone());
 
                                            cur_frame.expr_stack.push_back(ExprInstruction::EvalExpr(expr_id));
 
                                            return Ok(EvalContinuation::BlockGet(port_id));
 
                                        }
 
                                    }
 
                                },
 
                                Method::Put => {
 
                                    let port_value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let deref_port_value = self.store.maybe_read_ref(&port_value).clone();
 

	
 
                                    let port_id = if let Value::Output(port_id) = deref_port_value {
 
                                        port_id
 
                                    } else {
 
                                        unreachable!("executor calling 'put' on value {:?}", deref_port_value)
 
                                    };
 

	
 
                                    let msg_value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let deref_msg_value = self.store.maybe_read_ref(&msg_value).clone();
 

	
 
                                    if ctx.performed_put(port_id) {
 
                                        // We're fine, deallocate in case the expression value stack
 
                                        // held an owned value
 
                                        self.store.drop_value(msg_value.get_heap_pos());
 
                                    } else {
 
                                        // Prepare to execute again
 
                                        cur_frame.expr_values.push_front(msg_value);
 
                                        cur_frame.expr_values.push_front(port_value);
 
                                        cur_frame.expr_stack.push_back(ExprInstruction::EvalExpr(expr_id));
 
                                        let value_group = ValueGroup::from_store(&self.store, &[deref_msg_value]);
 
                                        return Ok(EvalContinuation::Put(port_id, value_group));
 
                                    }
 
                                },
 
                                Method::Fires => {
 
                                    let port_value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let port_value_deref = self.store.maybe_read_ref(&port_value).clone();
 

	
 
                                    let port_id = match port_value_deref {
 
                                        Value::Input(port_id) => port_id,
 
                                        Value::Output(port_id) => port_id,
 
                                        _ => unreachable!("executor calling 'fires' on value {:?}", port_value_deref),
 
                                    };
 
                                    let port_id = port_value_deref.as_port_id();
 

	
 
                                    match ctx.fires(port_id) {
 
                                        None => {
 
                                            cur_frame.expr_values.push_front(port_value);
 
                                            cur_frame.expr_stack.push_back(ExprInstruction::EvalExpr(expr_id));
 
                                            return Ok(EvalContinuation::BlockFires(port_id));
 
                                        },
 
                                        Some(value) => {
 
                                            cur_frame.expr_values.push_back(value);
 
                                        }
 
                                    }
 
                                },
 
                                Method::Create => {
 
                                    let length_value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let length_value = self.store.maybe_read_ref(&length_value);
 
                                    let length = if length_value.is_signed_integer() {
 
                                        let length_value = length_value.as_signed_integer();
 
                                        if length_value < 0 {
 
                                            return Err(EvalError::new_error_at_expr(
 
                                                self, modules, heap, expr_id,
 
                                                format!("got length '{}', can only create a message with a non-negative length", length_value)
 
                                            ));
 
                                        }
 

	
 
                                        length_value as u64
 
                                    } else {
 
                                        debug_assert!(length_value.is_unsigned_integer());
 
                                        length_value.as_unsigned_integer()
 
                                    };
 

	
 
                                    let heap_pos = self.store.alloc_heap();
 
                                    let values = &mut self.store.heap_regions[heap_pos as usize].values;
 
                                    debug_assert!(values.is_empty());
 
                                    values.resize(length as usize, Value::UInt8(0));
 
                                    cur_frame.expr_values.push_back(Value::Message(heap_pos));
 
                                },
 
                                Method::Length => {
 
                                    let value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let value_heap_pos = value.get_heap_pos();
 
                                    let value = self.store.maybe_read_ref(&value);
 

	
 
                                    let heap_pos = match value {
 
                                        Value::Array(pos) => *pos,
 
                                        Value::String(pos) => *pos,
 
                                        _ => unreachable!("length(...) on {:?}", value),
 
                                    };
 

	
 
                                    let len = self.store.heap_regions[heap_pos as usize].values.len();
 

	
 
                                    // TODO: @PtrInt
 
                                    cur_frame.expr_values.push_back(Value::UInt32(len as u32));
 
                                    self.store.drop_value(value_heap_pos);
 
                                },
 
                                Method::Assert => {
 
                                    let value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let value = self.store.maybe_read_ref(&value).clone();
 
                                    if !value.as_bool() {
 
                                        return Ok(EvalContinuation::BranchInconsistent)
 
                                    }
 
                                },
 
                                Method::Print => {
 
                                    // Convert the runtime-variant of a string
 
                                    // into an actual string.
 
                                    let value = cur_frame.expr_values.pop_front().unwrap();
 
                                    let value_heap_pos = value.as_string();
 
                                    let elements = &self.store.heap_regions[value_heap_pos as usize].values;
 

	
 
                                    let mut message = String::with_capacity(elements.len());
 
                                    for element in elements {
 
                                        message.push(element.as_char());
 
                                    }
 

	
 
                                    // Drop the heap-allocated value from the
 
                                    // store
 
                                    self.store.drop_heap_pos(value_heap_pos);
 
                                    println!("{}", message);
 
                                },
 
                                Method::SelectStart => {
 
                                    let num_cases = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_uint32();
 
                                    let num_ports = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_uint32();
 

	
 
                                    return Ok(EvalContinuation::SelectStart(num_cases, num_ports));
 
                                },
 
                                Method::SelectRegisterCasePort => {
 
                                    let case_index = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_uint32();
 
                                    let port_index = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_uint32();
 
                                    let port_value = self.store.maybe_read_ref(&cur_frame.expr_values.pop_front().unwrap()).as_port_id();
 

	
 
                                    return Ok(EvalContinuation::SelectRegisterPort(case_index, port_index, port_value));
 
                                },
 
                                Method::SelectWait => {
 
                                    match ctx.performed_select_wait() {
 
                                        Some(select_index) => {
 
                                            cur_frame.expr_values.push_back(Value::UInt32(select_index));
 
                                        },
 
                                        None => {
 
                                            cur_frame.expr_stack.push_back(ExprInstruction::EvalExpr(expr.this.upcast()));
 
                                            return Ok(EvalContinuation::SelectWait)
 
                                        },
 
                                    }
 
                                },
 
                                Method::UserComponent => {
 
                                    // This is actually handled by the evaluation
 
                                    // of the statement.
 
                                    debug_assert_eq!(heap[expr.definition].parameters().len(), cur_frame.expr_values.len());
 
                                    debug_assert_eq!(heap[expr.procedure].parameters.len(), cur_frame.expr_values.len());
 
                                    debug_assert_eq!(heap[cur_frame.position].as_new().expression, expr.this)
 
                                },
 
                                Method::UserFunction => {
 
                                    // Push a new frame. Note that all expressions have
 
                                    // been pushed to the front, so they're in the order
 
                                    // of the definition.
 
                                    let num_args = expr.arguments.len();
 

	
 
                                    // Determine stack boundaries
 
                                    let cur_stack_boundary = self.store.cur_stack_boundary;
 
                                    let new_stack_boundary = self.store.stack.len();
 

	
 
                                    // Push new boundary and function arguments for new frame
 
                                    self.store.stack.push(Value::PrevStackBoundary(cur_stack_boundary as isize));
 
                                    for _ in 0..num_args {
 
                                        let argument = self.store.read_take_ownership(cur_frame.expr_values.pop_front().unwrap());
 
                                        self.store.stack.push(argument);
 
                                    }
 

	
 
                                    // Determine the monomorph index of the function we're calling
 
                                    let mono_data = types.get_procedure_monomorph(cur_frame.monomorph_idx);
 
                                    let call_data = &mono_data.expr_data[expr.unique_id_in_definition as usize];
 
                                    let mono_data = &heap[cur_frame.definition].monomorphs[cur_frame.monomorph_index];
 
                                    let (type_id, monomorph_index) = mono_data.expr_info[expr.type_index as usize].variant.as_procedure();
 

	
 
                                    // Push the new frame and reserve its stack size
 
                                    let new_frame = Frame::new(heap, expr.definition, call_data.field_or_monomorph_idx);
 
                                    let new_frame = Frame::new(heap, expr.procedure, type_id, monomorph_index);
 
                                    let new_stack_size = new_frame.max_stack_size;
 
                                    self.frames.push(new_frame);
 
                                    self.store.cur_stack_boundary = new_stack_boundary;
 
                                    self.store.reserve_stack(new_stack_size);
 

	
 
                                    // To simplify the logic a little bit we will now
 
                                    // return and ask our caller to call us again
 
                                    return Ok(EvalContinuation::Stepping);
 
                                },
 
                                }
 
                            }
 
                        },
 
                        Expression::Variable(expr) => {
 
                            let variable = &heap[expr.declaration.unwrap()];
 
                            let ref_value = if expr.used_as_binding_target {
 
                                Value::Binding(variable.unique_id_in_scope as StackPos)
 
                            } else {
 
                                Value::Ref(ValueId::Stack(variable.unique_id_in_scope as StackPos))
 
                            };
 
                            cur_frame.expr_values.push_back(ref_value);
 
                        }
 
                    }
 
                }
 
            }
 
        }
 

	
 
        debug_log!("Frame [{:?}] at {:?}", cur_frame.definition, cur_frame.position);
 
        if debug_enabled!() {
 
            debug_log!("Expression value stack (size = {}):", cur_frame.expr_values.len());
 
            for (_stack_idx, _stack_val) in cur_frame.expr_values.iter().enumerate() {
 
                debug_log!("  [{:03}] {:?}", _stack_idx, _stack_val);
 
            }
 

	
 
            debug_log!("Stack (size = {}):", self.store.stack.len());
 
            for (_stack_idx, _stack_val) in self.store.stack.iter().enumerate() {
 
                debug_log!("  [{:03}] {:?}", _stack_idx, _stack_val);
 
            }
 

	
 
            debug_log!("Heap:");
 
            for (_heap_idx, _heap_region) in self.store.heap_regions.iter().enumerate() {
 
                let _is_free = self.store.free_regions.iter().any(|idx| *idx as usize == _heap_idx);
 
                debug_log!("  [{:03}] in_use: {}, len: {}, vals: {:?}", _heap_idx, !_is_free, _heap_region.values.len(), &_heap_region.values);
 
            }
 
        }
 
        // No (more) expressions to evaluate. So evaluate statement (that may
 
        // depend on the result on the last evaluated expression(s))
 
        let stmt = &heap[cur_frame.position];
 
        let return_value = match stmt {
 
            Statement::Block(stmt) => {
 
                debug_assert!(stmt.statements.is_empty() || stmt.next == stmt.statements[0]);
 
                cur_frame.position = stmt.next;
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::EndBlock(stmt) => {
 
                let block = &heap[stmt.start_block];
 
                self.store.clear_stack(block.first_unique_id_in_scope as usize);
 
                let scope = &heap[block.scope];
 
                self.store.clear_stack(scope.first_unique_id_in_scope as usize);
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Local(stmt) => {
 
                match stmt {
 
                    LocalStatement::Memory(stmt) => {
 
                        if cfg!(debug_assertions) {
 
                        dbg_code!({
 
                            let variable = &heap[stmt.variable];
 
                            debug_assert!(match self.store.read_ref(ValueId::Stack(variable.unique_id_in_scope as u32)) {
 
                                Value::Unassigned => false,
 
                                _ => true,
 
                            });
 
                        }
 
                        });
 

	
 
                        cur_frame.position = stmt.next;
 
                        Ok(EvalContinuation::Stepping)
 
                    },
 
                    LocalStatement::Channel(stmt) => {
 
                        // Need to create a new channel by requesting it from
 
                        // the runtime.
 
                        match ctx.created_channel() {
 
                            None => {
 
                                // No channel is pending. So request one
 
                                    Ok(EvalContinuation::NewChannel)
 
                            },
 
                            Some((put_port, get_port)) => {
 
                                self.store.write(ValueId::Stack(heap[stmt.from].unique_id_in_scope as u32), put_port);
 
                                self.store.write(ValueId::Stack(heap[stmt.to].unique_id_in_scope as u32), get_port);
 
                                cur_frame.position = stmt.next;
 
                                Ok(EvalContinuation::Stepping)
 
                            }
 
                        }
 
                    }
 
                }
 
            },
 
            Statement::Labeled(stmt) => {
 
                cur_frame.position = stmt.body;
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::If(stmt) => {
 
                debug_assert_eq!(cur_frame.expr_values.len(), 1, "expected one expr value for if statement");
 
                let test_value = cur_frame.expr_values.pop_back().unwrap();
 
                let test_value = self.store.maybe_read_ref(&test_value).as_bool();
 
                if test_value {
 
                    cur_frame.position = stmt.true_body.upcast();
 
                } else if let Some(false_body) = stmt.false_body {
 
                    cur_frame.position = false_body.upcast();
 
                    cur_frame.position = stmt.true_case.body;
 
                } else if let Some(false_body) = stmt.false_case {
 
                    cur_frame.position = false_body.body;
 
                } else {
 
                    // Not true, and no false body
 
                    cur_frame.position = stmt.end_if.upcast();
 
                }
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::EndIf(stmt) => {
 
                cur_frame.position = stmt.next;
 
                let if_stmt = &heap[stmt.start_if];
 
                debug_assert_eq!(
 
                    heap[if_stmt.true_case.scope].first_unique_id_in_scope,
 
                    heap[if_stmt.false_case.unwrap_or(if_stmt.true_case).scope].first_unique_id_in_scope,
 
                );
 
                let scope = &heap[if_stmt.true_case.scope];
 
                self.store.clear_stack(scope.first_unique_id_in_scope as usize);
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::While(stmt) => {
 
                debug_assert_eq!(cur_frame.expr_values.len(), 1, "expected one expr value for while statement");
 
                let test_value = cur_frame.expr_values.pop_back().unwrap();
 
                let test_value = self.store.maybe_read_ref(&test_value).as_bool();
 
                if test_value {
 
                    cur_frame.position = stmt.body.upcast();
 
                    cur_frame.position = stmt.body;
 
                } else {
 
                    cur_frame.position = stmt.end_while.upcast();
 
                }
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::EndWhile(stmt) => {
 
                cur_frame.position = stmt.next;
 

	
 
                let start_while = &heap[stmt.start_while];
 
                let scope = &heap[start_while.scope];
 
                self.store.clear_stack(scope.first_unique_id_in_scope as usize);
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Break(stmt) => {
 
                cur_frame.position = stmt.target.upcast();
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Continue(stmt) => {
 
                cur_frame.position = stmt.target.upcast();
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Synchronous(stmt) => {
 
                cur_frame.position = stmt.body.upcast();
 
                cur_frame.position = stmt.body;
 

	
 
                Ok(EvalContinuation::SyncBlockStart)
 
            },
 
            Statement::EndSynchronous(stmt) => {
 
                cur_frame.position = stmt.next;
 
                let start_synchronous = &heap[stmt.start_sync];
 
                let scope = &heap[start_synchronous.scope];
 
                self.store.clear_stack(scope.first_unique_id_in_scope as usize);
 

	
 
                Ok(EvalContinuation::SyncBlockEnd)
 
            },
 
            Statement::Fork(stmt) => {
 
                if stmt.right_body.is_none() {
 
                    // No reason to fork
 
                    cur_frame.position = stmt.left_body.upcast();
 
                    cur_frame.position = stmt.left_body;
 
                } else {
 
                    // Need to fork
 
                    if let Some(go_left) = ctx.performed_fork() {
 
                        // Runtime has created a fork
 
                        if go_left {
 
                            cur_frame.position = stmt.left_body.upcast();
 
                            cur_frame.position = stmt.left_body;
 
                        } else {
 
                            cur_frame.position = stmt.right_body.unwrap().upcast();
 
                            cur_frame.position = stmt.right_body.unwrap();
 
                        }
 
                    } else {
 
                        // Request the runtime to create a fork of the current
 
                        // branch
 
                        return Ok(EvalContinuation::NewFork);
 
                    }
 
                }
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::EndFork(stmt) => {
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Select(_stmt) => {
 
                todo!("implement select evaluation")
 
            Statement::Select(stmt) => {
 
                // This is a trampoline for the statements that were placed by
 
                // the AST transformation pass
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::EndSelect(stmt) => {
 
                cur_frame.position = stmt.next;
 
                let start_select = &heap[stmt.start_select];
 
                if let Some(select_case) = start_select.cases.first() {
 
                    let scope = &heap[select_case.scope];
 
                    self.store.clear_stack(scope.first_unique_id_in_scope as usize);
 
                }
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::Return(_stmt) => {
 
                debug_assert!(heap[cur_frame.definition].is_function());
 
                debug_assert_eq!(cur_frame.expr_values.len(), 1, "expected one expr value for return statement");
 

	
 
                // The preceding frame has executed a call, so is expecting the
 
                // return expression on its expression value stack. Note that
 
                // we may be returning a reference to something on our stack,
 
                // so we need to read that value and clone it.
 
                let return_value = cur_frame.expr_values.pop_back().unwrap();
 
                let return_value = match return_value {
 
                    Value::Ref(value_id) => self.store.read_copy(value_id),
 
                    _ => return_value,
 
                };
 

	
 
                // Pre-emptively pop our stack frame
 
                self.frames.pop();
 

	
 
                // Clean up our section of the stack
 
                self.store.clear_stack(0);
 
                self.store.stack.truncate(self.store.cur_stack_boundary + 1);
 
                let prev_stack_idx = self.store.stack.pop().unwrap().as_stack_boundary();
 

	
 
                // TODO: Temporary hack for testing, remove at some point
 
                if self.frames.is_empty() {
 
                    debug_assert!(prev_stack_idx == -1);
 
                    debug_assert!(self.store.stack.len() == 0);
 
                    self.store.stack.push(return_value);
 
                    return Ok(EvalContinuation::ComponentTerminated);
 
                }
 

	
 
                debug_assert!(prev_stack_idx >= 0);
 
                // Return to original state of stack frame
 
                self.store.cur_stack_boundary = prev_stack_idx as usize;
 
                let cur_frame = self.frames.last_mut().unwrap();
 
                cur_frame.expr_values.push_back(return_value);
 

	
 
                // We just returned to the previous frame, which might be in
 
                // the middle of evaluating expressions for a particular
 
                // statement. So we don't want to enter the code below.
 
                return Ok(EvalContinuation::Stepping);
 
            },
 
            Statement::Goto(stmt) => {
 
                cur_frame.position = stmt.target.upcast();
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
            Statement::New(stmt) => {
 
                let call_expr = &heap[stmt.expression];
 
                debug_assert!(heap[call_expr.definition].is_component());
 
                debug_assert_eq!(
 
                    cur_frame.expr_values.len(), heap[call_expr.definition].parameters().len(),
 
                    cur_frame.expr_values.len(), heap[call_expr.procedure].parameters.len(),
 
                    "mismatch in expr stack size and number of arguments for new statement"
 
                );
 

	
 
                let mono_data = types.get_procedure_monomorph(cur_frame.monomorph_idx);
 
                let expr_data = &mono_data.expr_data[call_expr.unique_id_in_definition as usize];
 
                let mono_data = &heap[cur_frame.definition].monomorphs[cur_frame.monomorph_index];
 
                let type_id = mono_data.expr_info[call_expr.type_index as usize].variant.as_procedure().0;
 

	
 
                // Note that due to expression value evaluation they exist in
 
                // reverse order on the stack.
 
                // TODO: Revise this code, keep it as is to be compatible with current runtime
 
                let mut args = Vec::new();
 
                while let Some(value) = cur_frame.expr_values.pop_front() {
 
                    args.push(value);
 
                }
 

	
 
                // Construct argument group, thereby copying heap regions
 
                let argument_group = ValueGroup::from_store(&self.store, &args);
 
                // println!("Creating {} with\n{:#?}", heap[call_expr.definition].identifier().value.as_str(), argument_group);
 

	
 
                // Clear any heap regions
 
                for arg in &args {
 
                    self.store.drop_value(arg.get_heap_pos());
 
                }
 

	
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(EvalContinuation::NewComponent(call_expr.definition, expr_data.field_or_monomorph_idx, argument_group))
 
                Ok(EvalContinuation::NewComponent(call_expr.procedure, type_id, argument_group))
 
            },
 
            Statement::Expression(stmt) => {
 
                // The expression has just been completely evaluated. Some
 
                // values might have remained on the expression value stack.
 
                // cur_frame.expr_values.clear(); PROPER CLEARING
 
                cur_frame.position = stmt.next;
 

	
 
                Ok(EvalContinuation::Stepping)
 
            },
 
        };
 

	
 
        assert!(
 
            cur_frame.expr_values.is_empty(),
 
            "This is a debugging assertion that will fail if you perform expressions without \
 
            assigning to anything. This should be completely valid, and this assertion should be \
 
            replaced by something that clears the expression values if needed, but I'll keep this \
 
            in for now for debugging purposes."
 
        );
 

	
 
        // If the next statement requires evaluating expressions then we push
 
        // these onto the expression stack. This way we will evaluate this
 
        // stack in the next loop, then evaluate the statement using the result
 
        // from the expression evaluation.
 
        if !cur_frame.position.is_invalid() {
 
            let stmt = &heap[cur_frame.position];
 

	
 
            match stmt {
 
                Statement::Local(stmt) => {
 
                    if let LocalStatement::Memory(stmt) = stmt {
 
                        // Setup as unassigned, when we execute the memory
 
                        // statement (after evaluating expression), it should no
 
                        // longer be `Unassigned`.
 
                        let variable = &heap[stmt.variable];
 
                        self.store.write(ValueId::Stack(variable.unique_id_in_scope as u32), Value::Unassigned);
 
                        cur_frame.prepare_single_expression(heap, stmt.initial_expr.upcast());
 
                    }
 
                },
 
                Statement::If(stmt) => cur_frame.prepare_single_expression(heap, stmt.test),
 
                Statement::While(stmt) => cur_frame.prepare_single_expression(heap, stmt.test),
 
                Statement::Return(stmt) => {
 
                    debug_assert_eq!(stmt.expressions.len(), 1); // TODO: @ReturnValues
 
                    cur_frame.prepare_single_expression(heap, stmt.expressions[0]);
 
                },
 
                Statement::New(stmt) => {
 
                    // Note that we will end up not evaluating the call itself.
 
                    // Rather we will evaluate its expressions and then
 
                    // instantiate the component upon reaching the "new" stmt.
 
                    let call_expr = &heap[stmt.expression];
 
                    cur_frame.prepare_multiple_expressions(heap, &call_expr.arguments);
 
                },
 
                Statement::Expression(stmt) => {
 
                    cur_frame.prepare_single_expression(heap, stmt.expression);
 
                }
 
                _ => {},
 
            }
 
        }
 

	
 
        return_value
 
    }
 

	
 
    /// Constructs an error at the current expression that lives at the top of
 
    /// the expression stack. Falls back to constructing an error at the current
 
    /// statement if there is no expression.
 
    pub(crate) fn new_error_at_expr(&self, modules: &[Module], heap: &Heap, error_message: String) -> EvalError {
 
        let last_frame = self.frames.last().unwrap();
 
        for instruction in last_frame.expr_stack.iter().rev() {
 
            if let ExprInstruction::EvalExpr(expression_id) = instruction {
 
                return EvalError::new_error_at_expr(
 
                    self, modules, heap, *expression_id, error_message
 
                );
 
            }
 
        }
 

	
 
        // If here then expression stack was empty (cannot have just rotate
 
        // instructions)
 
        panic!("attempted to construct evaluation error without any expressions to evaluate in frame");
 
    }
 
}
 
\ No newline at end of file
src/protocol/eval/value.rs
Show inline comments
 
use std::collections::VecDeque;
 

	
 
use super::store::*;
 
use crate::protocol::ast::{
 
    AssignmentOperator,
 
    BinaryOperator,
 
    UnaryOperator,
 
    ConcreteType,
 
    ConcreteTypePart,
 
};
 
use crate::protocol::parser::token_parsing::*;
 

	
 
pub type StackPos = u32;
 
pub type HeapPos = u32;
 

	
 
#[derive(Debug, Copy, Clone)]
 
pub enum ValueId {
 
    Stack(StackPos), // place on stack
 
    Heap(HeapPos, u32), // allocated region + values within that region
 
}
 

	
 
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
 
pub struct PortId{
 
    pub(crate) id: u32
 
}
 

	
 
impl PortId {
 
    pub fn new(id: u32) -> Self {
 
        return Self{ id };
 
    }
 
}
 

	
 
/// Represents a value stored on the stack or on the heap. Some values contain
 
/// a `HeapPos`, implying that they're stored in the store's `Heap`. Clearing
 
/// a `Value` with a `HeapPos` from a stack must also clear the associated
 
/// region from the `Heap`.
 
#[derive(Debug, Clone)]
 
pub enum Value {
 
    // Special types, never encountered during evaluation if the compiler works correctly
 
    Unassigned,                 // Marker when variables are first declared, immediately followed by assignment
 
    PrevStackBoundary(isize),   // Marker for stack frame beginning, so we can pop stack values
 
    Ref(ValueId),               // Reference to a value, used by expressions producing references
 
    Binding(StackPos),          // Reference to a binding variable (reserved on the stack)
 
    // Builtin types
 
    Input(PortId),
 
    Output(PortId),
 
    Message(HeapPos),
 
    Null,
 
    Bool(bool),
 
    Char(char),
 
    String(HeapPos),
 
    UInt8(u8),
 
    UInt16(u16),
 
    UInt32(u32),
 
    UInt64(u64),
 
    SInt8(i8),
 
    SInt16(i16),
 
    SInt32(i32),
 
    SInt64(i64),
 
    Array(HeapPos),
 
    Tuple(HeapPos),
 
    // Instances of user-defined types
 
    Enum(i64),
 
    Union(i64, HeapPos),
 
    Struct(HeapPos),
 
}
 

	
 
macro_rules! impl_union_unpack_as_value {
 
    ($func_name:ident, $variant_name:path, $return_type:ty) => {
 
        impl Value {
 
            pub(crate) fn $func_name(&self) -> $return_type {
 
                match self {
 
                    $variant_name(v) => *v,
 
                    _ => panic!(concat!("called ", stringify!($func_name()), " on {:?}"), self),
 
                }
 
            }
 
        }
 
    }
 
}
 

	
 
impl_union_unpack_as_value!(as_stack_boundary, Value::PrevStackBoundary, isize);
 
impl_union_unpack_as_value!(as_ref,     Value::Ref,     ValueId);
 
impl_union_unpack_as_value!(as_input,   Value::Input,   PortId);
 
impl_union_unpack_as_value!(as_output,  Value::Output,  PortId);
 
impl_union_unpack_as_value!(as_message, Value::Message, HeapPos);
 
impl_union_unpack_as_value!(as_bool,    Value::Bool,    bool);
 
impl_union_unpack_as_value!(as_char,    Value::Char,    char);
 
impl_union_unpack_as_value!(as_string,  Value::String,  HeapPos);
 
impl_union_unpack_as_value!(as_uint8,   Value::UInt8,   u8);
 
impl_union_unpack_as_value!(as_uint16,  Value::UInt16,  u16);
 
impl_union_unpack_as_value!(as_uint32,  Value::UInt32,  u32);
 
impl_union_unpack_as_value!(as_uint64,  Value::UInt64,  u64);
 
impl_union_unpack_as_value!(as_sint8,   Value::SInt8,   i8);
 
impl_union_unpack_as_value!(as_sint16,  Value::SInt16,  i16);
 
impl_union_unpack_as_value!(as_sint32,  Value::SInt32,  i32);
 
impl_union_unpack_as_value!(as_sint64,  Value::SInt64,  i64);
 
impl_union_unpack_as_value!(as_array,   Value::Array,   HeapPos);
 
impl_union_unpack_as_value!(as_tuple,   Value::Tuple,   HeapPos);
 
impl_union_unpack_as_value!(as_enum,    Value::Enum,    i64);
 
impl_union_unpack_as_value!(as_struct,  Value::Struct,  HeapPos);
 
union_cast_to_value_method_impl!(as_stack_boundary, isize, Value::PrevStackBoundary);
 
union_cast_to_value_method_impl!(as_ref, ValueId, Value::Ref);
 
union_cast_to_value_method_impl!(as_input, PortId, Value::Input);
 
union_cast_to_value_method_impl!(as_output, PortId, Value::Output);
 
union_cast_to_value_method_impl!(as_message, HeapPos, Value::Message);
 
union_cast_to_value_method_impl!(as_bool, bool, Value::Bool);
 
union_cast_to_value_method_impl!(as_char, char, Value::Char);
 
union_cast_to_value_method_impl!(as_string, HeapPos, Value::String);
 
union_cast_to_value_method_impl!(as_uint8, u8, Value::UInt8);
 
union_cast_to_value_method_impl!(as_uint16, u16, Value::UInt16);
 
union_cast_to_value_method_impl!(as_uint32, u32, Value::UInt32);
 
union_cast_to_value_method_impl!(as_uint64, u64, Value::UInt64);
 
union_cast_to_value_method_impl!(as_sint8, i8, Value::SInt8);
 
union_cast_to_value_method_impl!(as_sint16, i16, Value::SInt16);
 
union_cast_to_value_method_impl!(as_sint32, i32, Value::SInt32);
 
union_cast_to_value_method_impl!(as_sint64, i64, Value::SInt64);
 
union_cast_to_value_method_impl!(as_array, HeapPos, Value::Array);
 
union_cast_to_value_method_impl!(as_tuple, HeapPos, Value::Tuple);
 
union_cast_to_value_method_impl!(as_enum, i64, Value::Enum);
 
union_cast_to_value_method_impl!(as_struct, HeapPos, Value::Struct);
 

	
 
impl Value {
 
    pub(crate) fn as_union(&self) -> (i64, HeapPos) {
 
        match self {
 
            Value::Union(tag, v) => (*tag, *v),
 
            _ => panic!("called as_union on {:?}", self),
 
        }
 
    }
 

	
 
    pub(crate) fn as_port_id(&self) -> PortId {
 
        match self {
 
            Value::Input(v) => *v,
 
            Value::Output(v) => *v,
 
            _ => unreachable!(),
 
        }
 
    }
 

	
 
    pub(crate) fn is_integer(&self) -> bool {
 
        match self {
 
            Value::UInt8(_) | Value::UInt16(_) | Value::UInt32(_) | Value::UInt64(_) |
 
            Value::SInt8(_) | Value::SInt16(_) | Value::SInt32(_) | Value::SInt64(_) => true,
 
            _ => false
 
        }
 
    }
 

	
 
    pub(crate) fn is_unsigned_integer(&self) -> bool {
 
        match self {
 
            Value::UInt8(_) | Value::UInt16(_) | Value::UInt32(_) | Value::UInt64(_) => true,
 
            _ => false
 
        }
 
    }
 

	
 
    pub(crate) fn is_signed_integer(&self) -> bool {
 
        match self {
 
            Value::SInt8(_) | Value::SInt16(_) | Value::SInt32(_) | Value::SInt64(_) => true,
 
            _ => false
 
        }
 
    }
 

	
 
    pub(crate) fn as_unsigned_integer(&self) -> u64 {
 
        match self {
 
            Value::UInt8(v)  => *v as u64,
 
            Value::UInt16(v) => *v as u64,
 
            Value::UInt32(v) => *v as u64,
 
            Value::UInt64(v) => *v as u64,
 
            _ => unreachable!("called as_unsigned_integer on {:?}", self),
 
        }
 
    }
 

	
 
    pub(crate) fn as_signed_integer(&self) -> i64 {
 
        match self {
 
            Value::SInt8(v)  => *v as i64,
 
            Value::SInt16(v) => *v as i64,
 
            Value::SInt32(v) => *v as i64,
 
            Value::SInt64(v) => *v as i64,
 
            _ => unreachable!("called as_signed_integer on {:?}", self)
 
        }
 
    }
 

	
 
    /// Returns the heap position associated with the value. If the value
 
    /// doesn't store anything in the heap then we return `None`.
 
    pub(crate) fn get_heap_pos(&self) -> Option<HeapPos> {
 
        match self {
 
            Value::Message(v) => Some(*v),
 
            Value::String(v) => Some(*v),
 
            Value::Array(v) => Some(*v),
 
            Value::Tuple(v) => Some(*v),
 
            Value::Union(_, v) => Some(*v),
 
            Value::Struct(v) => Some(*v),
 
            _ => None
 
        }
 
    }
 
}
 

	
 
/// When providing arguments to a new component, or when transferring values
 
/// from one component's store to a newly instantiated component, one has to
 
/// transfer stack and heap values. This `ValueGroup` represents such a
 
/// temporary group of values with potential heap allocations.
 
///
 
/// Constructing such a ValueGroup manually requires some extra care to make
 
/// sure all elements of `values` point to valid elements of `regions`.
 
///
 
/// Again: this is a temporary thing, hopefully removed once we move to a
 
/// bytecode interpreter.
 
#[derive(Clone, Debug)]
 
pub struct ValueGroup {
 
    pub(crate) values: Vec<Value>,
 
    pub(crate) regions: Vec<Vec<Value>>
 
}
 

	
 
impl ValueGroup {
 
    pub(crate) fn new_stack(values: Vec<Value>) -> Self {
 
        debug_assert!(values.iter().all(|v| v.get_heap_pos().is_none()));
 
        Self{
 
            values,
 
            regions: Vec::new(),
 
        }
 
    }
 
    pub(crate) fn from_store(store: &Store, values: &[Value]) -> Self {
 
        let mut group = ValueGroup{
 
            values: Vec::with_capacity(values.len()),
 
            regions: Vec::with_capacity(values.len()), // estimation
 
        };
 

	
 
        for value in values {
 
            let transferred = group.retrieve_value(value, store);
 
            group.values.push(transferred);
 
        }
 

	
 
        group
 
    }
 

	
 
    /// Transfers a provided value from a store into a local value with its
 
@@ -427,215 +422,215 @@ pub(crate) fn apply_binary_operator(store: &mut Store, lhs: &Value, op: BinaryOp
 
        let rhs_heap_pos;
 

	
 
        let lhs = store.maybe_read_ref(lhs);
 
        let rhs = store.maybe_read_ref(rhs);
 

	
 
        let value_kind;
 

	
 
        match lhs {
 
            Value::Message(lhs_pos) => {
 
                lhs_heap_pos = *lhs_pos;
 
                rhs_heap_pos = rhs.as_message();
 
                value_kind = ValueKind::Message;
 
            },
 
            Value::String(lhs_pos) => {
 
                lhs_heap_pos = *lhs_pos;
 
                rhs_heap_pos = rhs.as_string();
 
                value_kind = ValueKind::String;
 
            },
 
            Value::Array(lhs_pos) => {
 
                lhs_heap_pos = *lhs_pos;
 
                rhs_heap_pos = rhs.as_array();
 
                value_kind = ValueKind::Array;
 
            },
 
            _ => unreachable!("apply_binary_operator {:?} on lhs {:?} and rhs {:?}", op, lhs, rhs)
 
        }
 

	
 
        let lhs_heap_pos = lhs_heap_pos as usize;
 
        let rhs_heap_pos = rhs_heap_pos as usize;
 

	
 
        let mut concatenated = Vec::new();
 
        let lhs_len = store.heap_regions[lhs_heap_pos].values.len();
 
        let rhs_len = store.heap_regions[rhs_heap_pos].values.len();
 
        concatenated.reserve(lhs_len + rhs_len);
 
        for idx in 0..lhs_len {
 
            concatenated.push(store.clone_value(store.heap_regions[lhs_heap_pos].values[idx].clone()));
 
        }
 
        for idx in 0..rhs_len {
 
            concatenated.push(store.clone_value(store.heap_regions[rhs_heap_pos].values[idx].clone()));
 
        }
 

	
 
        store.heap_regions[target_heap_pos as usize].values = concatenated;
 

	
 
        return match value_kind{
 
            ValueKind::Message => Value::Message(target_heap_pos),
 
            ValueKind::String => Value::String(target_heap_pos),
 
            ValueKind::Array => Value::Array(target_heap_pos),
 
        };
 
    }
 

	
 
    // If any of the values are references, retrieve the thing they're referring
 
    // to.
 
    let lhs = store.maybe_read_ref(lhs);
 
    let rhs = store.maybe_read_ref(rhs);
 

	
 
    match op {
 
        BO::Concatenate => unreachable!(),
 
        BO::LogicalOr => {
 
            return Value::Bool(lhs.as_bool() || rhs.as_bool());
 
        },
 
        BO::LogicalAnd => {
 
            return Value::Bool(lhs.as_bool() && rhs.as_bool());
 
        },
 
        BO::BitwiseOr        => { apply_int_op_and_return_self!(lhs, |,  op, rhs); },
 
        BO::BitwiseXor       => { apply_int_op_and_return_self!(lhs, ^,  op, rhs); },
 
        BO::BitwiseAnd       => { apply_int_op_and_return_self!(lhs, &,  op, rhs); },
 
        BO::Equality         => { Value::Bool(apply_equality_operator(store, lhs, rhs)) },
 
        BO::Inequality       => { Value::Bool(apply_inequality_operator(store, lhs, rhs)) },
 
        BO::LessThan         => { apply_int_op_and_return_bool!(lhs, <,  op, rhs); },
 
        BO::GreaterThan      => { apply_int_op_and_return_bool!(lhs, >,  op, rhs); },
 
        BO::LessThanEqual    => { apply_int_op_and_return_bool!(lhs, <=, op, rhs); },
 
        BO::GreaterThanEqual => { apply_int_op_and_return_bool!(lhs, >=, op, rhs); },
 
        BO::ShiftLeft        => { apply_int_op_and_return_self!(lhs, <<, op, rhs); },
 
        BO::ShiftRight       => { apply_int_op_and_return_self!(lhs, >>, op, rhs); },
 
        BO::Add              => { apply_int_op_and_return_self!(lhs, +,  op, rhs); },
 
        BO::Subtract         => { apply_int_op_and_return_self!(lhs, -,  op, rhs); },
 
        BO::Multiply         => { apply_int_op_and_return_self!(lhs, *,  op, rhs); },
 
        BO::Divide           => { apply_int_op_and_return_self!(lhs, /,  op, rhs); },
 
        BO::Remainder        => { apply_int_op_and_return_self!(lhs, %,  op, rhs); }
 
    }
 
}
 

	
 
pub(crate) fn apply_unary_operator(store: &mut Store, op: UnaryOperator, value: &Value) -> Value {
 
    use UnaryOperator as UO;
 

	
 
    macro_rules! apply_int_expr_and_return {
 
        ($value:ident, $apply:tt, $op:ident) => {
 
            return match $value {
 
                Value::UInt8(v)  => Value::UInt8($apply *v),
 
                Value::UInt16(v) => Value::UInt16($apply *v),
 
                Value::UInt32(v) => Value::UInt32($apply *v),
 
                Value::UInt64(v) => Value::UInt64($apply *v),
 
                Value::SInt8(v)  => Value::SInt8($apply *v),
 
                Value::SInt16(v) => Value::SInt16($apply *v),
 
                Value::SInt32(v) => Value::SInt32($apply *v),
 
                Value::SInt64(v) => Value::SInt64($apply *v),
 
                _ => unreachable!("apply_unary_operator {:?} on value {:?}", $op, $value),
 
            };
 
            }
 
        }
 
    }
 

	
 
    // If the value is a reference, retrieve the thing it is referring to
 
    let value = store.maybe_read_ref(value);
 

	
 
    match op {
 
        UO::Positive => {
 
            debug_assert!(value.is_integer());
 
            return value.clone();
 
        },
 
        UO::Negative => {
 
            // TODO: Error on negating unsigned integers
 
            return match value {
 
                Value::SInt8(v) => Value::SInt8(-*v),
 
                Value::SInt16(v) => Value::SInt16(-*v),
 
                Value::SInt32(v) => Value::SInt32(-*v),
 
                Value::SInt64(v) => Value::SInt64(-*v),
 
                _ => unreachable!("apply_unary_operator {:?} on value {:?}", op, value),
 
            }
 
        },
 
        UO::BitwiseNot => { apply_int_expr_and_return!(value, !, op)},
 
        UO::BitwiseNot => { apply_int_expr_and_return!(value, !, op); },
 
        UO::LogicalNot => { return Value::Bool(!value.as_bool()); },
 
    }
 
}
 

	
 
pub(crate) fn apply_casting(store: &mut Store, output_type: &ConcreteType, subject: &Value) -> Result<Value, String> {
 
    // To simplify the casting logic: if the output type is not a simple
 
    // integer/boolean/character, then the type checker made sure that the two
 
    // types must be equal, hence we can do a simple clone.
 
    use ConcreteTypePart as CTP;
 
    let part = &output_type.parts[0];
 
    match part {
 
        CTP::Bool | CTP::Character |
 
        CTP::UInt8 | CTP::UInt16 | CTP::UInt32 | CTP::UInt64 |
 
        CTP::SInt8 | CTP::SInt16 | CTP::SInt32 | CTP::SInt64 => {
 
            // Do the checking of these below
 
            debug_assert_eq!(output_type.parts.len(), 1);
 
        },
 
        _ => {
 
            return Ok(store.clone_value(subject.clone()));
 
        },
 
    }
 

	
 
    // Note: character is not included, needs per-type checking
 
    macro_rules! unchecked_cast {
 
        ($input: expr, $output_part: expr) => {
 
            return Ok(match $output_part {
 
                CTP::UInt8 => Value::UInt8($input as u8),
 
                CTP::UInt16 => Value::UInt16($input as u16),
 
                CTP::UInt32 => Value::UInt32($input as u32),
 
                CTP::UInt64 => Value::UInt64($input as u64),
 
                CTP::SInt8 => Value::SInt8($input as i8),
 
                CTP::SInt16 => Value::SInt16($input as i16),
 
                CTP::SInt32 => Value::SInt32($input as i32),
 
                CTP::SInt64 => Value::SInt64($input as i64),
 
                _ => unreachable!()
 
            })
 
        }
 
    }
 

	
 
    macro_rules! from_unsigned_cast {
 
        ($input:expr, $input_type:ty, $output_part:expr) => {
 
            {
 
                let target_type_name = match $output_part {
 
                    CTP::Bool => return Ok(Value::Bool($input != 0)),
 
                    CTP::Character => if $input <= u8::MAX as $input_type {
 
                        return Ok(Value::Char(($input as u8) as char))
 
                    } else {
 
                        KW_TYPE_CHAR_STR
 
                    },
 
                    CTP::UInt8 => if $input <= u8::MAX as $input_type {
 
                        return Ok(Value::UInt8($input as u8))
 
                    } else {
 
                        KW_TYPE_UINT8_STR
 
                    },
 
                    CTP::UInt16 => if $input <= u16::MAX as $input_type {
 
                        return Ok(Value::UInt16($input as u16))
 
                    } else {
 
                        KW_TYPE_UINT16_STR
 
                    },
 
                    CTP::UInt32 => if $input <= u32::MAX as $input_type {
 
                        return Ok(Value::UInt32($input as u32))
 
                    } else {
 
                        KW_TYPE_UINT32_STR
 
                    },
 
                    CTP::UInt64 => return Ok(Value::UInt64($input as u64)), // any unsigned int to u64 is fine
 
                    CTP::SInt8 => if $input <= i8::MAX as $input_type {
 
                        return Ok(Value::SInt8($input as i8))
 
                    } else {
 
                        KW_TYPE_SINT8_STR
 
                    },
 
                    CTP::SInt16 => if $input <= i16::MAX as $input_type {
 
                        return Ok(Value::SInt16($input as i16))
 
                    } else {
 
                        KW_TYPE_SINT16_STR
 
                    },
 
                    CTP::SInt32 => if $input <= i32::MAX as $input_type {
 
                        return Ok(Value::SInt32($input as i32))
 
                    } else {
 
                        KW_TYPE_SINT32_STR
 
                    },
 
                    CTP::SInt64 => if $input <= i64::MAX as $input_type {
 
                        return Ok(Value::SInt64($input as i64))
 
                    } else {
 
                        KW_TYPE_SINT64_STR
 
                    },
 
                    _ => unreachable!(),
 
                };
 

	
 
                return Err(format!("value is '{}' which doesn't fit in a type '{}'", $input, target_type_name));
 
            }
 
        }
 
    }
 

	
 
    macro_rules! from_signed_cast {
 
        // Programmer note: for signed checking we cannot do
 
        //  output_type::MAX as input_type,
src/protocol/input_source.rs
Show inline comments
 
use std::fmt;
 
use std::sync::{RwLock, RwLockReadGuard};
 
use std::fmt::Write;
 

	
 
#[derive(Debug, Clone, Copy)]
 
pub struct InputPosition {
 
    pub line: u32,
 
    pub offset: u32,
 
}
 

	
 
impl InputPosition {
 
    pub(crate) fn with_offset(&self, offset: u32) -> Self {
 
        InputPosition { line: self.line, offset: self.offset + offset }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy)]
 
pub struct InputSpan {
 
    pub begin: InputPosition,
 
    pub end: InputPosition,
 
}
 

	
 
impl InputSpan {
 
    // This will only be used for builtin functions
 
    // This must only be used if you're sure that the span will not be involved
 
    // in creating an error message.
 
    #[inline]
 
    pub fn new() -> InputSpan {
 
    pub const fn new() -> InputSpan {
 
        InputSpan{ begin: InputPosition{ line: 0, offset: 0 }, end: InputPosition{ line: 0, offset: 0 }}
 
    }
 

	
 
    #[inline]
 
    pub fn from_positions(begin: InputPosition, end: InputPosition) -> Self {
 
        Self { begin, end }
 
    }
 
}
 

	
 
/// Wrapper around source file with optional filename. Ensures that the file is
 
/// only scanned once.
 
pub struct InputSource {
 
    pub(crate) filename: String,
 
    pub(crate) input: Vec<u8>,
 
    // Iteration
 
    line: u32,
 
    offset: usize,
 
    // State tracking
 
    pub(crate) had_error: Option<ParseError>,
 
    // The offset_lookup is built on-demand upon attempting to report an error.
 
    // Only one procedure will actually create the lookup, afterwards only read
 
    // locks will be held.
 
    offset_lookup: RwLock<Vec<u32>>,
 
}
 

	
 
impl InputSource {
 
    pub fn new(filename: String, input: Vec<u8>) -> Self {
 
        Self{
 
            filename,
 
            input,
 
            line: 1,
 
            offset: 0,
 
            had_error: None,
 
            offset_lookup: RwLock::new(Vec::new()),
 
        }
 
    }
 

	
 
    #[inline]
 
    pub fn pos(&self) -> InputPosition {
 
        InputPosition { line: self.line, offset: self.offset as u32 }
 
    }
 

	
 
    pub fn next(&self) -> Option<u8> {
 
        if self.offset < self.input.len() {
 
            Some(self.input[self.offset])
 
        } else {
 
            None
 
        }
 
    }
 

	
 
    pub fn lookahead(&self, offset: usize) -> Option<u8> {
 
        let offset_pos = self.offset + offset;
 
        if offset_pos < self.input.len() {
 
            Some(self.input[offset_pos])
 
        } else {
 
            None
 
        }
 
    }
 

	
 
    #[inline]
 
    pub fn section_at_pos(&self, start: InputPosition, end: InputPosition) -> &[u8] {
 
        &self.input[start.offset as usize..end.offset as usize]
 
    }
 

	
 
    #[inline]
 
    pub fn section_at_span(&self, span: InputSpan) -> &[u8] {
 
        &self.input[span.begin.offset as usize..span.end.offset as usize]
 
    }
 

	
 
    // Consumes the next character. Will check well-formedness of newlines: \r
 
    // must be followed by a \n, because this is used for error reporting. Will
 
    // not check for ascii-ness of the file, better left to a tokenizer.
 
    pub fn consume(&mut self) {
 
        match self.next() {
 
            Some(b'\r') => {
 
                if Some(b'\n') == self.lookahead(1) {
 
                    // Well formed file
 
                    self.offset += 1;
 
                } else {
 
                    // Not a well-formed file, pretend like we can continue
 
                    self.offset += 1;
 
                    self.set_error("Encountered carriage-feed without a following newline");
 
                }
 
            },
 
            Some(b'\n') => {
 
                self.line += 1;
 
                self.offset += 1;
 
            },
 
            Some(_) => {
 
                self.offset += 1;
 
            }
 
            None => {}
 
        }
 

	
 
        // Maybe we actually want to check this in release mode. Then again:
 
        // a 4 gigabyte source file... Really?
src/protocol/mod.rs
Show inline comments
 
mod arena;
 
pub(crate) mod eval;
 
pub(crate) mod input_source;
 
mod parser;
 
#[cfg(test)] mod tests;
 

	
 
pub(crate) mod ast;
 
pub(crate) mod ast_printer;
 

	
 
use std::sync::Mutex;
 

	
 
use crate::collections::{StringPool, StringRef};
 
use crate::protocol::ast::*;
 
use crate::protocol::eval::*;
 
use crate::protocol::input_source::*;
 
use crate::protocol::parser::*;
 
use crate::protocol::type_table::*;
 

	
 
pub use parser::type_table::TypeId;
 

	
 
/// A protocol description module
 
pub struct Module {
 
    pub(crate) source: InputSource,
 
    pub(crate) root_id: RootId,
 
    pub(crate) name: Option<StringRef<'static>>,
 
}
 
/// Description of a protocol object, used to configure new connectors.
 
#[repr(C)]
 
pub struct ProtocolDescription {
 
    pub(crate) modules: Vec<Module>,
 
    pub(crate) heap: Heap,
 
    pub(crate) types: TypeTable,
 
    pub(crate) pool: Mutex<StringPool>,
 
}
 
#[derive(Debug, Clone)]
 
pub(crate) struct ComponentState {
 
    pub(crate) prompt: Prompt,
 
}
 

	
 
#[derive(Debug)]
 
pub enum ComponentCreationError {
 
    ModuleDoesntExist,
 
    DefinitionDoesntExist,
 
    DefinitionNotComponent,
 
    InvalidNumArguments,
 
    InvalidArgumentType(usize),
 
    UnownedPort,
 
    InSync,
 
}
 

	
 
impl ProtocolDescription {
 
    pub fn parse(buffer: &[u8]) -> Result<Self, String> {
 
        let source = InputSource::new(String::new(), Vec::from(buffer));
 
        let mut parser = Parser::new();
 
        parser.feed(source).expect("failed to feed source");
 
        
 
        if let Err(err) = parser.parse() {
 
            println!("ERROR:\n{}", err);
 
            return Err(format!("{}", err))
 
        }
 

	
 
        debug_assert_eq!(parser.modules.len(), 1, "only supporting one module here for now");
 
        let modules: Vec<Module> = parser.modules.into_iter()
 
            .map(|module| Module{
 
                source: module.source,
 
                root_id: module.root_id,
 
                name: module.name.map(|(_, name)| name)
 
            })
 
            .collect();
 

	
 
        return Ok(ProtocolDescription {
 
            modules,
 
            heap: parser.heap,
 
            types: parser.type_table,
 
            pool: Mutex::new(parser.string_pool),
 
        });
 
    }
 

	
 
    pub(crate) fn new_component(
 
        &self, module_name: &[u8], identifier: &[u8], arguments: ValueGroup
 
    ) -> Result<Prompt, ComponentCreationError> {
 
        // Find the module in which the definition can be found
 
        let module_root = self.lookup_module_root(module_name);
 
        if module_root.is_none() {
 
            return Err(ComponentCreationError::ModuleDoesntExist);
 
        }
 
        let module_root = module_root.unwrap();
 

	
 
        let root = &self.heap[module_root];
 
        let definition_id = root.get_definition_ident(&self.heap, identifier);
 
        if definition_id.is_none() {
 
            return Err(ComponentCreationError::DefinitionDoesntExist);
 
        }
 
        let definition_id = definition_id.unwrap();
 

	
 
        let ast_definition = &self.heap[definition_id];
 
        if !ast_definition.is_component() {
 
        if !ast_definition.is_procedure() {
 
            return Err(ComponentCreationError::DefinitionNotComponent);
 
        }
 

	
 
        // Make sure that the types of the provided value group matches that of
 
        // the expected types.
 
        let ast_definition = ast_definition.as_component();
 
        if !ast_definition.poly_vars.is_empty() {
 
        let ast_definition = ast_definition.as_procedure();
 
        if !ast_definition.poly_vars.is_empty() || ast_definition.kind == ProcedureKind::Function {
 
            return Err(ComponentCreationError::DefinitionNotComponent);
 
        }
 

	
 
        // - check number of arguments by retrieving the one instantiated
 
        //   monomorph
 
        let concrete_type = ConcreteType{ parts: vec![ConcreteTypePart::Component(definition_id, 0)] };
 
        let mono_index = self.types.get_procedure_monomorph_index(&definition_id, &concrete_type.parts).unwrap();
 
        let mono_type = self.types.get_procedure_monomorph(mono_index);
 
        if mono_type.arg_types.len() != arguments.values.len() {
 
        let concrete_type = ConcreteType{ parts: vec![ConcreteTypePart::Component(ast_definition.this, 0)] };
 
        let procedure_type_id = self.types.get_procedure_monomorph_type_id(&definition_id, &concrete_type.parts).unwrap();
 
        let procedure_monomorph_index = self.types.get_monomorph(procedure_type_id).variant.as_procedure().monomorph_index;
 
        let monomorph_info = &ast_definition.monomorphs[procedure_monomorph_index as usize];
 
        if monomorph_info.argument_types.len() != arguments.values.len() {
 
            return Err(ComponentCreationError::InvalidNumArguments);
 
        }
 

	
 
        // - for each argument try to make sure the types match
 
        for arg_idx in 0..arguments.values.len() {
 
            let expected_type = &mono_type.arg_types[arg_idx];
 
            let expected_type_id = monomorph_info.argument_types[arg_idx];
 
            let expected_type = &self.types.get_monomorph(expected_type_id).concrete_type;
 
            let provided_value = &arguments.values[arg_idx];
 
            if !self.verify_same_type(expected_type, 0, &arguments, provided_value) {
 
                return Err(ComponentCreationError::InvalidArgumentType(arg_idx));
 
            }
 
        }
 

	
 
        // By now we're sure that all of the arguments are correct. So create
 
        // the connector.
 
        return Ok(Prompt::new(&self.types, &self.heap, definition_id, mono_index, arguments));
 
        return Ok(Prompt::new(&self.types, &self.heap, ast_definition.this, procedure_type_id, arguments));
 
    }
 

	
 
    fn lookup_module_root(&self, module_name: &[u8]) -> Option<RootId> {
 
        for module in self.modules.iter() {
 
            match &module.name {
 
                Some(name) => if name.as_bytes() == module_name {
 
                    return Some(module.root_id);
 
                },
 
                None => if module_name.is_empty() {
 
                    return Some(module.root_id);
 
                }
 
            }
 
        }
 

	
 
        return None;
 
    }
 

	
 
    fn verify_same_type(&self, expected: &ConcreteType, expected_idx: usize, arguments: &ValueGroup, argument: &Value) -> bool {
 
        use ConcreteTypePart as CTP;
 

	
 
        match &expected.parts[expected_idx] {
 
            CTP::Void | CTP::Message | CTP::Slice | CTP::Function(_, _) | CTP::Component(_, _) => unreachable!(),
 
            CTP::Void | CTP::Message | CTP::Slice | CTP::Pointer | CTP::Function(_, _) | CTP::Component(_, _) => unreachable!(),
 
            CTP::Bool => if let Value::Bool(_) = argument { true } else { false },
 
            CTP::UInt8 => if let Value::UInt8(_) = argument { true } else { false },
 
            CTP::UInt16 => if let Value::UInt16(_) = argument { true } else { false },
 
            CTP::UInt32 => if let Value::UInt32(_) = argument { true } else { false },
 
            CTP::UInt64 => if let Value::UInt64(_) = argument { true } else { false },
 
            CTP::SInt8 => if let Value::SInt8(_) = argument { true } else { false },
 
            CTP::SInt16 => if let Value::SInt16(_) = argument { true } else { false },
 
            CTP::SInt32 => if let Value::SInt32(_) = argument { true } else { false },
 
            CTP::SInt64 => if let Value::SInt64(_) = argument { true } else { false },
 
            CTP::Character => if let Value::Char(_) = argument { true } else { false },
 
            CTP::String => {
 
                // Match outer string type and embedded character types
 
                if let Value::String(heap_pos) = argument {
 
                    for element in &arguments.regions[*heap_pos as usize] {
 
                        if let Value::Char(_) = element {} else {
 
                            return false;
 
                        }
 
                    }
 
                } else {
 
                    return false;
 
                }
 

	
 
                return true;
 
            },
 
            CTP::Array => {
 
                if let Value::Array(heap_pos) = argument {
 
                    let heap_pos = *heap_pos;
 
                    for element in &arguments.regions[heap_pos as usize] {
 
                        if !self.verify_same_type(expected, expected_idx + 1, arguments, element) {
 
                            return false;
 
                        }
 
                    }
 
                    return true;
 
                } else {
 
                    return false;
 
                }
 
            },
 
            CTP::Input => if let Value::Input(_) = argument { true } else { false },
 
            CTP::Output => if let Value::Output(_) = argument { true } else { false },
 
            CTP::Tuple(_) => todo!("implement full type checking on user-supplied arguments"),
 
            CTP::Instance(definition_id, _num_embedded) => {
 
                let definition = self.types.get_base_definition(definition_id).unwrap();
 
                match &definition.definition {
 
                    DefinedTypeVariant::Enum(definition) => {
 
                        if let Value::Enum(variant_value) = argument {
 
                            let is_valid = definition.variants.iter()
 
                                .any(|v| v.value == *variant_value);
 
                            return is_valid;
 
                        }
 
                    },
 
                    _ => todo!("implement full type checking on user-supplied arguments"),
 
                }
 

	
 
                return false;
 
            },
 
        }
 
    }
 
}
 

	
 
pub trait RunContext {
 
    fn performed_put(&mut self, port: PortId) -> bool;
 
    fn performed_get(&mut self, port: PortId) -> Option<ValueGroup>; // None if still waiting on message
 
    fn fires(&mut self, port: PortId) -> Option<Value>; // None if not yet branched
 
    fn performed_fork(&mut self) -> Option<bool>; // None if not yet forked
 
    fn created_channel(&mut self) -> Option<(Value, Value)>; // None if not yet prepared
 
    fn performed_select_wait(&mut self) -> Option<u32>; // None if not yet notified runtime of select blocker
 
}
 

	
 
pub struct ProtocolDescriptionBuilder {
 
    parser: Parser,
 
}
 

	
 
impl ProtocolDescriptionBuilder {
 
    pub fn new() -> Self {
 
        return Self{
 
            parser: Parser::new(),
 
        }
 
    }
 

	
 
    pub fn add(&mut self, filename: String, buffer: Vec<u8>) -> Result<(), ParseError> {
 
        let input = InputSource::new(filename, buffer);
 
        self.parser.feed(input)?;
 

	
 
        return Ok(())
 
    }
 

	
 
    pub fn compile(mut self) -> Result<ProtocolDescription, ParseError> {
 
        self.parser.parse()?;
 

	
 
        let modules: Vec<Module> = self.parser.modules.into_iter()
 
            .map(|module| Module{
 
                source: module.source,
 
                root_id: module.root_id,
 
                name: module.name.map(|(_, name)| name)
 
            })
 
            .collect();
 

	
 
        return Ok(ProtocolDescription {
 
            modules,
 
            heap: self.parser.heap,
 
            types: self.parser.type_table,
 
            pool: Mutex::new(self.parser.string_pool),
 
        });
 
    }
 
}

Changeset was too big and was cut off... Show full diff anyway

0 comments (0 inline, 0 general)