Changeset - 63d65f7baf18
[Not reviewed]
0 4 0
MH - 4 years ago 2021-07-22 15:22:00
contact@maxhenger.nl
stuck again in the abstractions, pending rewrite of visitor
4 files changed with 73 insertions and 35 deletions:
0 comments (0 inline, 0 general)
src/protocol/ast.rs
Show inline comments
 
// TODO: @cleanup, rigorous cleanup of dead code and silly object-oriented
 
//  trait impls where I deem them unfit.
 

	
 
use std::fmt;
 
use std::fmt::{Debug, Display, Formatter};
 
use std::ops::{Index, IndexMut};
 

	
 
use super::arena::{Arena, Id};
 
use crate::collections::StringRef;
 
use crate::protocol::input_source::InputSpan;
 

	
 
/// Helper macro that defines a type alias for a AST element ID. In this case 
 
/// only used to alias the `Id<T>` types.
 
macro_rules! define_aliased_ast_id {
 
    // Variant where we just defined the alias, without any indexing
 
    ($name:ident, $parent:ty) => {
 
        pub type $name = $parent;
 
    };
 
    // Variant where we define the type, and the Index and IndexMut traits
 
    (
 
        $name:ident, $parent:ty, 
 
        index($indexed_type:ty, $indexed_arena:ident)
 
    ) => {
 
        define_aliased_ast_id!($name, $parent);
 
        impl Index<$name> for Heap {
 
            type Output = $indexed_type;
 
            fn index(&self, index: $name) -> &Self::Output {
 
                &self.$indexed_arena[index]
 
            }
 
        }
 

	
 
        impl IndexMut<$name> for Heap {
 
            fn index_mut(&mut self, index: $name) -> &mut Self::Output {
 
                &mut self.$indexed_arena[index]
 
            }
 
        }
 
    };
 
    // Variant where we define type, Index(Mut) traits and an allocation function
 
    (
 
        $name:ident, $parent:ty,
 
        index($indexed_type:ty, $indexed_arena:ident),
 
        alloc($fn_name:ident)
 
    ) => {
 
        define_aliased_ast_id!($name, $parent, index($indexed_type, $indexed_arena));
 
        impl Heap {
 
            pub fn $fn_name(&mut self, f: impl FnOnce($name) -> $indexed_type) -> $name {
 
                self.$indexed_arena.alloc_with_id(|id| f(id))
 
            }
 
        }
 
    };
 
}
 

	
 
/// Helper macro that defines a wrapper type for a particular variant of an AST
 
/// element ID. Only used to define single-wrapping IDs.
 
macro_rules! define_new_ast_id {
 
    // Variant where we just defined the new type, without any indexing
 
    ($name:ident, $parent:ty) => {
 
        #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
 
        pub struct $name (pub(crate) $parent);
 

	
 
        #[allow(dead_code)]
 
        impl $name {
 
            pub(crate) fn new_invalid() -> Self     { Self(<$parent>::new_invalid()) }
 
            pub(crate) fn is_invalid(&self) -> bool { self.0.is_invalid() }
 
            pub fn upcast(self) -> $parent          { self.0 }
 
        }
 
    };
 
    // Variant where we define the type, and the Index and IndexMut traits
 
    (
 
        $name:ident, $parent:ty, 
 
        index($indexed_type:ty, $wrapper_type:path, $indexed_arena:ident)
 
    ) => {
 
        define_new_ast_id!($name, $parent);
 
        impl Index<$name> for Heap {
 
            type Output = $indexed_type;
 
            fn index(&self, index: $name) -> &Self::Output {
 
                if let $wrapper_type(v) = &self.$indexed_arena[index.0] {
 
                    v
 
                } else {
 
                    unreachable!()
 
                }
 
            }
 
        }
 

	
 
        impl IndexMut<$name> for Heap {
 
            fn index_mut(&mut self, index: $name) -> &mut Self::Output {
 
                if let $wrapper_type(v) = &mut self.$indexed_arena[index.0] {
 
                    v
 
                } else {
 
                    unreachable!()
 
                }
 
            }
 
        }
 
    };
 
    // Variant where we define the type, the Index and IndexMut traits, and an allocation function
 
    (
 
        $name:ident, $parent:ty, 
 
        index($indexed_type:ty, $wrapper_type:path, $indexed_arena:ident),
 
        alloc($fn_name:ident)
 
    ) => {
 
        define_new_ast_id!($name, $parent, index($indexed_type, $wrapper_type, $indexed_arena));
 
        impl Heap {
 
            pub fn $fn_name(&mut self, f: impl FnOnce($name) -> $indexed_type) -> $name {
 
                $name(
 
                    self.$indexed_arena.alloc_with_id(|id| {
 
                        $wrapper_type(f($name(id)))
 
                    })
 
                )
 
            }
 
        }
 
    }
 
}
 

	
 
define_aliased_ast_id!(RootId, Id<Root>, index(Root, protocol_descriptions), alloc(alloc_protocol_description));
 
define_aliased_ast_id!(PragmaId, Id<Pragma>, index(Pragma, pragmas), alloc(alloc_pragma));
 
define_aliased_ast_id!(ImportId, Id<Import>, index(Import, imports), alloc(alloc_import));
 
define_aliased_ast_id!(VariableId, Id<Variable>, index(Variable, variables), alloc(alloc_variable));
 

	
 
define_aliased_ast_id!(DefinitionId, Id<Definition>, index(Definition, definitions));
 
define_new_ast_id!(StructDefinitionId, DefinitionId, index(StructDefinition, Definition::Struct, definitions), alloc(alloc_struct_definition));
 
define_new_ast_id!(EnumDefinitionId, DefinitionId, index(EnumDefinition, Definition::Enum, definitions), alloc(alloc_enum_definition));
 
define_new_ast_id!(UnionDefinitionId, DefinitionId, index(UnionDefinition, Definition::Union, definitions), alloc(alloc_union_definition));
 
define_new_ast_id!(ComponentDefinitionId, DefinitionId, index(ComponentDefinition, Definition::Component, definitions), alloc(alloc_component_definition));
 
define_new_ast_id!(FunctionDefinitionId, DefinitionId, index(FunctionDefinition, Definition::Function, definitions), alloc(alloc_function_definition));
 

	
 
define_aliased_ast_id!(StatementId, Id<Statement>, index(Statement, statements));
 
define_new_ast_id!(BlockStatementId, StatementId, index(BlockStatement, Statement::Block, statements), alloc(alloc_block_statement));
 
define_new_ast_id!(EndBlockStatementId, StatementId, index(EndBlockStatement, Statement::EndBlock, statements), alloc(alloc_end_block_statement));
 
define_new_ast_id!(LocalStatementId, StatementId, index(LocalStatement, Statement::Local, statements), alloc(alloc_local_statement));
 
define_new_ast_id!(MemoryStatementId, LocalStatementId);
 
define_new_ast_id!(ChannelStatementId, LocalStatementId);
 
define_new_ast_id!(LabeledStatementId, StatementId, index(LabeledStatement, Statement::Labeled, statements), alloc(alloc_labeled_statement));
 
define_new_ast_id!(IfStatementId, StatementId, index(IfStatement, Statement::If, statements), alloc(alloc_if_statement));
 
define_new_ast_id!(EndIfStatementId, StatementId, index(EndIfStatement, Statement::EndIf, statements), alloc(alloc_end_if_statement));
 
define_new_ast_id!(WhileStatementId, StatementId, index(WhileStatement, Statement::While, statements), alloc(alloc_while_statement));
 
define_new_ast_id!(EndWhileStatementId, StatementId, index(EndWhileStatement, Statement::EndWhile, statements), alloc(alloc_end_while_statement));
 
define_new_ast_id!(BreakStatementId, StatementId, index(BreakStatement, Statement::Break, statements), alloc(alloc_break_statement));
 
define_new_ast_id!(ContinueStatementId, StatementId, index(ContinueStatement, Statement::Continue, statements), alloc(alloc_continue_statement));
 
define_new_ast_id!(SynchronousStatementId, StatementId, index(SynchronousStatement, Statement::Synchronous, statements), alloc(alloc_synchronous_statement));
 
define_new_ast_id!(EndSynchronousStatementId, StatementId, index(EndSynchronousStatement, Statement::EndSynchronous, statements), alloc(alloc_end_synchronous_statement));
 
define_new_ast_id!(ReturnStatementId, StatementId, index(ReturnStatement, Statement::Return, statements), alloc(alloc_return_statement));
 
define_new_ast_id!(GotoStatementId, StatementId, index(GotoStatement, Statement::Goto, statements), alloc(alloc_goto_statement));
 
define_new_ast_id!(NewStatementId, StatementId, index(NewStatement, Statement::New, statements), alloc(alloc_new_statement));
 
define_new_ast_id!(ExpressionStatementId, StatementId, index(ExpressionStatement, Statement::Expression, statements), alloc(alloc_expression_statement));
 

	
 
define_aliased_ast_id!(ExpressionId, Id<Expression>, index(Expression, expressions));
 
define_new_ast_id!(AssignmentExpressionId, ExpressionId, index(AssignmentExpression, Expression::Assignment, expressions), alloc(alloc_assignment_expression));
 
define_new_ast_id!(BindingExpressionId, ExpressionId, index(BindingExpression, Expression::Binding, expressions), alloc(alloc_binding_expression));
 
define_new_ast_id!(ConditionalExpressionId, ExpressionId, index(ConditionalExpression, Expression::Conditional, expressions), alloc(alloc_conditional_expression));
 
define_new_ast_id!(BinaryExpressionId, ExpressionId, index(BinaryExpression, Expression::Binary, expressions), alloc(alloc_binary_expression));
 
define_new_ast_id!(UnaryExpressionId, ExpressionId, index(UnaryExpression, Expression::Unary, expressions), alloc(alloc_unary_expression));
 
define_new_ast_id!(IndexingExpressionId, ExpressionId, index(IndexingExpression, Expression::Indexing, expressions), alloc(alloc_indexing_expression));
 
define_new_ast_id!(SlicingExpressionId, ExpressionId, index(SlicingExpression, Expression::Slicing, expressions), alloc(alloc_slicing_expression));
 
define_new_ast_id!(SelectExpressionId, ExpressionId, index(SelectExpression, Expression::Select, expressions), alloc(alloc_select_expression));
 
define_new_ast_id!(LiteralExpressionId, ExpressionId, index(LiteralExpression, Expression::Literal, expressions), alloc(alloc_literal_expression));
 
define_new_ast_id!(CastExpressionId, ExpressionId, index(CastExpression, Expression::Cast, expressions), alloc(alloc_cast_expression));
 
define_new_ast_id!(CallExpressionId, ExpressionId, index(CallExpression, Expression::Call, expressions), alloc(alloc_call_expression));
 
define_new_ast_id!(VariableExpressionId, ExpressionId, index(VariableExpression, Expression::Variable, expressions), alloc(alloc_variable_expression));
 

	
 
#[derive(Debug)]
 
pub struct Heap {
 
    // Root arena, contains the entry point for different modules. Each root
 
    // contains lists of IDs that correspond to the other arenas.
 
    pub(crate) protocol_descriptions: Arena<Root>,
 
    // Contents of a file, these are the elements the `Root` elements refer to
 
    pragmas: Arena<Pragma>,
 
    pub(crate) imports: Arena<Import>,
 
    pub(crate) variables: Arena<Variable>,
 
    pub(crate) definitions: Arena<Definition>,
 
    pub(crate) statements: Arena<Statement>,
 
    pub(crate) expressions: Arena<Expression>,
 
}
 

	
 
impl Heap {
 
    pub fn new() -> Heap {
 
        Heap {
 
            // string_alloc: StringAllocator::new(),
 
            protocol_descriptions: Arena::new(),
 
            pragmas: Arena::new(),
 
            imports: Arena::new(),
 
            variables: Arena::new(),
 
            definitions: Arena::new(),
 
            statements: Arena::new(),
 
            expressions: Arena::new(),
 
        }
 
    }
 
    pub fn alloc_memory_statement(
 
        &mut self,
 
        f: impl FnOnce(MemoryStatementId) -> MemoryStatement,
 
    ) -> MemoryStatementId {
 
        MemoryStatementId(LocalStatementId(self.statements.alloc_with_id(|id| {
 
            Statement::Local(LocalStatement::Memory(
 
                f(MemoryStatementId(LocalStatementId(id)))
 
            ))
 
        })))
 
    }
 
    pub fn alloc_channel_statement(
 
        &mut self,
 
        f: impl FnOnce(ChannelStatementId) -> ChannelStatement,
 
    ) -> ChannelStatementId {
 
        ChannelStatementId(LocalStatementId(self.statements.alloc_with_id(|id| {
 
            Statement::Local(LocalStatement::Channel(
 
                f(ChannelStatementId(LocalStatementId(id)))
 
            ))
 
        })))
 
    }
 
}
 

	
 
impl Index<MemoryStatementId> for Heap {
 
    type Output = MemoryStatement;
 
    fn index(&self, index: MemoryStatementId) -> &Self::Output {
 
        &self.statements[index.0.0].as_memory()
 
    }
 
}
 

	
 
impl Index<ChannelStatementId> for Heap {
 
    type Output = ChannelStatement;
 
    fn index(&self, index: ChannelStatementId) -> &Self::Output {
 
        &self.statements[index.0.0].as_channel()
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct Root {
 
    pub this: RootId,
 
    // Phase 1: parser
 
    // pub position: InputPosition,
 
    pub pragmas: Vec<PragmaId>,
 
    pub imports: Vec<ImportId>,
 
    pub definitions: Vec<DefinitionId>,
 
}
 

	
 
impl Root {
 
    pub fn get_definition_ident(&self, h: &Heap, id: &[u8]) -> Option<DefinitionId> {
 
        for &def in self.definitions.iter() {
 
            if h[def].identifier().value.as_bytes() == id {
 
                return Some(def);
 
            }
 
        }
 
        None
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Pragma {
 
    Version(PragmaVersion),
 
    Module(PragmaModule),
 
}
 

	
 
impl Pragma {
 
    pub(crate) fn as_module(&self) -> &PragmaModule {
 
        match self {
 
            Pragma::Module(pragma) => pragma,
 
            _ => unreachable!("Tried to obtain {:?} as PragmaModule", self),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct PragmaVersion {
 
    pub this: PragmaId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of full pragma
 
    pub version: u64,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct PragmaModule {
 
    pub this: PragmaId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of full pragma
 
    pub value: Identifier,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Import {
 
    Module(ImportModule),
 
    Symbols(ImportSymbols)
 
}
 

	
 
impl Import {
 
    pub(crate) fn span(&self) -> InputSpan {
 
        match self {
 
            Import::Module(v) => v.span,
 
            Import::Symbols(v) => v.span,
 
        }
 
    }
 

	
 
    pub(crate) fn as_module(&self) -> &ImportModule {
 
        match self {
 
            Import::Module(m) => m,
 
            _ => unreachable!("Unable to cast 'Import' to 'ImportModule'")
 
        }
 
    }
 
    pub(crate) fn as_symbols(&self) -> &ImportSymbols {
 
        match self {
 
            Import::Symbols(m) => m,
 
            _ => unreachable!("Unable to cast 'Import' to 'ImportSymbols'")
 
        }
 
    }
 
    pub(crate) fn as_symbols_mut(&mut self) -> &mut ImportSymbols {
 
        match self {
 
            Import::Symbols(m) => m,
 
            _ => unreachable!("Unable to cast 'Import' to 'ImportSymbols'")
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ImportModule {
 
    pub this: ImportId,
 
    // Phase 1: parser
 
    pub span: InputSpan,
 
    pub module: Identifier,
 
    pub alias: Identifier,
 
    pub module_id: RootId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct AliasedSymbol {
 
    pub name: Identifier,
 
    pub alias: Option<Identifier>,
 
    pub definition_id: DefinitionId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ImportSymbols {
 
    pub this: ImportId,
 
    // Phase 1: parser
 
    pub span: InputSpan,
 
    pub module: Identifier,
 
    pub module_id: RootId,
 
    pub symbols: Vec<AliasedSymbol>,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct Identifier {
 
    pub span: InputSpan,
 
    pub value: StringRef<'static>,
 
}
 

	
 
impl PartialEq for Identifier {
 
    fn eq(&self, other: &Self) -> bool {
 
        return self.value == other.value
 
    }
 
}
 

	
 
impl Display for Identifier {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
 
        write!(f, "{}", self.value.as_str())
 
    }
 
}
 

	
 
#[derive(Debug, Clone, PartialEq, Eq)]
 
pub enum ParserTypeVariant {
 
    // Special builtin, only usable by the compiler and not constructable by the
 
    // programmer
 
    Void,
 
    InputOrOutput,
 
    ArrayLike,
 
    IntegerLike,
 
    // Basic builtin
 
    Message,
 
    Bool,
 
    UInt8, UInt16, UInt32, UInt64,
 
    SInt8, SInt16, SInt32, SInt64,
 
    Character, String,
 
    // Literals (need to get concrete builtin type during typechecking)
 
    IntegerLiteral,
 
    // Marker for inference
 
    Inferred,
 
    // Builtins expecting one subsequent type
 
    Array,
 
    Input,
 
    Output,
 
    // User-defined types
 
    PolymorphicArgument(DefinitionId, u32), // u32 = index into polymorphic variables
 
    Definition(DefinitionId, u32), // u32 = number of subsequent types in the type tree.
 
}
 

	
 
impl ParserTypeVariant {
 
    pub(crate) fn num_embedded(&self) -> usize {
 
        use ParserTypeVariant::*;
 

	
 
        match self {
 
            Void | IntegerLike |
 
            Message | Bool |
 
            UInt8 | UInt16 | UInt32 | UInt64 |
 
            SInt8 | SInt16 | SInt32 | SInt64 |
 
            Character | String | IntegerLiteral |
 
            Inferred | PolymorphicArgument(_, _) =>
 
                0,
 
            ArrayLike | InputOrOutput | Array | Input | Output =>
 
                1,
 
            Definition(_, num) => *num as usize,
 
        }
 
    }
 
}
 

	
 
/// ParserTypeElement is an element of the type tree. An element may be
 
/// implicit, meaning that the user didn't specify the type, but it was set by
 
/// the compiler.
 
#[derive(Debug, Clone)]
 
pub struct ParserTypeElement {
 
    // TODO: @Fix span
 
    pub element_span: InputSpan, // span of this element, not including the child types
 
    pub variant: ParserTypeVariant,
 
}
 

	
 
/// ParserType is a specification of a type during the parsing phase and initial
 
/// linker/validator phase of the compilation process. These types may be
 
/// (partially) inferred or represent literals (e.g. a integer whose bytesize is
 
/// not yet determined).
 
///
 
/// Its contents are the depth-first serialization of the type tree. Each node
 
/// is a type that may accept polymorphic arguments. The polymorphic arguments
 
/// are then the children of the node.
 
#[derive(Debug, Clone)]
 
pub struct ParserType {
 
    pub elements: Vec<ParserTypeElement>,
 
    pub full_span: InputSpan,
 
}
 

	
 
impl ParserType {
 
    pub(crate) fn iter_embedded(&self, parent_idx: usize) -> ParserTypeIter {
 
        ParserTypeIter::new(&self.elements, parent_idx)
 
    }
 
}
 

	
 
/// Iterator over the embedded elements of a specific element.
 
pub struct ParserTypeIter<'a> {
 
    pub elements: &'a [ParserTypeElement],
 
    pub cur_embedded_idx: usize,
 
}
 

	
 
impl<'a> ParserTypeIter<'a> {
 
    fn new(elements: &'a [ParserTypeElement], parent_idx: usize) -> Self {
 
        debug_assert!(parent_idx < elements.len(), "parent index exceeds number of elements in ParserType");
 
        if elements[0].variant.num_embedded() == 0 {
 
            // Parent element does not have any embedded types, place
 
            // `cur_embedded_idx` at end so we will always return `None`
 
            Self{ elements, cur_embedded_idx: elements.len() }
 
        } else {
 
            // Parent element has an embedded type
 
            Self{ elements, cur_embedded_idx: parent_idx + 1 }
 
        }
 
    }
 
}
 

	
 
impl<'a> Iterator for ParserTypeIter<'a> {
 
    type Item = &'a [ParserTypeElement];
 

	
 
    fn next(&mut self) -> Option<Self::Item> {
 
        let elements_len = self.elements.len();
 
        if self.cur_embedded_idx >= elements_len {
 
            return None;
 
        }
 

	
 
        // Seek to the end of the subtree
 
        let mut depth = 1;
 
        let start_element = self.cur_embedded_idx;
 
        while self.cur_embedded_idx < elements_len {
 
            let cur_element = &self.elements[self.cur_embedded_idx];
 
            let depth_change = cur_element.variant.num_embedded() as i32 - 1;
 
            depth += depth_change;
 
            debug_assert!(depth >= 0, "illegally constructed ParserType: {:?}", self.elements);
 

	
 
            self.cur_embedded_idx += 1;
 
            if depth == 0 {
 
                break;
 
            }
 
        }
 

	
 
        debug_assert!(depth == 0, "illegally constructed ParserType: {:?}", self.elements);
 
        return Some(&self.elements[start_element..self.cur_embedded_idx]);
 
    }
 
}
 

	
 
/// ConcreteType is the representation of a type after the type inference and
 
/// checker is finished. These are fully typed.
 
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
 
pub enum ConcreteTypePart {
 
    // Special types (cannot be explicitly constructed by the programmer)
 
    Void,
 
    // Builtin types without nested types
 
    Message,
 
    Bool,
 
    UInt8, UInt16, UInt32, UInt64,
 
    SInt8, SInt16, SInt32, SInt64,
 
    Character, String,
 
    // Builtin types with one nested type
 
    Array,
 
    Slice,
 
    Input,
 
    Output,
 
    // User defined type with any number of nested types
 
    Instance(DefinitionId, u32),
 
    Instance(DefinitionId, u32),    // instance of data type
 
    Function(DefinitionId, u32),    // instance of function
 
    Component(DefinitionId, u32),   // instance of a connector
 
}
 

	
 
impl ConcreteTypePart {
 
    fn num_embedded(&self) -> u32 {
 
        use ConcreteTypePart::*;
 

	
 
        match self {
 
            Void | Message | Bool |
 
            UInt8 | UInt16 | UInt32 | UInt64 |
 
            SInt8 | SInt16 | SInt32 | SInt64 |
 
            Character | String =>
 
                0,
 
            Array | Slice | Input | Output =>
 
                1,
 
            Instance(_, num_embedded) => *num_embedded
 
            Instance(_, num_embedded) => *num_embedded,
 
            Function(_, num_embedded) => *num_embedded,
 
            Component(_, num_embedded) => *num_embedded,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Eq, PartialEq)]
 
pub struct ConcreteType {
 
    pub(crate) parts: Vec<ConcreteTypePart>
 
}
 

	
 
impl Default for ConcreteType {
 
    fn default() -> Self {
 
        Self{ parts: Vec::new() }
 
    }
 
}
 

	
 
impl ConcreteType {
 
    /// Returns an iterator over the subtrees that are type arguments (e.g. an
 
    /// array element's type, or a polymorphic type's arguments) to the
 
    /// provided parent type (specified by its index in the `parts` array).
 
    pub(crate) fn embedded_iter<'a>(&'a self, parent_part_idx: usize) -> ConcreteTypeIter<'a> {
 
        let num_embedded = self.parts[parent_part_idx].num_embedded();
 
        return ConcreteTypeIter{
 
            concrete: self,
 
            idx_embedded: 0,
 
            num_embedded,
 
            part_idx: parent_part_idx + 1,
 
        }
 
    }
 

	
 
    /// Given the starting position of a type tree, determine the exclusive
 
    /// ending index.
 
    pub(crate) fn subtree_end_idx(&self, start_idx: usize) -> usize {
 
        let mut depth = 1;
 
        let num_parts = self.parts.len();
 
        debug_assert!(start_idx < num_parts);
 

	
 
        for part_idx in start_idx..self.parts.len() {
 
            let depth_change = self.parts[part_idx].num_embedded() as i32 - 1;
 
            depth += depth_change;
 
            debug_assert!(depth >= 0);
 

	
 
            if depth == 0 {
 
                return part_idx + 1;
 
            }
 
        }
 

	
 
        debug_assert!(false, "incorrectly constructed ConcreteType instance");
 
        return 0;
 
    }
 

	
 
    /// Construct a human-readable name for the type. Because this performs
 
    /// a string allocation don't use it for anything else then displaying the
 
    /// type to the user.
 
    pub(crate) fn display_name(&self, heap: &Heap) -> String {
 
        fn display_part(parts: &[ConcreteTypePart], heap: &Heap, mut idx: usize, target: &mut String) -> usize {
 
            use ConcreteTypePart as CTP;
 
            use crate::protocol::parser::token_parsing::*;
 

	
 
            let cur_idx = idx;
 
            idx += 1; // increment by 1, because it always happens
 

	
 
            match parts[cur_idx] {
 
                CTP::Void => { target.push_str("void"); },
 
                CTP::Message => { target.push_str(KW_TYPE_MESSAGE_STR); },
 
                CTP::Bool => { target.push_str(KW_TYPE_BOOL_STR); },
 
                CTP::UInt8 => { target.push_str(KW_TYPE_UINT8_STR); },
 
                CTP::UInt16 => { target.push_str(KW_TYPE_UINT16_STR); },
 
                CTP::UInt32 => { target.push_str(KW_TYPE_UINT32_STR); },
 
                CTP::UInt64 => { target.push_str(KW_TYPE_UINT64_STR); },
 
                CTP::SInt8 => { target.push_str(KW_TYPE_SINT8_STR); },
 
                CTP::SInt16 => { target.push_str(KW_TYPE_SINT16_STR); },
 
                CTP::SInt32 => { target.push_str(KW_TYPE_SINT32_STR); },
 
                CTP::SInt64 => { target.push_str(KW_TYPE_SINT64_STR); },
 
                CTP::Character => { target.push_str(KW_TYPE_CHAR_STR); },
 
                CTP::String => { target.push_str(KW_TYPE_STRING_STR); },
 
                CTP::Array | CTP::Slice => {
 
                    idx = display_part(parts, heap, idx, target);
 
                    target.push_str("[]");
 
                },
 
                CTP::Input => {
 
                    target.push_str(KW_TYPE_IN_PORT_STR);
 
                    target.push('<');
 
                    idx = display_part(parts, heap, idx, target);
 
                    target.push('>');
 
                },
 
                CTP::Output => {
 
                    target.push_str(KW_TYPE_OUT_PORT_STR);
 
                    target.push('<');
 
                    idx = display_part(parts, heap, idx, target);
 
                    target.push('>');
 
                },
 
                CTP::Instance(definition_id, num_poly_args) => {
 
                CTP::Instance(definition_id, num_poly_args) |
 
                CTP::Function(definition_id, num_poly_args) |
 
                CTP::Component(definition_id, num_poly_args) => {
 
                    let definition = &heap[definition_id];
 
                    target.push_str(definition.identifier().value.as_str());
 

	
 
                    if num_poly_args != 0 {
 
                        target.push('<');
 
                        for poly_arg_idx in 0..num_poly_args {
 
                            if poly_arg_idx != 0 {
 
                                target.push(',');
 
                                idx = display_part(parts, heap, idx, target);
 
                            }
 
                        }
 
                        target.push('>');
 
                    }
 
                }
 
            }
 

	
 
            idx
 
        }
 

	
 
        let mut name = String::with_capacity(128);
 
        let _final_idx = display_part(&self.parts, heap, 0, &mut name);
 
        debug_assert_eq!(_final_idx, self.parts.len());
 

	
 
        return name;
 
    }
 
}
 

	
 
#[derive(Debug)]
 
pub struct ConcreteTypeIter<'a> {
 
    concrete: &'a ConcreteType,
 
    idx_embedded: u32,
 
    num_embedded: u32,
 
    part_idx: usize,
 
}
 

	
 
impl<'a> Iterator for ConcreteTypeIter<'a> {
 
    type Item = &'a [ConcreteTypePart];
 

	
 
    fn next(&mut self) -> Option<Self::Item> {
 
        if self.idx_embedded == self.num_embedded {
 
            return None;
 
        }
 

	
 
        // Retrieve the subtree of interest
 
        let start_idx = self.part_idx;
 
        let end_idx = self.concrete.subtree_end_idx(start_idx);
 

	
 
        self.idx_embedded += 1;
 
        self.part_idx = end_idx;
 

	
 
        return Some(&self.concrete.parts[start_idx..end_idx]);
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy)]
 
pub enum Scope {
 
    Definition(DefinitionId),
 
    Regular(BlockStatementId),
 
    Synchronous((SynchronousStatementId, BlockStatementId)),
 
}
 

	
 
impl Scope {
 
    pub fn is_block(&self) -> bool {
 
        match &self {
 
            Scope::Definition(_) => false,
 
            Scope::Regular(_) => true,
 
            Scope::Synchronous(_) => true,
 
        }
 
    }
 
    pub fn to_block(&self) -> BlockStatementId {
 
        match &self {
 
            Scope::Regular(id) => *id,
 
            Scope::Synchronous((_, id)) => *id,
 
            _ => panic!("unable to get BlockStatement from Scope")
 
        }
 
    }
 
}
 

	
 
/// `ScopeNode` is a helper that links scopes in two directions. It doesn't
 
/// actually contain any information associated with the scope, this may be
 
/// found on the AST elements that `Scope` points to.
 
#[derive(Debug, Clone)]
 
pub struct ScopeNode {
 
    pub parent: Scope,
 
    pub nested: Vec<Scope>,
 
}
 

	
 
impl ScopeNode {
 
    pub(crate) fn new_invalid() -> Self {
 
        ScopeNode{
 
            parent: Scope::Definition(DefinitionId::new_invalid()),
 
            nested: Vec::new(),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, PartialEq, Eq)]
 
pub enum VariableKind {
 
    Parameter,      // in parameter list of function/component
 
    Local,          // declared in function/component body
 
    Binding,        // may be bound to in a binding expression (determined in validator/linker)
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct Variable {
 
    pub this: VariableId,
 
    // Parsing
 
    pub kind: VariableKind,
 
    pub parser_type: ParserType,
 
    pub identifier: Identifier,
 
    // Validator/linker
 
    pub relative_pos_in_block: u32,
 
    pub unique_id_in_scope: i32, // Temporary fix until proper bytecode/asm is generated
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Definition {
 
    Struct(StructDefinition),
 
    Enum(EnumDefinition),
 
    Union(UnionDefinition),
 
    Component(ComponentDefinition),
 
    Function(FunctionDefinition),
 
}
 

	
 
impl Definition {
 
    pub fn is_struct(&self) -> bool {
 
        match self {
 
            Definition::Struct(_) => true,
 
            _ => false
 
        }
 
    }
 
    pub(crate) fn as_struct(&self) -> &StructDefinition {
 
        match self {
 
            Definition::Struct(result) => result,
 
            _ => panic!("Unable to cast 'Definition' to 'StructDefinition'"),
 
        }
 
    }
 
    pub(crate) fn as_struct_mut(&mut self) -> &mut StructDefinition {
 
        match self {
 
            Definition::Struct(result) => result,
 
            _ => panic!("Unable to cast 'Definition' to 'StructDefinition'"),
 
        }
 
    }
 
    pub fn is_enum(&self) -> bool {
 
        match self {
 
            Definition::Enum(_) => true,
 
            _ => false,
 
        }
 
    }
 
    pub(crate) fn as_enum(&self) -> &EnumDefinition {
 
        match self {
 
            Definition::Enum(result) => result,
 
            _ => panic!("Unable to cast 'Definition' to 'EnumDefinition'"),
 
        }
 
    }
 
    pub(crate) fn as_enum_mut(&mut self) -> &mut EnumDefinition {
 
        match self {
 
            Definition::Enum(result) => result,
 
            _ => panic!("Unable to cast 'Definition' to 'EnumDefinition'"),
 
        }
 
    }
 
    pub fn is_union(&self) -> bool {
 
        match self {
 
            Definition::Union(_) => true,
 
            _ => false,
 
        }
 
    }
 
    pub(crate) fn as_union(&self) -> &UnionDefinition {
 
        match self {
 
            Definition::Union(result) => result, 
 
            _ => panic!("Unable to cast 'Definition' to 'UnionDefinition'"),
 
        }
 
    }
 
    pub(crate) fn as_union_mut(&mut self) -> &mut UnionDefinition {
 
        match self {
 
            Definition::Union(result) => result,
 
            _ => panic!("Unable to cast 'Definition' to 'UnionDefinition'"),
 
        }
 
    }
 
    pub fn is_component(&self) -> bool {
 
        match self {
 
            Definition::Component(_) => true,
 
            _ => false,
 
        }
 
    }
 
    pub(crate) fn as_component(&self) -> &ComponentDefinition {
 
        match self {
 
            Definition::Component(result) => result,
 
            _ => panic!("Unable to cast `Definition` to `Component`"),
 
        }
 
    }
 
    pub(crate) fn as_component_mut(&mut self) -> &mut ComponentDefinition {
 
        match self {
 
            Definition::Component(result) => result,
 
            _ => panic!("Unable to cast `Definition` to `Component`"),
 
        }
 
    }
 
    pub fn is_function(&self) -> bool {
 
        match self {
 
            Definition::Function(_) => true,
 
            _ => false,
 
        }
 
    }
 
    pub(crate) fn as_function(&self) -> &FunctionDefinition {
 
        match self {
 
            Definition::Function(result) => result,
 
            _ => panic!("Unable to cast `Definition` to `Function`"),
 
        }
 
    }
 
    pub(crate) fn as_function_mut(&mut self) -> &mut FunctionDefinition {
 
        match self {
 
            Definition::Function(result) => result,
 
            _ => panic!("Unable to cast `Definition` to `Function`"),
 
        }
 
    }
 
    pub fn parameters(&self) -> &Vec<VariableId> {
 
        match self {
 
            Definition::Component(def) => &def.parameters,
 
            Definition::Function(def) => &def.parameters,
 
            _ => panic!("Called parameters() on {:?}", self)
 
        }
 
    }
 
    pub fn defined_in(&self) -> RootId {
 
        match self {
 
            Definition::Struct(def) => def.defined_in,
 
            Definition::Enum(def) => def.defined_in,
 
            Definition::Union(def) => def.defined_in,
 
            Definition::Component(def) => def.defined_in,
 
            Definition::Function(def) => def.defined_in,
 
        }
 
    }
 
    pub fn identifier(&self) -> &Identifier {
 
        match self {
 
            Definition::Struct(def) => &def.identifier,
 
            Definition::Enum(def) => &def.identifier,
 
            Definition::Union(def) => &def.identifier,
 
            Definition::Component(def) => &def.identifier,
 
            Definition::Function(def) => &def.identifier,
 
        }
 
    }
 
    pub fn poly_vars(&self) -> &Vec<Identifier> {
 
        match self {
 
            Definition::Struct(def) => &def.poly_vars,
 
            Definition::Enum(def) => &def.poly_vars,
 
            Definition::Union(def) => &def.poly_vars,
 
            Definition::Component(def) => &def.poly_vars,
 
            Definition::Function(def) => &def.poly_vars,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct StructFieldDefinition {
 
    pub span: InputSpan,
 
    pub field: Identifier,
 
    pub parser_type: ParserType,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct StructDefinition {
 
    pub this: StructDefinitionId,
 
    pub defined_in: RootId,
 
    // Symbol scanning
 
    pub span: InputSpan,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    // Parsing
 
    pub fields: Vec<StructFieldDefinition>
 
}
 

	
 
impl StructDefinition {
 
    pub(crate) fn new_empty(
 
        this: StructDefinitionId, defined_in: RootId, span: InputSpan,
 
        identifier: Identifier, poly_vars: Vec<Identifier>
 
    ) -> Self {
 
        Self{ this, defined_in, span, identifier, poly_vars, fields: Vec::new() }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy)]
 
pub enum EnumVariantValue {
 
    None,
 
    Integer(i64),
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EnumVariantDefinition {
 
    pub identifier: Identifier,
 
    pub value: EnumVariantValue,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EnumDefinition {
 
    pub this: EnumDefinitionId,
 
    pub defined_in: RootId,
 
    // Symbol scanning
 
    pub span: InputSpan,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    // Parsing
 
    pub variants: Vec<EnumVariantDefinition>,
 
}
 

	
 
impl EnumDefinition {
 
    pub(crate) fn new_empty(
 
        this: EnumDefinitionId, defined_in: RootId, span: InputSpan,
 
        identifier: Identifier, poly_vars: Vec<Identifier>
 
    ) -> Self {
 
        Self{ this, defined_in, span, identifier, poly_vars, variants: Vec::new() }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct UnionVariantDefinition {
 
    pub span: InputSpan,
 
    pub identifier: Identifier,
 
    pub value: Vec<ParserType>, // if empty, then union variant does not contain any embedded types
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct UnionDefinition {
 
    pub this: UnionDefinitionId,
 
    pub defined_in: RootId,
 
    // Phase 1: symbol scanning
 
    pub span: InputSpan,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    // Phase 2: parsing
 
    pub variants: Vec<UnionVariantDefinition>,
 
}
 

	
 
impl UnionDefinition {
 
    pub(crate) fn new_empty(
 
        this: UnionDefinitionId, defined_in: RootId, span: InputSpan,
 
        identifier: Identifier, poly_vars: Vec<Identifier>
 
    ) -> Self {
 
        Self{ this, defined_in, span, identifier, poly_vars, variants: Vec::new() }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, Copy)]
 
pub enum ComponentVariant {
 
    Primitive,
 
    Composite,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ComponentDefinition {
 
    pub this: ComponentDefinitionId,
 
    pub defined_in: RootId,
 
    // Symbol scanning
 
    pub span: InputSpan,
 
    pub variant: ComponentVariant,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    // Parsing
 
    pub parameters: Vec<VariableId>,
 
    pub body: BlockStatementId,
 
    // Validation/linking
 
    pub num_expressions_in_body: i32,
 
}
 

	
 
impl ComponentDefinition {
 
    // Used for preallocation during symbol scanning
 
    pub(crate) fn new_empty(
 
        this: ComponentDefinitionId, defined_in: RootId, span: InputSpan,
 
        variant: ComponentVariant, identifier: Identifier, poly_vars: Vec<Identifier>
 
    ) -> Self {
 
        Self{ 
 
            this, defined_in, span, variant, identifier, poly_vars,
 
            parameters: Vec::new(), 
 
            body: BlockStatementId::new_invalid(),
 
            num_expressions_in_body: -1,
 
        }
 
    }
 
}
 

	
 
// Note that we will have function definitions for builtin functions as well. In
 
// that case the span, the identifier span and the body are all invalid.
 
#[derive(Debug, Clone)]
 
pub struct FunctionDefinition {
 
    pub this: FunctionDefinitionId,
 
    pub defined_in: RootId,
 
    // Symbol scanning
 
    pub builtin: bool,
 
    pub span: InputSpan,
 
    pub identifier: Identifier,
 
    pub poly_vars: Vec<Identifier>,
 
    // Parser
 
    pub return_types: Vec<ParserType>,
 
    pub parameters: Vec<VariableId>,
 
    pub body: BlockStatementId,
 
    // Validation/linking
 
    pub num_expressions_in_body: i32,
 
}
 

	
 
impl FunctionDefinition {
 
    pub(crate) fn new_empty(
 
        this: FunctionDefinitionId, defined_in: RootId, span: InputSpan,
 
        identifier: Identifier, poly_vars: Vec<Identifier>
 
    ) -> Self {
 
        Self {
 
            this, defined_in,
 
            builtin: false,
 
            span, identifier, poly_vars,
 
            return_types: Vec::new(),
 
            parameters: Vec::new(),
 
            body: BlockStatementId::new_invalid(),
 
            num_expressions_in_body: -1,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Statement {
 
    Block(BlockStatement),
 
    EndBlock(EndBlockStatement),
 
    Local(LocalStatement),
 
    Labeled(LabeledStatement),
 
    If(IfStatement),
 
    EndIf(EndIfStatement),
 
    While(WhileStatement),
 
    EndWhile(EndWhileStatement),
 
    Break(BreakStatement),
 
    Continue(ContinueStatement),
 
    Synchronous(SynchronousStatement),
 
    EndSynchronous(EndSynchronousStatement),
 
    Return(ReturnStatement),
 
    Goto(GotoStatement),
 
    New(NewStatement),
 
    Expression(ExpressionStatement),
 
}
 

	
 
impl Statement {
 
    pub fn as_block(&self) -> &BlockStatement {
 
        match self {
 
            Statement::Block(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `BlockStatement`"),
 
        }
 
    }
 
    pub fn as_local(&self) -> &LocalStatement {
 
        match self {
 
            Statement::Local(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `LocalStatement`"),
 
        }
 
    }
 
    pub fn as_memory(&self) -> &MemoryStatement {
 
        self.as_local().as_memory()
 
    }
 
    pub fn as_channel(&self) -> &ChannelStatement {
 
        self.as_local().as_channel()
 
    }
 

	
 
    pub fn as_new(&self) -> &NewStatement {
 
        match self {
 
            Statement::New(result) => result,
 
            _ => panic!("Unable to cast `Statement` to `NewStatement`"),
 
        }
 
    }
 

	
 
    pub fn span(&self) -> InputSpan {
 
        match self {
 
            Statement::Block(v) => v.span,
 
            Statement::Local(v) => v.span(),
 
            Statement::Labeled(v) => v.label.span,
 
            Statement::If(v) => v.span,
 
            Statement::While(v) => v.span,
 
            Statement::Break(v) => v.span,
 
            Statement::Continue(v) => v.span,
 
            Statement::Synchronous(v) => v.span,
 
            Statement::Return(v) => v.span,
 
            Statement::Goto(v) => v.span,
 
            Statement::New(v) => v.span,
 
            Statement::Expression(v) => v.span,
 
            Statement::EndBlock(_) | Statement::EndIf(_) | Statement::EndWhile(_) | Statement::EndSynchronous(_) => unreachable!(),
 
        }
 
    }
 
    pub fn link_next(&mut self, next: StatementId) {
 
        match self {
 
            Statement::Block(stmt) => stmt.next = next,
 
            Statement::EndBlock(stmt) => stmt.next = next,
 
            Statement::Local(stmt) => match stmt {
 
                LocalStatement::Channel(stmt) => stmt.next = next,
 
                LocalStatement::Memory(stmt) => stmt.next = next,
 
            },
 
            Statement::EndIf(stmt) => stmt.next = next,
 
            Statement::EndWhile(stmt) => stmt.next = next,
 
            Statement::EndSynchronous(stmt) => stmt.next = next,
 
            Statement::New(stmt) => stmt.next = next,
 
            Statement::Expression(stmt) => stmt.next = next,
 
            Statement::Return(_)
 
            | Statement::Break(_)
 
            | Statement::Continue(_)
 
            | Statement::Synchronous(_)
 
            | Statement::Goto(_)
 
            | Statement::While(_)
 
            | Statement::Labeled(_)
 
            | Statement::If(_) => unreachable!(),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct BlockStatement {
 
    pub this: BlockStatementId,
 
    // Phase 1: parser
 
    pub is_implicit: bool,
 
    pub span: InputSpan, // of the complete block
 
    pub statements: Vec<StatementId>,
 
    pub end_block: EndBlockStatementId,
 
    // Phase 2: linker
 
    pub scope_node: ScopeNode,
 
    pub first_unique_id_in_scope: i32, // Temporary fix until proper bytecode/asm is generated
 
    pub next_unique_id_in_scope: i32, // Temporary fix until proper bytecode/asm is generated
 
    pub relative_pos_in_parent: u32,
 
    pub locals: Vec<VariableId>,
 
    pub labels: Vec<LabeledStatementId>,
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EndBlockStatement {
 
    pub this: EndBlockStatementId,
 
    // Parser
 
    pub start_block: BlockStatementId,
 
    // Validation/Linking
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum LocalStatement {
 
    Memory(MemoryStatement),
 
    Channel(ChannelStatement),
 
}
 

	
 
impl LocalStatement {
 
    pub fn this(&self) -> LocalStatementId {
 
        match self {
 
            LocalStatement::Memory(stmt) => stmt.this.upcast(),
 
            LocalStatement::Channel(stmt) => stmt.this.upcast(),
 
        }
 
    }
 
    pub fn as_memory(&self) -> &MemoryStatement {
 
        match self {
 
            LocalStatement::Memory(result) => result,
 
            _ => panic!("Unable to cast `LocalStatement` to `MemoryStatement`"),
 
        }
 
    }
 
    pub fn as_channel(&self) -> &ChannelStatement {
 
        match self {
 
            LocalStatement::Channel(result) => result,
 
            _ => panic!("Unable to cast `LocalStatement` to `ChannelStatement`"),
 
        }
 
    }
 
    pub fn span(&self) -> InputSpan {
 
        match self {
 
            LocalStatement::Channel(v) => v.span,
 
            LocalStatement::Memory(v) => v.span,
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct MemoryStatement {
 
    pub this: MemoryStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan,
 
    pub variable: VariableId,
 
    // Phase 2: linker
 
    pub next: StatementId,
 
}
 

	
 
/// ChannelStatement is the declaration of an input and output port associated
 
/// with the same channel. Note that the polarity of the ports are from the
 
/// point of view of the component. So an output port is something that a
 
/// component uses to send data over (i.e. it is the "input end" of the
 
/// channel), and vice versa.
 
#[derive(Debug, Clone)]
 
pub struct ChannelStatement {
 
    pub this: ChannelStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "channel" keyword
 
    pub from: VariableId, // output
 
    pub to: VariableId,   // input
 
    // Phase 2: linker
 
    pub relative_pos_in_block: u32,
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct LabeledStatement {
 
    pub this: LabeledStatementId,
 
    // Phase 1: parser
 
    pub label: Identifier,
 
    pub body: StatementId,
 
    // Phase 2: linker
 
    pub relative_pos_in_block: u32,
 
    pub in_sync: SynchronousStatementId, // may be invalid
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct IfStatement {
 
    pub this: IfStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "if" keyword
 
    pub test: ExpressionId,
 
    pub true_body: BlockStatementId,
 
    pub false_body: Option<BlockStatementId>,
 
    pub end_if: EndIfStatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EndIfStatement {
 
    pub this: EndIfStatementId,
 
    pub start_if: IfStatementId,
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct WhileStatement {
 
    pub this: WhileStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "while" keyword
 
    pub test: ExpressionId,
 
    pub body: BlockStatementId,
 
    pub end_while: EndWhileStatementId,
 
    pub in_sync: SynchronousStatementId, // may be invalid
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EndWhileStatement {
 
    pub this: EndWhileStatementId,
 
    pub start_while: WhileStatementId,
 
    // Phase 2: linker
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct BreakStatement {
 
    pub this: BreakStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "break" keyword
 
    pub label: Option<Identifier>,
 
    // Phase 2: linker
 
    pub target: Option<EndWhileStatementId>,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ContinueStatement {
 
    pub this: ContinueStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "continue" keyword
 
    pub label: Option<Identifier>,
 
    // Phase 2: linker
 
    pub target: Option<WhileStatementId>,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct SynchronousStatement {
 
    pub this: SynchronousStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "sync" keyword
 
    pub body: BlockStatementId,
 
    // Phase 2: linker
 
    pub end_sync: EndSynchronousStatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct EndSynchronousStatement {
 
    pub this: EndSynchronousStatementId,
 
    pub start_sync: SynchronousStatementId,
 
    // Phase 2: linker
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ReturnStatement {
 
    pub this: ReturnStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "return" keyword
 
    pub expressions: Vec<ExpressionId>,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct GotoStatement {
 
    pub this: GotoStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "goto" keyword
 
    pub label: Identifier,
 
    // Phase 2: linker
 
    pub target: Option<LabeledStatementId>,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct NewStatement {
 
    pub this: NewStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan, // of the "new" keyword
 
    pub expression: CallExpressionId,
 
    // Phase 2: linker
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub struct ExpressionStatement {
 
    pub this: ExpressionStatementId,
 
    // Phase 1: parser
 
    pub span: InputSpan,
 
    pub expression: ExpressionId,
 
    // Phase 2: linker
 
    pub next: StatementId,
 
}
 

	
 
#[derive(Debug, PartialEq, Eq, Clone, Copy)]
 
pub enum ExpressionParent {
 
    None, // only set during initial parsing
 
    If(IfStatementId),
 
    While(WhileStatementId),
 
    Return(ReturnStatementId),
 
    New(NewStatementId),
 
    ExpressionStmt(ExpressionStatementId),
 
    Expression(ExpressionId, u32) // index within expression (e.g LHS or RHS of expression)
 
}
 

	
 
impl ExpressionParent {
 
    pub fn is_new(&self) -> bool {
 
        match self {
 
            ExpressionParent::New(_) => true,
 
            _ => false,
 
        }
 
    }
 

	
 
    pub fn as_expression(&self) -> ExpressionId {
 
        match self {
 
            ExpressionParent::Expression(id, _) => *id,
 
            _ => panic!("called as_expression() on {:?}", self),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone)]
 
pub enum Expression {
 
    Assignment(AssignmentExpression),
 
    Binding(BindingExpression),
 
    Conditional(ConditionalExpression),
 
    Binary(BinaryExpression),
 
    Unary(UnaryExpression),
 
    Indexing(IndexingExpression),
 
    Slicing(SlicingExpression),
 
    Select(SelectExpression),
 
    Literal(LiteralExpression),
 
    Cast(CastExpression),
 
    Call(CallExpression),
 
    Variable(VariableExpression),
 
}
 

	
 
impl Expression {
 
    pub fn as_variable(&self) -> &VariableExpression {
 
        match self {
 
            Expression::Variable(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `VariableExpression`"),
 
        }
 
    }
 

	
 
    /// Returns operator span, function name, a binding's "let" span, etc. An
 
    /// indicator for the kind of expression that is being applied.
 
    pub fn operation_span(&self) -> InputSpan {
 
        match self {
src/protocol/parser/pass_definitions.rs
Show inline comments
 
use crate::protocol::ast::*;
 
use super::symbol_table::*;
 
use super::{Module, ModuleCompilationPhase, PassCtx};
 
use super::tokens::*;
 
use super::token_parsing::*;
 
use crate::protocol::input_source::{InputSource as InputSource, InputPosition as InputPosition, InputSpan, ParseError};
 
use crate::collections::*;
 

	
 
/// Parses all the tokenized definitions into actual AST nodes.
 
pub(crate) struct PassDefinitions {
 
    // State associated with the definition currently being processed
 
    cur_definition: DefinitionId,
 
    // Temporary buffers of various kinds
 
    buffer: String,
 
    struct_fields: ScopedBuffer<StructFieldDefinition>,
 
    enum_variants: ScopedBuffer<EnumVariantDefinition>,
 
    union_variants: ScopedBuffer<UnionVariantDefinition>,
 
    variables: ScopedBuffer<VariableId>,
 
    expressions: ScopedBuffer<ExpressionId>,
 
    statements: ScopedBuffer<StatementId>,
 
    parser_types: ScopedBuffer<ParserType>,
 
}
 

	
 
impl PassDefinitions {
 
    pub(crate) fn new() -> Self {
 
        Self{
 
            cur_definition: DefinitionId::new_invalid(),
 
            buffer: String::with_capacity(128),
 
            struct_fields: ScopedBuffer::new_reserved(128),
 
            enum_variants: ScopedBuffer::new_reserved(128),
 
            union_variants: ScopedBuffer::new_reserved(128),
 
            variables: ScopedBuffer::new_reserved(128),
 
            expressions: ScopedBuffer::new_reserved(128),
 
            statements: ScopedBuffer::new_reserved(128),
 
            parser_types: ScopedBuffer::new_reserved(128),
 
        }
 
    }
 

	
 
    pub(crate) fn parse(&mut self, modules: &mut [Module], module_idx: usize, ctx: &mut PassCtx) -> Result<(), ParseError> {
 
        let module = &modules[module_idx];
 
        let module_range = &module.tokens.ranges[0];
 
        debug_assert_eq!(module.phase, ModuleCompilationPhase::ImportsResolved);
 
        debug_assert_eq!(module_range.range_kind, TokenRangeKind::Module);
 

	
 
        // Although we only need to parse the definitions, we want to go through
 
        // code ranges as well such that we can throw errors if we get
 
        // unexpected tokens at the module level of the source.
 
        let mut range_idx = module_range.first_child_idx;
 
        loop {
 
            let range_idx_usize = range_idx as usize;
 
            let cur_range = &module.tokens.ranges[range_idx_usize];
 

	
 
            match cur_range.range_kind {
 
                TokenRangeKind::Module => unreachable!(), // should not be reachable
 
                TokenRangeKind::Pragma | TokenRangeKind::Import => {
 
                    // Already fully parsed, fall through and go to next range
 
                },
 
                TokenRangeKind::Definition | TokenRangeKind::Code => {
 
                    // Visit range even if it is a "code" range to provide
 
                    // proper error messages.
 
                    self.visit_range(modules, module_idx, ctx, range_idx_usize)?;
 
                },
 
            }
 

	
 
            if cur_range.next_sibling_idx == NO_SIBLING {
 
                break;
 
            } else {
 
                range_idx = cur_range.next_sibling_idx;
 
            }
 
        }
 

	
 
        modules[module_idx].phase = ModuleCompilationPhase::DefinitionsParsed;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_range(
 
        &mut self, modules: &[Module], module_idx: usize, ctx: &mut PassCtx, range_idx: usize
 
    ) -> Result<(), ParseError> {
 
        let module = &modules[module_idx];
 
        let cur_range = &module.tokens.ranges[range_idx];
 
        debug_assert!(cur_range.range_kind == TokenRangeKind::Definition || cur_range.range_kind == TokenRangeKind::Code);
 

	
 
        // Detect which definition we're parsing
 
        let mut iter = module.tokens.iter_range(cur_range);
 
        loop {
 
            let next = iter.next();
 
            if next.is_none() {
 
                return Ok(())
 
            }
 

	
 
            // Token was not None, so peek_ident returns None if not an ident
 
            let ident = peek_ident(&module.source, &mut iter);
 
            match ident {
 
                Some(KW_STRUCT) => self.visit_struct_definition(module, &mut iter, ctx)?,
 
                Some(KW_ENUM) => self.visit_enum_definition(module, &mut iter, ctx)?,
 
                Some(KW_UNION) => self.visit_union_definition(module, &mut iter, ctx)?,
 
                Some(KW_FUNCTION) => self.visit_function_definition(module, &mut iter, ctx)?,
 
                Some(KW_PRIMITIVE) | Some(KW_COMPOSITE) => self.visit_component_definition(module, &mut iter, ctx)?,
 
                _ => return Err(ParseError::new_error_str_at_pos(
 
                    &module.source, iter.last_valid_pos(),
 
                    "unexpected symbol, expected a keyword marking the start of a definition"
 
                )),
 
            }
 
        }
 
    }
 

	
 
    fn visit_struct_definition(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<(), ParseError> {
 
        consume_exact_ident(&module.source, iter, KW_STRUCT)?;
 
        let (ident_text, _) = consume_ident(&module.source, iter)?;
 

	
 
        // Retrieve preallocated DefinitionId
 
        let module_scope = SymbolScope::Module(module.root_id);
 
        let definition_id = ctx.symbols.get_symbol_by_name_defined_in_scope(module_scope, ident_text)
 
            .unwrap().variant.as_definition().definition_id;
 
        self.cur_definition = definition_id;
 

	
 
        // Parse struct definition
 
        consume_polymorphic_vars_spilled(&module.source, iter, ctx)?;
 

	
 
        let mut fields_section = self.struct_fields.start_section();
 
        consume_comma_separated(
 
            TokenKind::OpenCurly, TokenKind::CloseCurly, &module.source, iter, ctx,
 
            |source, iter, ctx| {
 
                let poly_vars = ctx.heap[definition_id].poly_vars();
 

	
 
                let start_pos = iter.last_valid_pos();
 
                let parser_type = consume_parser_type(
 
                    source, iter, &ctx.symbols, &ctx.heap, poly_vars, module_scope,
 
                    definition_id, false, 0
 
                )?;
 
                let field = consume_ident_interned(source, iter, ctx)?;
 
                Ok(StructFieldDefinition{
 
                    span: InputSpan::from_positions(start_pos, field.span.end),
 
                    field, parser_type
 
                })
 
            },
 
            &mut fields_section, "a struct field", "a list of struct fields", None
 
        )?;
 

	
 
        // Transfer to preallocated definition
 
        let struct_def = ctx.heap[definition_id].as_struct_mut();
 
        struct_def.fields = fields_section.into_vec();
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_enum_definition(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<(), ParseError> {
 
        consume_exact_ident(&module.source, iter, KW_ENUM)?;
 
        let (ident_text, _) = consume_ident(&module.source, iter)?;
 

	
 
        // Retrieve preallocated DefinitionId
 
        let module_scope = SymbolScope::Module(module.root_id);
 
        let definition_id = ctx.symbols.get_symbol_by_name_defined_in_scope(module_scope, ident_text)
 
            .unwrap().variant.as_definition().definition_id;
 
        self.cur_definition = definition_id;
 

	
 
        // Parse enum definition
 
        consume_polymorphic_vars_spilled(&module.source, iter, ctx)?;
 

	
 
        let mut enum_section = self.enum_variants.start_section();
 
        consume_comma_separated(
 
            TokenKind::OpenCurly, TokenKind::CloseCurly, &module.source, iter, ctx,
 
            |source, iter, ctx| {
 
                let identifier = consume_ident_interned(source, iter, ctx)?;
 
                let value = if iter.next() == Some(TokenKind::Equal) {
 
                    iter.consume();
 
                    let (variant_number, _) = consume_integer_literal(source, iter, &mut self.buffer)?;
 
                    EnumVariantValue::Integer(variant_number as i64) // TODO: @int
 
                } else {
 
                    EnumVariantValue::None
 
                };
 
                Ok(EnumVariantDefinition{ identifier, value })
 
            },
 
            &mut enum_section, "an enum variant", "a list of enum variants", None
 
        )?;
 

	
 
        // Transfer to definition
 
        let enum_def = ctx.heap[definition_id].as_enum_mut();
 
        enum_def.variants = enum_section.into_vec();
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_union_definition(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<(), ParseError> {
 
        consume_exact_ident(&module.source, iter, KW_UNION)?;
 
        let (ident_text, _) = consume_ident(&module.source, iter)?;
 

	
 
        // Retrieve preallocated DefinitionId
 
        let module_scope = SymbolScope::Module(module.root_id);
 
        let definition_id = ctx.symbols.get_symbol_by_name_defined_in_scope(module_scope, ident_text)
 
            .unwrap().variant.as_definition().definition_id;
 
        self.cur_definition = definition_id;
 

	
 
        // Parse union definition
 
        consume_polymorphic_vars_spilled(&module.source, iter, ctx)?;
 

	
 
        let mut variants_section = self.union_variants.start_section();
 
        consume_comma_separated(
 
            TokenKind::OpenCurly, TokenKind::CloseCurly, &module.source, iter, ctx,
 
            |source, iter, ctx| {
 
                let identifier = consume_ident_interned(source, iter, ctx)?;
 
                let mut close_pos = identifier.span.end;
 

	
 
                let mut types_section = self.parser_types.start_section();
 

	
 
                let has_embedded = maybe_consume_comma_separated(
 
                    TokenKind::OpenParen, TokenKind::CloseParen, source, iter, ctx,
 
                    |source, iter, ctx| {
 
                        let poly_vars = ctx.heap[definition_id].poly_vars();
 
                        consume_parser_type(
 
                            source, iter, &ctx.symbols, &ctx.heap, poly_vars,
 
                            module_scope, definition_id, false, 0
 
                        )
 
                    },
 
                    &mut types_section, "an embedded type", Some(&mut close_pos)
 
                )?;
 
                let value = if has_embedded {
 
                    types_section.into_vec()
 
                } else {
 
                    types_section.forget()
 
                    types_section.forget();
 
                    Vec::new()
 
                };
 

	
 
                Ok(UnionVariantDefinition{
 
                    span: InputSpan::from_positions(identifier.span.begin, close_pos),
 
                    identifier,
 
                    value
 
                })
 
            },
 
            &mut variants_section, "a union variant", "a list of union variants", None
 
        )?;
 

	
 
        // Transfer to AST
 
        let union_def = ctx.heap[definition_id].as_union_mut();
 
        union_def.variants = variants_section.into_vec();
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_function_definition(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<(), ParseError> {
 
        // Retrieve function name
 
        consume_exact_ident(&module.source, iter, KW_FUNCTION)?;
 
        let (ident_text, _) = consume_ident(&module.source, iter)?;
 

	
 
        // Retrieve preallocated DefinitionId
 
        let module_scope = SymbolScope::Module(module.root_id);
 
        let definition_id = ctx.symbols.get_symbol_by_name_defined_in_scope(module_scope, ident_text)
 
            .unwrap().variant.as_definition().definition_id;
 
        self.cur_definition = definition_id;
 

	
 
        consume_polymorphic_vars_spilled(&module.source, iter, ctx)?;
 

	
 
        // Parse function's argument list
 
        let mut parameter_section = self.variables.start_section();
 
        consume_parameter_list(
 
            &module.source, iter, ctx, &mut parameter_section, module_scope, definition_id
 
        )?;
 
        let parameters = parameter_section.into_vec();
 

	
 
        // Consume return types
 
        consume_token(&module.source, iter, TokenKind::ArrowRight)?;
 
        let mut return_types = self.parser_types.start_section();
 
        let mut open_curly_pos = iter.last_valid_pos(); // bogus value
 
        consume_comma_separated_until(
 
            TokenKind::OpenCurly, &module.source, iter, ctx,
 
            |source, iter, ctx| {
 
                let poly_vars = ctx.heap[definition_id].poly_vars();
 
                consume_parser_type(source, iter, &ctx.symbols, &ctx.heap, poly_vars, module_scope, definition_id, false, 0)
 
            },
 
            &mut return_types, "a return type", Some(&mut open_curly_pos)
 
        )?;
 
        let return_types = return_types.into_vec();
 

	
 
        // TODO: @ReturnValues
 
        match return_types.len() {
 
            0 => return Err(ParseError::new_error_str_at_pos(&module.source, open_curly_pos, "expected a return type")),
 
            1 => {},
 
            _ => return Err(ParseError::new_error_str_at_pos(&module.source, open_curly_pos, "multiple return types are not (yet) allowed")),
 
        }
 

	
 
        // Consume block
 
        let body = self.consume_block_statement_without_leading_curly(module, iter, ctx, open_curly_pos)?;
 

	
 
        // Assign everything in the preallocated AST node
 
        let function = ctx.heap[definition_id].as_function_mut();
 
        function.return_types = return_types;
 
        function.parameters = parameters;
 
        function.body = body;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_component_definition(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<(), ParseError> {
 
        // Consume component variant and name
 
        let (_variant_text, _) = consume_any_ident(&module.source, iter)?;
 
        debug_assert!(_variant_text == KW_PRIMITIVE || _variant_text == KW_COMPOSITE);
 
        let (ident_text, _) = consume_ident(&module.source, iter)?;
 

	
 
        // Retrieve preallocated definition
 
        let module_scope = SymbolScope::Module(module.root_id);
 
        let definition_id = ctx.symbols.get_symbol_by_name_defined_in_scope(module_scope, ident_text)
 
            .unwrap().variant.as_definition().definition_id;
 
        self.cur_definition = definition_id;
 

	
 
        consume_polymorphic_vars_spilled(&module.source, iter, ctx)?;
 

	
 
        // Parse component's argument list
 
        let mut parameter_section = self.variables.start_section();
 
        consume_parameter_list(
 
            &module.source, iter, ctx, &mut parameter_section, module_scope, definition_id
 
        )?;
 
        let parameters = parameter_section.into_vec();
 

	
 
        // Consume block
 
        let body = self.consume_block_statement(module, iter, ctx)?;
 

	
 
        // Assign everything in the AST node
 
        let component = ctx.heap[definition_id].as_component_mut();
 
        component.parameters = parameters;
 
        component.body = body;
 

	
 
        Ok(())
 
    }
 

	
 
    /// Consumes a block statement. If the resulting statement is not a block
 
    /// (e.g. for a shorthand "if (expr) single_statement") then it will be
 
    /// wrapped in one
 
    fn consume_block_or_wrapped_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<BlockStatementId, ParseError> {
 
        if Some(TokenKind::OpenCurly) == iter.next() {
 
            // This is a block statement
 
            self.consume_block_statement(module, iter, ctx)
 
        } else {
 
            // Not a block statement, so wrap it in one
 
            let mut statements = self.statements.start_section();
 
            let wrap_begin_pos = iter.last_valid_pos();
 
            self.consume_statement(module, iter, ctx, &mut statements)?;
 
            let wrap_end_pos = iter.last_valid_pos();
 

	
 
            let statements = statements.into_vec();
 

	
 
            let id = ctx.heap.alloc_block_statement(|this| BlockStatement{
 
                this,
 
                is_implicit: true,
 
                span: InputSpan::from_positions(wrap_begin_pos, wrap_end_pos),
 
                statements,
 
                end_block: EndBlockStatementId::new_invalid(),
 
                scope_node: ScopeNode::new_invalid(),
 
                first_unique_id_in_scope: -1,
 
                next_unique_id_in_scope: -1,
 
                relative_pos_in_parent: 0,
 
                locals: Vec::new(),
 
                labels: Vec::new(),
 
                next: StatementId::new_invalid(),
 
            });
 

	
 
            let end_block = ctx.heap.alloc_end_block_statement(|this| EndBlockStatement{
 
                this, start_block: id, next: StatementId::new_invalid()
 
            });
 

	
 
            let block_stmt = &mut ctx.heap[id];
 
            block_stmt.end_block = end_block;
 

	
 
            Ok(id)
 
        }
 
    }
 

	
 
    /// Consumes a statement and returns a boolean indicating whether it was a
 
    /// block or not.
 
    fn consume_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx, section: &mut ScopedSection<StatementId>
 
    ) -> Result<(), ParseError> {
 
        let next = iter.next().expect("consume_statement has a next token");
 

	
 
        if next == TokenKind::OpenCurly {
 
            let id = self.consume_block_statement(module, iter, ctx)?;
 
            section.push(id.upcast());
 
        } else if next == TokenKind::Ident {
 
            let ident = peek_ident(&module.source, iter).unwrap();
 
            if ident == KW_STMT_IF {
 
                // Consume if statement and place end-if statement directly
 
                // after it.
 
                let id = self.consume_if_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 

	
 
                let end_if = ctx.heap.alloc_end_if_statement(|this| EndIfStatement{
 
                    this, start_if: id, next: StatementId::new_invalid()
 
                });
 
                section.push(end_if.upcast());
 

	
 
                let if_stmt = &mut ctx.heap[id];
 
                if_stmt.end_if = end_if;
 
            } else if ident == KW_STMT_WHILE {
 
                let id = self.consume_while_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 

	
 
                let end_while = ctx.heap.alloc_end_while_statement(|this| EndWhileStatement{
 
                    this, start_while: id, next: StatementId::new_invalid()
 
                });
 
                section.push(end_while.upcast());
 

	
 
                let while_stmt = &mut ctx.heap[id];
 
                while_stmt.end_while = end_while;
 
            } else if ident == KW_STMT_BREAK {
 
                let id = self.consume_break_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 
            } else if ident == KW_STMT_CONTINUE {
 
                let id = self.consume_continue_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 
            } else if ident == KW_STMT_SYNC {
 
                let id = self.consume_synchronous_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 

	
 
                let end_sync = ctx.heap.alloc_end_synchronous_statement(|this| EndSynchronousStatement{
 
                    this, start_sync: id, next: StatementId::new_invalid()
 
                });
 
                section.push(end_sync.upcast());
 

	
 
                let sync_stmt = &mut ctx.heap[id];
 
                sync_stmt.end_sync = end_sync;
 
            } else if ident == KW_STMT_RETURN {
 
                let id = self.consume_return_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 
            } else if ident == KW_STMT_GOTO {
 
                let id = self.consume_goto_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 
            } else if ident == KW_STMT_NEW {
 
                let id = self.consume_new_statement(module, iter, ctx)?;
 
                section.push(id.upcast());
 
            } else if ident == KW_STMT_CHANNEL {
 
                let id = self.consume_channel_statement(module, iter, ctx)?;
 
                section.push(id.upcast().upcast());
 
            } else if iter.peek() == Some(TokenKind::Colon) {
 
                self.consume_labeled_statement(module, iter, ctx, section)?;
 
            } else {
 
                // Two fallback possibilities: the first one is a memory
 
                // declaration, the other one is to parse it as a regular
 
                // expression. This is a bit ugly
 
                if let Some((memory_stmt_id, assignment_stmt_id)) = self.maybe_consume_memory_statement(module, iter, ctx)? {
 
                    section.push(memory_stmt_id.upcast().upcast());
 
                    section.push(assignment_stmt_id.upcast());
 
                } else {
 
                    let id = self.consume_expression_statement(module, iter, ctx)?;
 
                    section.push(id.upcast());
 
                }
 
            }
 
        } else {
 
            let id = self.consume_expression_statement(module, iter, ctx)?;
 
            section.push(id.upcast());
 
        }
 

	
 
        return Ok(());
 
    }
 

	
 
    fn consume_block_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<BlockStatementId, ParseError> {
 
        let open_span = consume_token(&module.source, iter, TokenKind::OpenCurly)?;
 
        self.consume_block_statement_without_leading_curly(module, iter, ctx, open_span.begin)
 
    }
 

	
 
    fn consume_block_statement_without_leading_curly(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx, open_curly_pos: InputPosition
 
    ) -> Result<BlockStatementId, ParseError> {
 
        let mut stmt_section = self.statements.start_section();
 
        let mut next = iter.next();
 
        while next != Some(TokenKind::CloseCurly) {
 
            if next.is_none() {
 
                return Err(ParseError::new_error_str_at_pos(
 
                    &module.source, iter.last_valid_pos(), "expected a statement or '}'"
 
                ));
 
            }
 
            self.consume_statement(module, iter, ctx, &mut stmt_section)?;
 
            next = iter.next();
 
        }
 

	
 
        let statements = stmt_section.into_vec();
 
        let mut block_span = consume_token(&module.source, iter, TokenKind::CloseCurly)?;
 
        block_span.begin = open_curly_pos;
 

	
 
        let id = ctx.heap.alloc_block_statement(|this| BlockStatement{
 
            this,
 
            is_implicit: false,
 
            span: block_span,
 
            statements,
 
            end_block: EndBlockStatementId::new_invalid(),
 
            scope_node: ScopeNode::new_invalid(),
 
            first_unique_id_in_scope: -1,
 
            next_unique_id_in_scope: -1,
 
            relative_pos_in_parent: 0,
 
            locals: Vec::new(),
 
            labels: Vec::new(),
 
            next: StatementId::new_invalid(),
 
        });
 

	
 
        let end_block = ctx.heap.alloc_end_block_statement(|this| EndBlockStatement{
 
            this, start_block: id, next: StatementId::new_invalid()
 
        });
 

	
 
        let block_stmt = &mut ctx.heap[id];
 
        block_stmt.end_block = end_block;
 

	
 
        Ok(id)
 
    }
 

	
 
    fn consume_if_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<IfStatementId, ParseError> {
 
        let if_span = consume_exact_ident(&module.source, iter, KW_STMT_IF)?;
 
        consume_token(&module.source, iter, TokenKind::OpenParen)?;
 
        let test = self.consume_expression(module, iter, ctx)?;
 
        consume_token(&module.source, iter, TokenKind::CloseParen)?;
 
        let true_body = self.consume_block_or_wrapped_statement(module, iter, ctx)?;
 

	
 
        let false_body = if has_ident(&module.source, iter, KW_STMT_ELSE) {
 
            iter.consume();
 
            let false_body = self.consume_block_or_wrapped_statement(module, iter, ctx)?;
 
            Some(false_body)
 
        } else {
 
            None
 
        };
 

	
 
        Ok(ctx.heap.alloc_if_statement(|this| IfStatement{
 
            this,
 
            span: if_span,
 
            test,
 
            true_body,
 
            false_body,
 
            end_if: EndIfStatementId::new_invalid(),
 
        }))
 
    }
 

	
 
    fn consume_while_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<WhileStatementId, ParseError> {
 
        let while_span = consume_exact_ident(&module.source, iter, KW_STMT_WHILE)?;
 
        consume_token(&module.source, iter, TokenKind::OpenParen)?;
 
        let test = self.consume_expression(module, iter, ctx)?;
 
        consume_token(&module.source, iter, TokenKind::CloseParen)?;
 
        let body = self.consume_block_or_wrapped_statement(module, iter, ctx)?;
 

	
 
        Ok(ctx.heap.alloc_while_statement(|this| WhileStatement{
 
            this,
 
            span: while_span,
 
            test,
 
            body,
 
            end_while: EndWhileStatementId::new_invalid(),
 
            in_sync: SynchronousStatementId::new_invalid(),
 
        }))
 
    }
 

	
 
    fn consume_break_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<BreakStatementId, ParseError> {
 
        let break_span = consume_exact_ident(&module.source, iter, KW_STMT_BREAK)?;
 
        let label = if Some(TokenKind::Ident) == iter.next() {
 
            let label = consume_ident_interned(&module.source, iter, ctx)?;
 
            Some(label)
 
        } else {
 
            None
 
        };
 
        consume_token(&module.source, iter, TokenKind::SemiColon)?;
 
        Ok(ctx.heap.alloc_break_statement(|this| BreakStatement{
 
            this,
 
            span: break_span,
 
            label,
 
            target: None,
 
        }))
 
    }
 

	
 
    fn consume_continue_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<ContinueStatementId, ParseError> {
 
        let continue_span = consume_exact_ident(&module.source, iter, KW_STMT_CONTINUE)?;
 
        let label=  if Some(TokenKind::Ident) == iter.next() {
 
            let label = consume_ident_interned(&module.source, iter, ctx)?;
 
            Some(label)
 
        } else {
 
            None
 
        };
 
        consume_token(&module.source, iter, TokenKind::SemiColon)?;
 
        Ok(ctx.heap.alloc_continue_statement(|this| ContinueStatement{
 
            this,
 
            span: continue_span,
 
            label,
 
            target: None
 
        }))
 
    }
 

	
 
    fn consume_synchronous_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<SynchronousStatementId, ParseError> {
 
        let synchronous_span = consume_exact_ident(&module.source, iter, KW_STMT_SYNC)?;
 
        let body = self.consume_block_or_wrapped_statement(module, iter, ctx)?;
 

	
 
        Ok(ctx.heap.alloc_synchronous_statement(|this| SynchronousStatement{
 
            this,
 
            span: synchronous_span,
 
            body,
 
            end_sync: EndSynchronousStatementId::new_invalid(),
 
        }))
 
    }
 

	
 
    fn consume_return_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<ReturnStatementId, ParseError> {
 
        let return_span = consume_exact_ident(&module.source, iter, KW_STMT_RETURN)?;
 
        let mut scoped_section = self.expressions.start_section();
 

	
 
        consume_comma_separated_until(
 
            TokenKind::SemiColon, &module.source, iter, ctx,
 
            |_source, iter, ctx| self.consume_expression(module, iter, ctx),
 
            &mut scoped_section, "an expression", None
 
        )?;
 
        let expressions = scoped_section.into_vec();
 

	
 
        if expressions.is_empty() {
 
            return Err(ParseError::new_error_str_at_span(&module.source, return_span, "expected at least one return value"));
 
        } else if expressions.len() > 1 {
 
            return Err(ParseError::new_error_str_at_span(&module.source, return_span, "multiple return values are not (yet) supported"))
 
        }
 

	
 
        Ok(ctx.heap.alloc_return_statement(|this| ReturnStatement{
 
            this,
 
            span: return_span,
 
            expressions
 
        }))
 
    }
 

	
 
    fn consume_goto_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<GotoStatementId, ParseError> {
 
        let goto_span = consume_exact_ident(&module.source, iter, KW_STMT_GOTO)?;
 
        let label = consume_ident_interned(&module.source, iter, ctx)?;
 
        consume_token(&module.source, iter, TokenKind::SemiColon)?;
 
        Ok(ctx.heap.alloc_goto_statement(|this| GotoStatement{
 
            this,
 
            span: goto_span,
 
            label,
 
            target: None
 
        }))
 
    }
 

	
 
    fn consume_new_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<NewStatementId, ParseError> {
 
        let new_span = consume_exact_ident(&module.source, iter, KW_STMT_NEW)?;
 

	
 
        let start_pos = iter.last_valid_pos();
 
        let expression_id = self.consume_primary_expression(module, iter, ctx)?;
 
        let expression = &ctx.heap[expression_id];
 
        let mut valid = false;
 

	
 
        let mut call_id = CallExpressionId::new_invalid();
 
        if let Expression::Call(expression) = expression {
 
            // Allow both components and functions, as it makes more sense to
 
            // check their correct use in the validation and linking pass
 
            if expression.method == Method::UserComponent || expression.method == Method::UserFunction {
 
                call_id = expression.this;
 
                valid = true;
 
            }
 
        }
 

	
 
        if !valid {
 
            return Err(ParseError::new_error_str_at_span(
 
                &module.source, InputSpan::from_positions(start_pos, iter.last_valid_pos()), "expected a call expression"
 
            ));
 
        }
 
        consume_token(&module.source, iter, TokenKind::SemiColon)?;
 

	
 
        debug_assert!(!call_id.is_invalid());
 
        Ok(ctx.heap.alloc_new_statement(|this| NewStatement{
 
            this,
 
            span: new_span,
 
            expression: call_id,
 
            next: StatementId::new_invalid(),
 
        }))
 
    }
 

	
 
    fn consume_channel_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<ChannelStatementId, ParseError> {
 
        // Consume channel specification
 
        let channel_span = consume_exact_ident(&module.source, iter, KW_STMT_CHANNEL)?;
 
        let (inner_port_type, end_pos) = if Some(TokenKind::OpenAngle) == iter.next() {
 
            // Retrieve the type of the channel, we're cheating a bit here by
 
            // consuming the first '<' and setting the initial angle depth to 1
 
            // such that our final '>' will be consumed as well.
 
            iter.consume();
 
            let definition_id = self.cur_definition;
 
            let poly_vars = ctx.heap[definition_id].poly_vars();
 
            let parser_type = consume_parser_type(
 
                &module.source, iter, &ctx.symbols, &ctx.heap,
 
                poly_vars, SymbolScope::Module(module.root_id), definition_id,
 
                true, 1
 
            )?;
 

	
 
            (parser_type.elements, parser_type.full_span.end)
 
        } else {
 
            // Assume inferred
 
            (
 
                vec![ParserTypeElement{
 
                    element_span: channel_span,
 
                    variant: ParserTypeVariant::Inferred
 
                }],
 
                channel_span.end
 
            )
 
        };
 

	
 
        let from_identifier = consume_ident_interned(&module.source, iter, ctx)?;
 
        consume_token(&module.source, iter, TokenKind::ArrowRight)?;
 
        let to_identifier = consume_ident_interned(&module.source, iter, ctx)?;
 
        consume_token(&module.source, iter, TokenKind::SemiColon)?;
 

	
 
        // Construct ports
 
        let port_type_span = InputSpan::from_positions(channel_span.begin, end_pos);
 
        let port_type_len = inner_port_type.len() + 1;
 
        let mut from_port_type = ParserType{ elements: Vec::with_capacity(port_type_len), full_span: port_type_span };
 
        from_port_type.elements.push(ParserTypeElement{
 
            element_span: channel_span,
 
            variant: ParserTypeVariant::Output,
 
        });
 
        from_port_type.elements.extend_from_slice(&inner_port_type);
 
        let from = ctx.heap.alloc_variable(|this| Variable{
 
            this,
 
            kind: VariableKind::Local,
 
            identifier: from_identifier,
 
            parser_type: from_port_type,
 
            relative_pos_in_block: 0,
 
            unique_id_in_scope: -1,
 
        });
 

	
 
        let mut to_port_type = ParserType{ elements: Vec::with_capacity(port_type_len), full_span: port_type_span };
 
        to_port_type.elements.push(ParserTypeElement{
 
            element_span: channel_span,
 
            variant: ParserTypeVariant::Input
 
        });
 
        to_port_type.elements.extend_from_slice(&inner_port_type);
 
        let to = ctx.heap.alloc_variable(|this|Variable{
 
            this,
 
            kind: VariableKind::Local,
 
            identifier: to_identifier,
 
            parser_type: to_port_type,
 
            relative_pos_in_block: 0,
 
            unique_id_in_scope: -1,
 
        });
 

	
 
        // Construct the channel
 
        Ok(ctx.heap.alloc_channel_statement(|this| ChannelStatement{
 
            this,
 
            span: channel_span,
 
            from, to,
 
            relative_pos_in_block: 0,
 
            next: StatementId::new_invalid(),
 
        }))
 
    }
 

	
 
    fn consume_labeled_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx, section: &mut ScopedSection<StatementId>
 
    ) -> Result<(), ParseError> {
 
        let label = consume_ident_interned(&module.source, iter, ctx)?;
 
        consume_token(&module.source, iter, TokenKind::Colon)?;
 

	
 
        // Not pretty: consume_statement may produce more than one statement.
 
        // The values in the section need to be in the correct order if some
 
        // kind of outer block is consumed, so we take another section, push
 
        // the expressions in that one, and then allocate the labeled statement.
 
        let mut inner_section = self.statements.start_section();
 
        self.consume_statement(module, iter, ctx, &mut inner_section)?;
 
        debug_assert!(inner_section.len() >= 1);
 

	
 
        let stmt_id = ctx.heap.alloc_labeled_statement(|this| LabeledStatement {
 
            this,
 
            label,
 
            body: inner_section[0],
 
            relative_pos_in_block: 0,
 
            in_sync: SynchronousStatementId::new_invalid(),
 
        });
 

	
 
        if inner_section.len() == 1 {
 
            // Produce the labeled statement pointing to the first statement.
 
            // This is by far the most common case.
 
            inner_section.forget();
 
            section.push(stmt_id.upcast());
 
        } else {
 
            // Produce the labeled statement using the first statement, and push
 
            // the remaining ones at the end.
 
            let inner_statements = inner_section.into_vec();
 
            section.push(stmt_id.upcast());
 
            for idx in 1..inner_statements.len() {
 
                section.push(inner_statements[idx])
 
            }
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn maybe_consume_memory_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<Option<(MemoryStatementId, ExpressionStatementId)>, ParseError> {
 
        // This is a bit ugly. It would be nicer if we could somehow
 
        // consume the expression with a type hint if we do get a valid
 
        // type, but we don't get an identifier following it
 
        let iter_state = iter.save();
 
        let definition_id = self.cur_definition;
 
        let poly_vars = ctx.heap[definition_id].poly_vars();
 

	
 
        let parser_type = consume_parser_type(
 
            &module.source, iter, &ctx.symbols, &ctx.heap, poly_vars,
 
            SymbolScope::Definition(definition_id), definition_id, true, 0
 
        );
 

	
 
        if let Ok(parser_type) = parser_type {
 
            if Some(TokenKind::Ident) == iter.next() {
 
                // Assume this is a proper memory statement
 
                let identifier = consume_ident_interned(&module.source, iter, ctx)?;
 
                let memory_span = InputSpan::from_positions(parser_type.full_span.begin, identifier.span.end);
 
                let assign_span = consume_token(&module.source, iter, TokenKind::Equal)?;
 

	
 
                let initial_expr_begin_pos = iter.last_valid_pos();
 
                let initial_expr_id = self.consume_expression(module, iter, ctx)?;
 
                let initial_expr_end_pos = iter.last_valid_pos();
 
                consume_token(&module.source, iter, TokenKind::SemiColon)?;
 

	
 
                // Allocate the memory statement with the variable
 
                let local_id = ctx.heap.alloc_variable(|this| Variable{
 
                    this,
 
                    kind: VariableKind::Local,
 
                    identifier: identifier.clone(),
 
                    parser_type,
 
                    relative_pos_in_block: 0,
 
                    unique_id_in_scope: -1,
 
                });
 
                let memory_stmt_id = ctx.heap.alloc_memory_statement(|this| MemoryStatement{
 
                    this,
 
                    span: memory_span,
 
                    variable: local_id,
 
                    next: StatementId::new_invalid()
 
                });
 

	
 
                // Allocate the initial assignment
 
                let variable_expr_id = ctx.heap.alloc_variable_expression(|this| VariableExpression{
 
                    this,
 
                    identifier,
 
                    declaration: None,
 
                    used_as_binding_target: false,
 
                    parent: ExpressionParent::None,
 
                    unique_id_in_definition: -1,
 
                });
 
                let assignment_expr_id = ctx.heap.alloc_assignment_expression(|this| AssignmentExpression{
 
                    this,
 
                    operator_span: assign_span,
 
                    full_span: InputSpan::from_positions(memory_span.begin, initial_expr_end_pos),
 
                    left: variable_expr_id.upcast(),
 
                    operation: AssignmentOperator::Set,
 
                    right: initial_expr_id,
 
                    parent: ExpressionParent::None,
 
                    unique_id_in_definition: -1,
 
                });
 
                let assignment_stmt_id = ctx.heap.alloc_expression_statement(|this| ExpressionStatement{
 
                    this,
 
                    span: InputSpan::from_positions(initial_expr_begin_pos, initial_expr_end_pos),
 
                    expression: assignment_expr_id.upcast(),
 
                    next: StatementId::new_invalid(),
 
                });
 

	
 
                return Ok(Some((memory_stmt_id, assignment_stmt_id)))
 
            }
 
        }
 

	
 
        // If here then one of the preconditions for a memory statement was not
 
        // met. So recover the iterator and return
 
        iter.load(iter_state);
 
        Ok(None)
 
    }
 

	
 
    fn consume_expression_statement(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<ExpressionStatementId, ParseError> {
 
        let start_pos = iter.last_valid_pos();
 
        let expression = self.consume_expression(module, iter, ctx)?;
 
        let end_pos = iter.last_valid_pos();
 
        consume_token(&module.source, iter, TokenKind::SemiColon)?;
 

	
 
        Ok(ctx.heap.alloc_expression_statement(|this| ExpressionStatement{
 
            this,
 
            span: InputSpan::from_positions(start_pos, end_pos),
 
            expression,
 
            next: StatementId::new_invalid(),
 
        }))
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Expression Parsing
 
    //--------------------------------------------------------------------------
 

	
 
    // TODO: @Cleanup This is fine for now. But I prefer my stacktraces not to
 
    //  look like enterprise Java code...
 
    fn consume_expression(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<ExpressionId, ParseError> {
 
        self.consume_assignment_expression(module, iter, ctx)
 
    }
 

	
 
    fn consume_assignment_expression(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<ExpressionId, ParseError> {
 
        // Utility to convert token into assignment operator
 
        fn parse_assignment_operator(token: Option<TokenKind>) -> Option<AssignmentOperator> {
 
            use TokenKind as TK;
 
            use AssignmentOperator as AO;
 

	
 
            if token.is_none() {
 
                return None
 
            }
 

	
 
            match token.unwrap() {
 
                TK::Equal               => Some(AO::Set),
 
                TK::AtEquals            => Some(AO::Concatenated),
 
                TK::StarEquals          => Some(AO::Multiplied),
 
                TK::SlashEquals         => Some(AO::Divided),
 
                TK::PercentEquals       => Some(AO::Remained),
 
                TK::PlusEquals          => Some(AO::Added),
 
                TK::MinusEquals         => Some(AO::Subtracted),
 
                TK::ShiftLeftEquals     => Some(AO::ShiftedLeft),
 
                TK::ShiftRightEquals    => Some(AO::ShiftedRight),
 
                TK::AndEquals           => Some(AO::BitwiseAnded),
 
                TK::CaretEquals         => Some(AO::BitwiseXored),
 
                TK::OrEquals            => Some(AO::BitwiseOred),
 
                _                       => None
 
            }
 
        }
 

	
 
        let expr = self.consume_conditional_expression(module, iter, ctx)?;
 
        if let Some(operation) = parse_assignment_operator(iter.next()) {
 
            let operator_span = iter.next_span();
 
            iter.consume();
 

	
 
            let left = expr;
 
            let right = self.consume_expression(module, iter, ctx)?;
 

	
 
            let full_span = InputSpan::from_positions(
 
                ctx.heap[left].full_span().begin,
 
                ctx.heap[right].full_span().end,
 
            );
 

	
 
            Ok(ctx.heap.alloc_assignment_expression(|this| AssignmentExpression{
 
                this, operator_span, full_span, left, operation, right,
 
                parent: ExpressionParent::None,
 
                unique_id_in_definition: -1,
 
            }).upcast())
 
        } else {
 
            Ok(expr)
 
        }
 
    }
 

	
 
    fn consume_conditional_expression(
 
        &mut self, module: &Module, iter: &mut TokenIter, ctx: &mut PassCtx
 
    ) -> Result<ExpressionId, ParseError> {
 
        let result = self.consume_concat_expression(module, iter, ctx)?;
 
        if let Some(TokenKind::Question) = iter.next() {
 
            let operator_span = iter.next_span();
 
            iter.consume();
 

	
 
            let test = result;
 
            let true_expression = self.consume_expression(module, iter, ctx)?;
 
            consume_token(&module.source, iter, TokenKind::Colon)?;
 
            let false_expression = self.consume_expression(module, iter, ctx)?;
 

	
 
            let full_span = InputSpan::from_positions(
 
                ctx.heap[test].full_span().begin,
 
                ctx.heap[false_expression].full_span().end,
 
            );
 

	
 
            Ok(ctx.heap.alloc_conditional_expression(|this| ConditionalExpression{
 
                this, operator_span, full_span, test, true_expression, false_expression,
 
                parent: ExpressionParent::None,
 
                unique_id_in_definition: -1,
 
            }).upcast())
 
        } else {
 
            Ok(result)
 
        }
 
    }
 

	
src/protocol/parser/pass_typing.rs
Show inline comments
 
@@ -626,1639 +626,1664 @@ impl InferenceType {
 
        match &parts[idx] {
 
            ITP::Marker(_marker_idx) => {
 
                if debug_log_enabled!() {
 
                    buffer.push_str(&format!("{{Marker:{}}}", *_marker_idx));
 
                }
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
            },
 
            ITP::Unknown => buffer.push_str("?"),
 
            ITP::NumberLike => buffer.push_str("numberlike"),
 
            ITP::IntegerLike => buffer.push_str("integerlike"),
 
            ITP::ArrayLike => {
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push_str("[?]");
 
            },
 
            ITP::PortLike => {
 
                buffer.push_str("portlike<");
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push('>');
 
            }
 
            ITP::Void => buffer.push_str("void"),
 
            ITP::Bool => buffer.push_str(KW_TYPE_BOOL_STR),
 
            ITP::UInt8 => buffer.push_str(KW_TYPE_UINT8_STR),
 
            ITP::UInt16 => buffer.push_str(KW_TYPE_UINT16_STR),
 
            ITP::UInt32 => buffer.push_str(KW_TYPE_UINT32_STR),
 
            ITP::UInt64 => buffer.push_str(KW_TYPE_UINT64_STR),
 
            ITP::SInt8 => buffer.push_str(KW_TYPE_SINT8_STR),
 
            ITP::SInt16 => buffer.push_str(KW_TYPE_SINT16_STR),
 
            ITP::SInt32 => buffer.push_str(KW_TYPE_SINT32_STR),
 
            ITP::SInt64 => buffer.push_str(KW_TYPE_SINT64_STR),
 
            ITP::Character => buffer.push_str(KW_TYPE_CHAR_STR),
 
            ITP::String => {
 
                buffer.push_str(KW_TYPE_STRING_STR);
 
                idx += 1; // skip the 'char' subtype
 
            },
 
            ITP::Message => {
 
                buffer.push_str(KW_TYPE_MESSAGE_STR);
 
                buffer.push('<');
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push('>');
 
            },
 
            ITP::Array => {
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push_str("[]");
 
            },
 
            ITP::Slice => {
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push_str("[..]");
 
            },
 
            ITP::Input => {
 
                buffer.push_str(KW_TYPE_IN_PORT_STR);
 
                buffer.push('<');
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push('>');
 
            },
 
            ITP::Output => {
 
                buffer.push_str(KW_TYPE_OUT_PORT_STR);
 
                buffer.push('<');
 
                idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                buffer.push('>');
 
            },
 
            ITP::Instance(definition_id, num_sub) => {
 
                let definition = &heap[*definition_id];
 
                buffer.push_str(definition.identifier().value.as_str());
 
                if *num_sub > 0 {
 
                    buffer.push('<');
 
                    idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                    for _sub_idx in 1..*num_sub {
 
                        buffer.push_str(", ");
 
                        idx = Self::write_display_name(buffer, heap, parts, idx + 1);
 
                    }
 
                    buffer.push('>');
 
                }
 
            },
 
        }
 

	
 
        idx
 
    }
 

	
 
    /// Returns the display name of a (part of) the type tree. Will allocate a
 
    /// string.
 
    fn partial_display_name(heap: &Heap, parts: &[InferenceTypePart]) -> String {
 
        let mut buffer = String::with_capacity(parts.len() * 6);
 
        Self::write_display_name(&mut buffer, heap, parts, 0);
 
        buffer
 
    }
 

	
 
    /// Returns the display name of the full type tree. Will allocate a string.
 
    fn display_name(&self, heap: &Heap) -> String {
 
        Self::partial_display_name(heap, &self.parts)
 
    }
 
}
 

	
 
impl Default for InferenceType {
 
    fn default() -> Self {
 
        Self{
 
            has_marker: false,
 
            is_done: false,
 
            parts: Vec::new(),
 
        }
 
    }
 
}
 

	
 
/// Iterator over the subtrees that follow a marker in an `InferenceType`
 
/// instance. Returns immutable slices over the internal parts
 
struct InferenceTypeMarkerIter<'a> {
 
    parts: &'a [InferenceTypePart],
 
    idx: usize,
 
}
 

	
 
impl<'a> InferenceTypeMarkerIter<'a> {
 
    fn new(parts: &'a [InferenceTypePart]) -> Self {
 
        Self{ parts, idx: 0 }
 
    }
 
}
 

	
 
impl<'a> Iterator for InferenceTypeMarkerIter<'a> {
 
    type Item = (u32, &'a [InferenceTypePart]);
 

	
 
    fn next(&mut self) -> Option<Self::Item> {
 
        // Iterate until we find a marker
 
        while self.idx < self.parts.len() {
 
            if let InferenceTypePart::Marker(marker) = self.parts[self.idx] {
 
                // Found a marker, find the subtree end
 
                let start_idx = self.idx + 1;
 
                let end_idx = InferenceType::find_subtree_end_idx(self.parts, start_idx);
 

	
 
                // Modify internal index, then return items
 
                self.idx = end_idx;
 
                return Some((marker, &self.parts[start_idx..end_idx]));
 
            }
 

	
 
            self.idx += 1;
 
        }
 

	
 
        None
 
    }
 
}
 

	
 
#[derive(Debug, PartialEq, Eq)]
 
enum DualInferenceResult {
 
    Neither,        // neither argument is clarified
 
    First,          // first argument is clarified using the second one
 
    Second,         // second argument is clarified using the first one
 
    Both,           // both arguments are clarified
 
    Incompatible,   // types are incompatible: programmer error
 
}
 

	
 
impl DualInferenceResult {
 
    fn modified_lhs(&self) -> bool {
 
        match self {
 
            DualInferenceResult::First | DualInferenceResult::Both => true,
 
            _ => false
 
        }
 
    }
 
    fn modified_rhs(&self) -> bool {
 
        match self {
 
            DualInferenceResult::Second | DualInferenceResult::Both => true,
 
            _ => false
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, PartialEq, Eq)]
 
enum SingleInferenceResult {
 
    Unmodified,
 
    Modified,
 
    Incompatible
 
}
 

	
 
enum DefinitionType{
 
    Component(ComponentDefinitionId),
 
    Function(FunctionDefinitionId),
 
}
 

	
 
impl DefinitionType {
 
    fn definition_id(&self) -> DefinitionId {
 
        match self {
 
            DefinitionType::Component(v) => v.upcast(),
 
            DefinitionType::Function(v) => v.upcast(),
 
        }
 
    }
 
}
 

	
 
pub(crate) struct ResolveQueueElement {
 
    pub(crate) root_id: RootId,
 
    pub(crate) definition_id: DefinitionId,
 
    pub(crate) monomorph_types: Vec<ConcreteType>,
 
    pub(crate) reserved_monomorph_idx: i32,
 
}
 

	
 
impl PartialEq for ResolveQueueElement {
 
    fn eq(&self, other: &Self) -> bool {
 
        return
 
            self.root_id == other.root_id &&
 
            self.definition_id == other.definition_id &&
 
            self.monomorph_types == other.monomorph_types;
 
    }
 
}
 
impl Eq for ResolveQueueElement {}
 

	
 
pub(crate) type ResolveQueue = Vec<ResolveQueueElement>;
 

	
 
#[derive(Clone)]
 
struct InferenceExpression {
 
    expr_type: InferenceType,       // result type from expression
 
    expr_id: ExpressionId,          // expression that is evaluated
 
    field_or_monomorph_idx: i32,    // index of field, of index of monomorph array in type table
 
    extra_data_idx: i32,     // index of extra data needed for inference
 
}
 

	
 
impl Default for InferenceExpression {
 
    fn default() -> Self {
 
        Self{
 
            expr_type: InferenceType::default(),
 
            expr_id: ExpressionId::new_invalid(),
 
            field_or_monomorph_idx: -1,
 
            extra_data_idx: -1,
 
        }
 
    }
 
}
 

	
 
/// This particular visitor will recurse depth-first into the AST and ensures
 
/// that all expressions have the appropriate types.
 
pub(crate) struct PassTyping {
 
    // Current definition we're typechecking.
 
    reserved_idx: i32,
 
    definition_type: DefinitionType,
 
    poly_vars: Vec<ConcreteType>,
 

	
 
    // Buffers for iteration over substatements and subexpressions
 
    stmt_buffer: Vec<StatementId>,
 
    expr_buffer: Vec<ExpressionId>,
 

	
 
    // Mapping from parser type to inferred type. We attempt to continue to
 
    // specify these types until we're stuck or we've fully determined the type.
 
    var_types: HashMap<VariableId, VarData>,            // types of variables
 
    expr_types: Vec<InferenceExpression>,                     // will be transferred to type table at end
 
    extra_data: Vec<ExtraData>,       // data for polymorph inference
 
    // Keeping track of which expressions need to be reinferred because the
 
    // expressions they're linked to made progression on an associated type
 
    expr_queued: DequeSet<i32>,
 
}
 

	
 
// TODO: @Rename, this is used for a lot of type inferencing. It seems like
 
//  there is a different underlying architecture waiting to surface.
 
struct ExtraData {
 
    expr_id: ExpressionId, // the expression with which this data is associated
 
    definition_id: DefinitionId, // the definition, only used for user feedback
 
    /// Progression of polymorphic variables (if any)
 
    poly_vars: Vec<InferenceType>,
 
    /// Progression of types of call arguments or struct members
 
    embedded: Vec<InferenceType>,
 
    returned: InferenceType,
 
}
 

	
 
impl Default for ExtraData {
 
    fn default() -> Self {
 
        Self{
 
            expr_id: ExpressionId::new_invalid(),
 
            definition_id: DefinitionId::new_invalid(),
 
            poly_vars: Vec::new(),
 
            embedded: Vec::new(),
 
            returned: InferenceType::default(),
 
        }
 
    }
 
}
 

	
 
struct VarData {
 
    /// Type of the variable
 
    var_type: InferenceType,
 
    /// VariableExpressions that use the variable
 
    used_at: Vec<ExpressionId>,
 
    /// For channel statements we link to the other variable such that when one
 
    /// channel's interior type is resolved, we can also resolve the other one.
 
    linked_var: Option<VariableId>,
 
}
 

	
 
impl VarData {
 
    fn new_channel(var_type: InferenceType, other_port: VariableId) -> Self {
 
        Self{ var_type, used_at: Vec::new(), linked_var: Some(other_port) }
 
    }
 
    fn new_local(var_type: InferenceType) -> Self {
 
        Self{ var_type, used_at: Vec::new(), linked_var: None }
 
    }
 
}
 

	
 
impl PassTyping {
 
    pub(crate) fn new() -> Self {
 
        PassTyping {
 
            reserved_idx: -1,
 
            definition_type: DefinitionType::Function(FunctionDefinitionId::new_invalid()),
 
            poly_vars: Vec::new(),
 
            stmt_buffer: Vec::with_capacity(STMT_BUFFER_INIT_CAPACITY),
 
            expr_buffer: Vec::with_capacity(EXPR_BUFFER_INIT_CAPACITY),
 
            var_types: HashMap::new(),
 
            expr_types: Vec::new(),
 
            extra_data: Vec::new(),
 
            expr_queued: DequeSet::new(),
 
        }
 
    }
 

	
 
    // TODO: @cleanup Unsure about this, maybe a pattern will arise after
 
    //  a while.
 
    pub(crate) fn queue_module_definitions(ctx: &mut Ctx, queue: &mut ResolveQueue) {
 
        debug_assert_eq!(ctx.module.phase, ModuleCompilationPhase::ValidatedAndLinked);
 
        let root_id = ctx.module.root_id;
 
        let root = &ctx.heap.protocol_descriptions[root_id];
 
        for definition_id in &root.definitions {
 
            let definition = &ctx.heap[*definition_id];
 

	
 
            let should_add_to_queue = match definition {
 
                Definition::Function(definition) => definition.poly_vars.is_empty(),
 
                Definition::Component(definition) => definition.poly_vars.is_empty(),
 
                Definition::Enum(_) | Definition::Struct(_) | Definition::Union(_) => false,
 
            };
 

	
 
            if should_add_to_queue {
 
                let reserved_idx = ctx.types.reserve_procedure_monomorph_index(definition_id, None);
 
                queue.push(ResolveQueueElement{
 
                    root_id,
 
                    definition_id: *definition_id,
 
                    monomorph_types: Vec::new(),
 
                    reserved_monomorph_idx: reserved_idx,
 
                })
 
            }
 
        }
 
    }
 

	
 
    pub(crate) fn handle_module_definition(
 
        &mut self, ctx: &mut Ctx, queue: &mut ResolveQueue, element: ResolveQueueElement
 
    ) -> VisitorResult {
 
        // Visit the definition
 
        debug_assert_eq!(ctx.module.root_id, element.root_id);
 
        self.reset();
 
        debug_assert!(self.poly_vars.is_empty());
 
        self.reserved_idx = element.reserved_monomorph_idx;
 
        self.poly_vars = element.monomorph_types;
 
        self.visit_definition(ctx, element.definition_id)?;
 

	
 
        // Keep resolving types
 
        self.resolve_types(ctx, queue)?;
 
        Ok(())
 
    }
 

	
 
    fn reset(&mut self) {
 
        self.reserved_idx = -1;
 
        self.definition_type = DefinitionType::Function(FunctionDefinitionId::new_invalid());
 
        self.poly_vars.clear();
 
        self.stmt_buffer.clear();
 
        self.expr_buffer.clear();
 
        self.var_types.clear();
 
        self.expr_types.clear();
 
        self.extra_data.clear();
 
        self.expr_queued.clear();
 
    }
 
}
 

	
 
impl Visitor for PassTyping {
 
    // Definitions
 

	
 
    fn visit_component_definition(&mut self, ctx: &mut Ctx, id: ComponentDefinitionId) -> VisitorResult {
 
        self.definition_type = DefinitionType::Component(id);
 

	
 
        let comp_def = &ctx.heap[id];
 
        debug_assert_eq!(comp_def.poly_vars.len(), self.poly_vars.len(), "component polyvars do not match imposed polyvars");
 

	
 
        debug_log!("{}", "-".repeat(50));
 
        debug_log!("Visiting component '{}': {}", comp_def.identifier.value.as_str(), id.0.index);
 
        debug_log!("{}", "-".repeat(50));
 

	
 
        // Reserve data for expression types
 
        debug_assert!(self.expr_types.is_empty());
 
        self.expr_types.resize(comp_def.num_expressions_in_body as usize, Default::default());
 

	
 
        // Visit parameters
 
        for param_id in comp_def.parameters.clone() {
 
            let param = &ctx.heap[param_id];
 
            let var_type = self.determine_inference_type_from_parser_type_elements(&param.parser_type.elements, true);
 
            debug_assert!(var_type.is_done, "expected component arguments to be concrete types");
 
            self.var_types.insert(param_id, VarData::new_local(var_type));
 
        }
 

	
 
        // Visit the body and all of its expressions
 
        let body_stmt_id = ctx.heap[id].body;
 
        self.visit_block_stmt(ctx, body_stmt_id)
 
    }
 

	
 
    fn visit_function_definition(&mut self, ctx: &mut Ctx, id: FunctionDefinitionId) -> VisitorResult {
 
        self.definition_type = DefinitionType::Function(id);
 

	
 
        let func_def = &ctx.heap[id];
 
        debug_assert_eq!(func_def.poly_vars.len(), self.poly_vars.len(), "function polyvars do not match imposed polyvars");
 

	
 
        debug_log!("{}", "-".repeat(50));
 
        debug_log!("Visiting function '{}': {}", func_def.identifier.value.as_str(), id.0.index);
 
        if debug_log_enabled!() {
 
            debug_log!("Polymorphic variables:");
 
            for (_idx, poly_var) in self.poly_vars.iter().enumerate() {
 
                let mut infer_type_parts = Vec::new();
 
                Self::determine_inference_type_from_concrete_type(
 
                    &mut infer_type_parts, &poly_var.parts
 
                );
 
                let _infer_type = InferenceType::new(false, true, infer_type_parts);
 
                debug_log!(" - [{:03}] {:?}", _idx, _infer_type.display_name(&ctx.heap));
 
            }
 
        }
 
        debug_log!("{}", "-".repeat(50));
 

	
 
        // Reserve data for expression types
 
        debug_assert!(self.expr_types.is_empty());
 
        self.expr_types.resize(func_def.num_expressions_in_body as usize, Default::default());
 

	
 
        // Visit parameters
 
        for param_id in func_def.parameters.clone() {
 
            let param = &ctx.heap[param_id];
 
            let var_type = self.determine_inference_type_from_parser_type_elements(&param.parser_type.elements, true);
 
            debug_assert!(var_type.is_done, "expected function arguments to be concrete types");
 
            self.var_types.insert(param_id, VarData::new_local(var_type));
 
        }
 

	
 
        // Visit all of the expressions within the body
 
        let body_stmt_id = ctx.heap[id].body;
 
        self.visit_block_stmt(ctx, body_stmt_id)
 
    }
 

	
 
    // Statements
 

	
 
    fn visit_block_stmt(&mut self, ctx: &mut Ctx, id: BlockStatementId) -> VisitorResult {
 
        // Transfer statements for traversal
 
        let block = &ctx.heap[id];
 

	
 
        for stmt_id in block.statements.clone() {
 
            self.visit_stmt(ctx, stmt_id)?;
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_local_memory_stmt(&mut self, ctx: &mut Ctx, id: MemoryStatementId) -> VisitorResult {
 
        let memory_stmt = &ctx.heap[id];
 

	
 
        let local = &ctx.heap[memory_stmt.variable];
 
        let var_type = self.determine_inference_type_from_parser_type_elements(&local.parser_type.elements, true);
 
        self.var_types.insert(memory_stmt.variable, VarData::new_local(var_type));
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_local_channel_stmt(&mut self, ctx: &mut Ctx, id: ChannelStatementId) -> VisitorResult {
 
        let channel_stmt = &ctx.heap[id];
 

	
 
        let from_local = &ctx.heap[channel_stmt.from];
 
        let from_var_type = self.determine_inference_type_from_parser_type_elements(&from_local.parser_type.elements, true);
 
        self.var_types.insert(from_local.this, VarData::new_channel(from_var_type, channel_stmt.to));
 

	
 
        let to_local = &ctx.heap[channel_stmt.to];
 
        let to_var_type = self.determine_inference_type_from_parser_type_elements(&to_local.parser_type.elements, true);
 
        self.var_types.insert(to_local.this, VarData::new_channel(to_var_type, channel_stmt.from));
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_labeled_stmt(&mut self, ctx: &mut Ctx, id: LabeledStatementId) -> VisitorResult {
 
        let labeled_stmt = &ctx.heap[id];
 
        let substmt_id = labeled_stmt.body;
 
        self.visit_stmt(ctx, substmt_id)
 
    }
 

	
 
    fn visit_if_stmt(&mut self, ctx: &mut Ctx, id: IfStatementId) -> VisitorResult {
 
        let if_stmt = &ctx.heap[id];
 

	
 
        let true_body_id = if_stmt.true_body;
 
        let false_body_id = if_stmt.false_body;
 
        let test_expr_id = if_stmt.test;
 

	
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.visit_block_stmt(ctx, true_body_id)?;
 
        if let Some(false_body_id) = false_body_id {
 
            self.visit_block_stmt(ctx, false_body_id)?;
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_while_stmt(&mut self, ctx: &mut Ctx, id: WhileStatementId) -> VisitorResult {
 
        let while_stmt = &ctx.heap[id];
 

	
 
        let body_id = while_stmt.body;
 
        let test_expr_id = while_stmt.test;
 

	
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.visit_block_stmt(ctx, body_id)?;
 

	
 
        Ok(())
 
    }
 

	
 
    fn visit_synchronous_stmt(&mut self, ctx: &mut Ctx, id: SynchronousStatementId) -> VisitorResult {
 
        let sync_stmt = &ctx.heap[id];
 
        let body_id = sync_stmt.body;
 

	
 
        self.visit_block_stmt(ctx, body_id)
 
    }
 

	
 
    fn visit_return_stmt(&mut self, ctx: &mut Ctx, id: ReturnStatementId) -> VisitorResult {
 
        let return_stmt = &ctx.heap[id];
 
        debug_assert_eq!(return_stmt.expressions.len(), 1);
 
        let expr_id = return_stmt.expressions[0];
 

	
 
        self.visit_expr(ctx, expr_id)
 
    }
 

	
 
    fn visit_new_stmt(&mut self, ctx: &mut Ctx, id: NewStatementId) -> VisitorResult {
 
        let new_stmt = &ctx.heap[id];
 
        let call_expr_id = new_stmt.expression;
 

	
 
        self.visit_call_expr(ctx, call_expr_id)
 
    }
 

	
 
    fn visit_expr_stmt(&mut self, ctx: &mut Ctx, id: ExpressionStatementId) -> VisitorResult {
 
        let expr_stmt = &ctx.heap[id];
 
        let subexpr_id = expr_stmt.expression;
 

	
 
        self.visit_expr(ctx, subexpr_id)
 
    }
 

	
 
    // Expressions
 

	
 
    fn visit_assignment_expr(&mut self, ctx: &mut Ctx, id: AssignmentExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let assign_expr = &ctx.heap[id];
 
        let left_expr_id = assign_expr.left;
 
        let right_expr_id = assign_expr.right;
 

	
 
        self.visit_expr(ctx, left_expr_id)?;
 
        self.visit_expr(ctx, right_expr_id)?;
 

	
 
        self.progress_assignment_expr(ctx, id)
 
    }
 

	
 
    fn visit_binding_expr(&mut self, ctx: &mut Ctx, id: BindingExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let binding_expr = &ctx.heap[id];
 
        let bound_to_id = binding_expr.bound_to;
 
        let bound_from_id = binding_expr.bound_from;
 

	
 
        self.visit_expr(ctx, bound_to_id)?;
 
        self.visit_expr(ctx, bound_from_id)?;
 

	
 
        self.progress_binding_expr(ctx, id)
 
    }
 

	
 
    fn visit_conditional_expr(&mut self, ctx: &mut Ctx, id: ConditionalExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let conditional_expr = &ctx.heap[id];
 
        let test_expr_id = conditional_expr.test;
 
        let true_expr_id = conditional_expr.true_expression;
 
        let false_expr_id = conditional_expr.false_expression;
 

	
 
        self.visit_expr(ctx, test_expr_id)?;
 
        self.visit_expr(ctx, true_expr_id)?;
 
        self.visit_expr(ctx, false_expr_id)?;
 

	
 
        self.progress_conditional_expr(ctx, id)
 
    }
 

	
 
    fn visit_binary_expr(&mut self, ctx: &mut Ctx, id: BinaryExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let binary_expr = &ctx.heap[id];
 
        let lhs_expr_id = binary_expr.left;
 
        let rhs_expr_id = binary_expr.right;
 

	
 
        self.visit_expr(ctx, lhs_expr_id)?;
 
        self.visit_expr(ctx, rhs_expr_id)?;
 

	
 
        self.progress_binary_expr(ctx, id)
 
    }
 

	
 
    fn visit_unary_expr(&mut self, ctx: &mut Ctx, id: UnaryExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let unary_expr = &ctx.heap[id];
 
        let arg_expr_id = unary_expr.expression;
 

	
 
        self.visit_expr(ctx, arg_expr_id)?;
 

	
 
        self.progress_unary_expr(ctx, id)
 
    }
 

	
 
    fn visit_indexing_expr(&mut self, ctx: &mut Ctx, id: IndexingExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let indexing_expr = &ctx.heap[id];
 
        let subject_expr_id = indexing_expr.subject;
 
        let index_expr_id = indexing_expr.index;
 

	
 
        self.visit_expr(ctx, subject_expr_id)?;
 
        self.visit_expr(ctx, index_expr_id)?;
 

	
 
        self.progress_indexing_expr(ctx, id)
 
    }
 

	
 
    fn visit_slicing_expr(&mut self, ctx: &mut Ctx, id: SlicingExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let slicing_expr = &ctx.heap[id];
 
        let subject_expr_id = slicing_expr.subject;
 
        let from_expr_id = slicing_expr.from_index;
 
        let to_expr_id = slicing_expr.to_index;
 

	
 
        self.visit_expr(ctx, subject_expr_id)?;
 
        self.visit_expr(ctx, from_expr_id)?;
 
        self.visit_expr(ctx, to_expr_id)?;
 

	
 
        self.progress_slicing_expr(ctx, id)
 
    }
 

	
 
    fn visit_select_expr(&mut self, ctx: &mut Ctx, id: SelectExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let select_expr = &ctx.heap[id];
 
        let subject_expr_id = select_expr.subject;
 

	
 
        self.visit_expr(ctx, subject_expr_id)?;
 

	
 
        self.progress_select_expr(ctx, id)
 
    }
 

	
 
    fn visit_literal_expr(&mut self, ctx: &mut Ctx, id: LiteralExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let literal_expr = &ctx.heap[id];
 
        match &literal_expr.value {
 
            Literal::Null | Literal::False | Literal::True |
 
            Literal::Integer(_) | Literal::Character(_) | Literal::String(_) => {
 
                // No subexpressions
 
            },
 
            Literal::Struct(literal) => {
 
                // TODO: @performance
 
                let expr_ids: Vec<_> = literal.fields
 
                    .iter()
 
                    .map(|f| f.value)
 
                    .collect();
 

	
 
                self.insert_initial_struct_polymorph_data(ctx, id);
 

	
 
                for expr_id in expr_ids {
 
                    self.visit_expr(ctx, expr_id)?;
 
                }
 
            },
 
            Literal::Enum(_) => {
 
                // Enumerations do not carry any subexpressions, but may still
 
                // have a user-defined polymorphic marker variable. For this 
 
                // reason we may still have to apply inference to this 
 
                // polymorphic variable
 
                self.insert_initial_enum_polymorph_data(ctx, id);
 
            },
 
            Literal::Union(literal) => {
 
                // May carry subexpressions and polymorphic arguments
 
                // TODO: @performance
 
                let expr_ids = literal.values.clone();
 
                self.insert_initial_union_polymorph_data(ctx, id);
 

	
 
                for expr_id in expr_ids {
 
                    self.visit_expr(ctx, expr_id)?;
 
                }
 
            },
 
            Literal::Array(expressions) => {
 
                // TODO: @performance
 
                let expr_ids = expressions.clone();
 
                for expr_id in expr_ids {
 
                    self.visit_expr(ctx, expr_id)?;
 
                }
 
            }
 
        }
 

	
 
        self.progress_literal_expr(ctx, id)
 
    }
 

	
 
    fn visit_cast_expr(&mut self, ctx: &mut Ctx, id: CastExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let cast_expr = &ctx.heap[id];
 
        let subject_expr_id = cast_expr.subject;
 

	
 
        self.visit_expr(ctx, subject_expr_id)?;
 

	
 
        self.progress_cast_expr(ctx, id)
 
    }
 

	
 
    fn visit_call_expr(&mut self, ctx: &mut Ctx, id: CallExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 
        self.insert_initial_call_polymorph_data(ctx, id);
 

	
 
        // By default we set the polymorph idx for calls to 0. If the call ends
 
        // up not being a polymorphic one, then we will select the default
 
        // expression types in the type table
 
        let call_expr = &ctx.heap[id];
 
        self.expr_types[call_expr.unique_id_in_definition as usize].field_or_monomorph_idx = 0;
 

	
 
        // Visit all arguments
 
        for arg_expr_id in call_expr.arguments.clone() { // TODO: @Performance
 
            self.visit_expr(ctx, arg_expr_id)?;
 
        }
 

	
 
        self.progress_call_expr(ctx, id)
 
    }
 

	
 
    fn visit_variable_expr(&mut self, ctx: &mut Ctx, id: VariableExpressionId) -> VisitorResult {
 
        let upcast_id = id.upcast();
 
        self.insert_initial_expr_inference_type(ctx, upcast_id)?;
 

	
 
        let var_expr = &ctx.heap[id];
 
        debug_assert!(var_expr.declaration.is_some());
 

	
 
        // Not pretty: if a binding expression, then this is the first time we
 
        // encounter the variable, so we still need to insert the variable data.
 
        let declaration = &ctx.heap[var_expr.declaration.unwrap()];
 
        if !self.var_types.contains_key(&declaration.this)  {
 
            debug_assert!(declaration.kind == VariableKind::Binding);
 
            let var_type = self.determine_inference_type_from_parser_type_elements(
 
                &declaration.parser_type.elements, true
 
            );
 
            self.var_types.insert(declaration.this, VarData{
 
                var_type,
 
                used_at: vec![upcast_id],
 
                linked_var: None
 
            });
 
        } else {
 
            let var_data = self.var_types.get_mut(&declaration.this).unwrap();
 
            var_data.used_at.push(upcast_id);
 
        }
 

	
 
        self.progress_variable_expr(ctx, id)
 
    }
 
}
 

	
 
impl PassTyping {
 
    #[allow(dead_code)] // used when debug flag at the top of this file is true.
 
    fn debug_get_display_name(&self, ctx: &Ctx, expr_id: ExpressionId) -> String {
 
        let expr_idx = ctx.heap[expr_id].get_unique_id_in_definition();
 
        let expr_type = &self.expr_types[expr_idx as usize].expr_type;
 
        expr_type.display_name(&ctx.heap)
 
    }
 

	
 
    fn resolve_types(&mut self, ctx: &mut Ctx, queue: &mut ResolveQueue) -> Result<(), ParseError> {
 
        // Keep inferring until we can no longer make any progress
 
        while !self.expr_queued.is_empty() {
 
            let next_expr_idx = self.expr_queued.pop_front().unwrap();
 
            self.progress_expr(ctx, next_expr_idx)?;
 
        }
 

	
 
        // Helper for transferring polymorphic variables to concrete types and
 
        // checking if they're completely specified
 
        fn poly_inference_to_concrete_type(
 
            ctx: &Ctx, expr_id: ExpressionId, inference: &Vec<InferenceType>
 
        ) -> Result<Vec<ConcreteType>, ParseError> {
 
            let mut concrete = Vec::with_capacity(inference.len());
 
        fn inference_type_to_concrete_type(
 
            ctx: &Ctx, expr_id: ExpressionId, inference: &Vec<InferenceType>,
 
            first_concrete_part: ConcreteTypePart,
 
        ) -> Result<(ConcreteType, Vec<ConcreteType>), ParseError> {
 
            // Prepare storage vector
 
            let mut num_inference_parts = 0;
 
            for inference_type in inference {
 
                num_inference_parts += inference_type.parts.len();
 
            }
 

	
 
            let mut concrete_full_parts = Vec::with_capacity(1 + num_inference_parts);
 
            concrete_full_parts.push(first_concrete_part);
 

	
 
            let mut concrete_poly_args = Vec::with_capacity(inference.len());
 

	
 
            // Go through all polymorphic arguments and add them to the concrete
 
            // types.
 
            for (poly_idx, poly_type) in inference.iter().enumerate() {
 
                if !poly_type.is_done {
 
                    let expr = &ctx.heap[expr_id];
 
                    let definition = match expr {
 
                        Expression::Call(expr) => expr.definition,
 
                        Expression::Literal(expr) => match &expr.value {
 
                            Literal::Enum(lit) => lit.definition,
 
                            Literal::Union(lit) => lit.definition,
 
                            Literal::Struct(lit) => lit.definition,
 
                            _ => unreachable!()
 
                        },
 
                        _ => unreachable!(),
 
                    };
 
                    let poly_vars = ctx.heap[definition].poly_vars();
 
                    return Err(ParseError::new_error_at_span(
 
                        &ctx.module.source, expr.operation_span(), format!(
 
                            "could not fully infer the type of polymorphic variable '{}' of this expression (got '{}')",
 
                            poly_vars[poly_idx].value.as_str(), poly_type.display_name(&ctx.heap)
 
                        )
 
                    ));
 
                }
 

	
 
                let mut concrete_type = ConcreteType::default();
 
                poly_type.write_concrete_type(&mut concrete_type);
 
                concrete.push(concrete_type);
 

	
 
                concrete_full_parts.extend_from_slice(&concrete_type.parts);
 
                concrete_poly_args.push(concrete_type);
 
            }
 

	
 
            Ok(concrete)
 
            Ok((ConcreteType{ parts: concrete_full_parts }, concrete_poly_args))
 
        }
 

	
 
        // Inference is now done. But we may still have uninferred types. So we
 
        // check for these.
 
        for (infer_expr_idx, infer_expr) in self.expr_types.iter_mut().enumerate() {
 
            let expr_type = &mut infer_expr.expr_type;
 
            if !expr_type.is_done {
 
                // Auto-infer numberlike/integerlike types to a regular int
 
                if expr_type.parts.len() == 1 && expr_type.parts[0] == InferenceTypePart::IntegerLike {
 
                    expr_type.parts[0] = InferenceTypePart::SInt32;
 
                    self.expr_queued.push_back(infer_expr_idx as i32);
 
                } else {
 
                    let expr = &ctx.heap[infer_expr.expr_id];
 
                    return Err(ParseError::new_error_at_span(
 
                        &ctx.module.source, expr.full_span(), format!(
 
                            "could not fully infer the type of this expression (got '{}')",
 
                            expr_type.display_name(&ctx.heap)
 
                        )
 
                    ));
 
                }
 
            }
 

	
 
            // Expression is fine, check if any extra data is attached
 
            if infer_expr.extra_data_idx < 0 { continue; }
 

	
 
            // Extra data is attached, perform typechecking and transfer
 
            // resolved information to the expression
 
            let extra_data = &self.extra_data[infer_expr.extra_data_idx as usize];
 
            if extra_data.poly_vars.is_empty() { continue; }
 

	
 
            // Note that only call and literal expressions need full inference.
 
            // Select expressions also use `extra_data`, but only for temporary
 
            // storage of the struct type whose field it is selecting.
 
            match &ctx.heap[extra_data.expr_id] {
 
                Expression::Call(expr) => {
 
                    if expr.method != Method::UserFunction && expr.method != Method::UserComponent {
 
                    // Check if it is not a builtin function. If not, then
 
                    // construct the first part of the concrete type.
 
                    let first_concrete_part = if expr.method == Method::UserFunction {
 
                        ConcreteTypePart::Function(expr.definition, extra_data.poly_vars.len() as u32)
 
                    } else if expr.method == Method::UserComponent {
 
                        ConcreteTypePart::Component(expr.definition, extra_data.poly_vars.len() as u32)
 
                    } else {
 
                        // Builtin function
 
                        continue;
 
                    }
 
                    };
 

	
 
                    let definition_id = expr.definition;
 
                    let poly_types = poly_inference_to_concrete_type(ctx, extra_data.expr_id, &extra_data.poly_vars)?;
 
                    let (concrete_type, poly_types) = inference_type_to_concrete_type(
 
                        ctx, extra_data.expr_id, &extra_data.poly_vars, first_concrete_part
 
                    )?;
 

	
 
                    match ctx.types.get_procedure_monomorph_index(&definition_id, &poly_types) {
 
                        Some(reserved_idx) => {
 
                            // Already typechecked, or already put into the resolve queue
 
                            infer_expr.field_or_monomorph_idx = reserved_idx;
 
                        },
 
                        None => {
 
                            // Not typechecked yet, so add an entry in the queue
 
                            let reserved_idx = ctx.types.reserve_procedure_monomorph_index(&definition_id, Some(poly_types.clone()));
 
                            infer_expr.field_or_monomorph_idx = reserved_idx;
 
                            queue.push(ResolveQueueElement{
 
                                root_id: ctx.heap[definition_id].defined_in(),
 
                                definition_id,
 
                                monomorph_types: poly_types,
 
                                reserved_monomorph_idx: reserved_idx,
 
                            });
 
                        }
 
                    }
 
                },
 
                Expression::Literal(expr) => {
 
                    let definition_id = match &expr.value {
 
                        Literal::Enum(lit) => lit.definition,
 
                        Literal::Union(lit) => lit.definition,
 
                        Literal::Struct(lit) => lit.definition,
 
                        _ => unreachable!(),
 
                    };
 

	
 
                    let poly_types = poly_inference_to_concrete_type(ctx, extra_data.expr_id, &extra_data.poly_vars)?;
 
                    let mono_index = ctx.types.add_data_monomorph(&definition_id, poly_types);
 
                    let first_concrete_part = ConcreteTypePart::Instance(definition_id, extra_data.poly_vars.len() as u32);
 
                    let (concrete_type, poly_types) = inference_type_to_concrete_type(
 
                        ctx, extra_data.expr_id, &extra_data.poly_vars, first_concrete_part
 
                    )?;
 
                    let mono_index = ctx.types.add_data_monomorph(modules, ctx, &definition_id, concrete_type)?;
 
                    infer_expr.field_or_monomorph_idx = mono_index;
 
                },
 
                Expression::Select(_) => {
 
                    debug_assert!(infer_expr.field_or_monomorph_idx >= 0);
 
                },
 
                _ => {
 
                    unreachable!("handling extra data for expression {:?}", &ctx.heap[extra_data.expr_id]);
 
                }
 
            }
 
        }
 

	
 
        // If we did any implicit type forcing, then our queue isn't empty
 
        // anymore
 
        while !self.expr_queued.is_empty() {
 
            let expr_idx = self.expr_queued.pop_back().unwrap();
 
            self.progress_expr(ctx, expr_idx)?;
 
        }
 

	
 
        // Every expression checked, and new monomorphs are queued. Transfer the
 
        // expression information to the type table.
 
        let definition_id = match &self.definition_type {
 
            DefinitionType::Component(id) => id.upcast(),
 
            DefinitionType::Function(id) => id.upcast(),
 
        };
 

	
 
        let target = ctx.types.get_procedure_expression_data_mut(&definition_id, self.reserved_idx);
 
        debug_assert!(target.poly_args == self.poly_vars);
 
        debug_assert!(target.expr_data.is_empty()); // makes sure we never queue something twice
 

	
 
        target.expr_data.reserve(self.expr_types.len());
 
        for infer_expr in self.expr_types.iter() {
 
            let mut concrete = ConcreteType::default();
 
            infer_expr.expr_type.write_concrete_type(&mut concrete);
 
            target.expr_data.push(MonomorphExpression{
 
                expr_type: concrete,
 
                field_or_monomorph_idx: infer_expr.field_or_monomorph_idx
 
            });
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_expr(&mut self, ctx: &mut Ctx, idx: i32) -> Result<(), ParseError> {
 
        let id = self.expr_types[idx as usize].expr_id; // TODO: @Temp
 
        match &ctx.heap[id] {
 
            Expression::Assignment(expr) => {
 
                let id = expr.this;
 
                self.progress_assignment_expr(ctx, id)
 
            },
 
            Expression::Binding(expr) => {
 
                let id = expr.this;
 
                self.progress_binding_expr(ctx, id)
 
            },
 
            Expression::Conditional(expr) => {
 
                let id = expr.this;
 
                self.progress_conditional_expr(ctx, id)
 
            },
 
            Expression::Binary(expr) => {
 
                let id = expr.this;
 
                self.progress_binary_expr(ctx, id)
 
            },
 
            Expression::Unary(expr) => {
 
                let id = expr.this;
 
                self.progress_unary_expr(ctx, id)
 
            },
 
            Expression::Indexing(expr) => {
 
                let id = expr.this;
 
                self.progress_indexing_expr(ctx, id)
 
            },
 
            Expression::Slicing(expr) => {
 
                let id = expr.this;
 
                self.progress_slicing_expr(ctx, id)
 
            },
 
            Expression::Select(expr) => {
 
                let id = expr.this;
 
                self.progress_select_expr(ctx, id)
 
            },
 
            Expression::Literal(expr) => {
 
                let id = expr.this;
 
                self.progress_literal_expr(ctx, id)
 
            },
 
            Expression::Cast(expr) => {
 
                let id = expr.this;
 
                self.progress_cast_expr(ctx, id)
 
            },
 
            Expression::Call(expr) => {
 
                let id = expr.this;
 
                self.progress_call_expr(ctx, id)
 
            },
 
            Expression::Variable(expr) => {
 
                let id = expr.this;
 
                self.progress_variable_expr(ctx, id)
 
            }
 
        }
 
    }
 

	
 
    fn progress_assignment_expr(&mut self, ctx: &mut Ctx, id: AssignmentExpressionId) -> Result<(), ParseError> {
 
        use AssignmentOperator as AO;
 

	
 
        let upcast_id = id.upcast();
 

	
 
        let expr = &ctx.heap[id];
 
        let arg1_expr_id = expr.left;
 
        let arg2_expr_id = expr.right;
 

	
 
        debug_log!("Assignment expr '{:?}': {}", expr.operation, upcast_id.index);
 
        debug_log!(" * Before:");
 
        debug_log!("   - Arg1 type: {}", self.debug_get_display_name(ctx, arg1_expr_id));
 
        debug_log!("   - Arg2 type: {}", self.debug_get_display_name(ctx, arg2_expr_id));
 
        debug_log!("   - Expr type: {}", self.debug_get_display_name(ctx, upcast_id));
 

	
 
        // Assignment does not return anything (it operates like a statement)
 
        let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &VOID_TEMPLATE)?;
 

	
 
        // Apply forced constraint to LHS value
 
        let progress_forced = match expr.operation {
 
            AO::Set =>
 
                false,
 
            AO::Concatenated =>
 
                self.apply_template_constraint(ctx, arg1_expr_id, &ARRAYLIKE_TEMPLATE)?,
 
            AO::Multiplied | AO::Divided | AO::Added | AO::Subtracted =>
 
                self.apply_template_constraint(ctx, arg1_expr_id, &NUMBERLIKE_TEMPLATE)?,
 
            AO::Remained | AO::ShiftedLeft | AO::ShiftedRight |
 
            AO::BitwiseAnded | AO::BitwiseXored | AO::BitwiseOred =>
 
                self.apply_template_constraint(ctx, arg1_expr_id, &INTEGERLIKE_TEMPLATE)?,
 
        };
 

	
 
        let (progress_arg1, progress_arg2) = self.apply_equal2_constraint(
 
            ctx, upcast_id, arg1_expr_id, 0, arg2_expr_id, 0
 
        )?;
 

	
 
        debug_log!(" * After:");
 
        debug_log!("   - Arg1 type [{}]: {}", progress_forced || progress_arg1, self.debug_get_display_name(ctx, arg1_expr_id));
 
        debug_log!("   - Arg2 type [{}]: {}", progress_arg2, self.debug_get_display_name(ctx, arg2_expr_id));
 
        debug_log!("   - Expr type [{}]: {}", progress_expr, self.debug_get_display_name(ctx, upcast_id));
 

	
 

	
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_forced || progress_arg1 { self.queue_expr(ctx, arg1_expr_id); }
 
        if progress_arg2 { self.queue_expr(ctx, arg2_expr_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_binding_expr(&mut self, ctx: &mut Ctx, id: BindingExpressionId) -> Result<(), ParseError> {
 
        let upcast_id = id.upcast();
 
        let binding_expr = &ctx.heap[id];
 
        let bound_from_id = binding_expr.bound_from;
 
        let bound_to_id = binding_expr.bound_to;
 

	
 
        // Output is always a boolean. The two arguments should be of equal
 
        // type.
 
        let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
        let (progress_from, progress_to) = self.apply_equal2_constraint(ctx, upcast_id, bound_from_id, 0, bound_to_id, 0)?;
 

	
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_from { self.queue_expr(ctx, bound_from_id); }
 
        if progress_to { self.queue_expr(ctx, bound_to_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_conditional_expr(&mut self, ctx: &mut Ctx, id: ConditionalExpressionId) -> Result<(), ParseError> {
 
        // Note: test expression type is already enforced
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let arg1_expr_id = expr.true_expression;
 
        let arg2_expr_id = expr.false_expression;
 

	
 
        debug_log!("Conditional expr: {}", upcast_id.index);
 
        debug_log!(" * Before:");
 
        debug_log!("   - Arg1 type: {}", self.debug_get_display_name(ctx, arg1_expr_id));
 
        debug_log!("   - Arg2 type: {}", self.debug_get_display_name(ctx, arg2_expr_id));
 
        debug_log!("   - Expr type: {}", self.debug_get_display_name(ctx, upcast_id));
 

	
 
        // I keep confusing myself: this applies equality of types between the
 
        // condition branches' types, and the result from the conditional
 
        // expression, because the result from the conditional is one of the
 
        // branches.
 
        let (progress_expr, progress_arg1, progress_arg2) = self.apply_equal3_constraint(
 
            ctx, upcast_id, arg1_expr_id, arg2_expr_id, 0
 
        )?;
 

	
 
        debug_log!(" * After:");
 
        debug_log!("   - Arg1 type [{}]: {}", progress_arg1, self.debug_get_display_name(ctx, arg1_expr_id));
 
        debug_log!("   - Arg2 type [{}]: {}", progress_arg2, self.debug_get_display_name(ctx, arg2_expr_id));
 
        debug_log!("   - Expr type [{}]: {}", progress_expr, self.debug_get_display_name(ctx, upcast_id));
 

	
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_arg1 { self.queue_expr(ctx, arg1_expr_id); }
 
        if progress_arg2 { self.queue_expr(ctx, arg2_expr_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_binary_expr(&mut self, ctx: &mut Ctx, id: BinaryExpressionId) -> Result<(), ParseError> {
 
        // Note: our expression type might be fixed by our parent, but we still
 
        // need to make sure it matches the type associated with our operation.
 
        use BinaryOperator as BO;
 

	
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let arg1_id = expr.left;
 
        let arg2_id = expr.right;
 

	
 
        debug_log!("Binary expr '{:?}': {}", expr.operation, upcast_id.index);
 
        debug_log!(" * Before:");
 
        debug_log!("   - Arg1 type: {}", self.debug_get_display_name(ctx, arg1_id));
 
        debug_log!("   - Arg2 type: {}", self.debug_get_display_name(ctx, arg2_id));
 
        debug_log!("   - Expr type: {}", self.debug_get_display_name(ctx, upcast_id));
 

	
 
        let (progress_expr, progress_arg1, progress_arg2) = match expr.operation {
 
            BO::Concatenate => {
 
                // Two cases: if one of the arguments or the output type is a
 
                // string, then all must be strings. Otherwise the arguments
 
                // must be arraylike and the output will be a array.
 
                let (expr_is_str, expr_is_not_str) = self.type_is_certainly_or_certainly_not_string(ctx, upcast_id);
 
                let (arg1_is_str, arg1_is_not_str) = self.type_is_certainly_or_certainly_not_string(ctx, arg1_id);
 
                let (arg2_is_str, arg2_is_not_str) = self.type_is_certainly_or_certainly_not_string(ctx, arg2_id);
 

	
 
                let someone_is_str = expr_is_str || arg1_is_str || arg2_is_str;
 
                let someone_is_not_str = expr_is_not_str || arg1_is_not_str || arg2_is_not_str;
 

	
 
                // Note: this statement is an expression returning the progression bools
 
                if someone_is_str {
 
                    // One of the arguments is a string, then all must be strings
 
                    self.apply_equal3_constraint(ctx, upcast_id, arg1_id, arg2_id, 0)?
 
                } else {
 
                    let progress_expr = if someone_is_not_str {
 
                        // Output must be a normal array
 
                        self.apply_template_constraint(ctx, upcast_id, &ARRAY_TEMPLATE)?
 
                    } else {
 
                        // Output may still be anything
 
                        self.apply_template_constraint(ctx, upcast_id, &ARRAYLIKE_TEMPLATE)?
 
                    };
 

	
 
                    let progress_arg1 = self.apply_template_constraint(ctx, arg1_id, &ARRAYLIKE_TEMPLATE)?;
 
                    let progress_arg2 = self.apply_template_constraint(ctx, arg2_id, &ARRAYLIKE_TEMPLATE)?;
 

	
 
                    // If they're all arraylike, then we want the subtype to match
 
                    let (subtype_expr, subtype_arg1, subtype_arg2) =
 
                        self.apply_equal3_constraint(ctx, upcast_id, arg1_id, arg2_id, 1)?;
 

	
 
                    (progress_expr || subtype_expr, progress_arg1 || subtype_arg1, progress_arg2 || subtype_arg2)
 
                }
 
            },
 
            BO::LogicalAnd => {
 
                // Forced boolean on all
 
                let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
                let progress_arg1 = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
                let progress_arg2 = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 

	
 
                (progress_expr, progress_arg1, progress_arg2)
 
            },
 
            BO::LogicalOr => {
 
                // Forced boolean on all
 
                let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
                let progress_arg1 = self.apply_forced_constraint(ctx, arg1_id, &BOOL_TEMPLATE)?;
 
                let progress_arg2 = self.apply_forced_constraint(ctx, arg2_id, &BOOL_TEMPLATE)?;
 

	
 
                (progress_expr, progress_arg1, progress_arg2)
 
            },
 
            BO::BitwiseOr | BO::BitwiseXor | BO::BitwiseAnd | BO::Remainder | BO::ShiftLeft | BO::ShiftRight => {
 
                // All equal of integer type
 
                let progress_base = self.apply_template_constraint(ctx, upcast_id, &INTEGERLIKE_TEMPLATE)?;
 
                let (progress_expr, progress_arg1, progress_arg2) =
 
                    self.apply_equal3_constraint(ctx, upcast_id, arg1_id, arg2_id, 0)?;
 

	
 
                (progress_base || progress_expr, progress_base || progress_arg1, progress_base || progress_arg2)
 
            },
 
            BO::Equality | BO::Inequality => {
 
                // Equal2 on args, forced boolean output
 
                let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
                let (progress_arg1, progress_arg2) =
 
                    self.apply_equal2_constraint(ctx, upcast_id, arg1_id, 0, arg2_id, 0)?;
 

	
 
                (progress_expr, progress_arg1, progress_arg2)
 
            },
 
            BO::LessThan | BO::GreaterThan | BO::LessThanEqual | BO::GreaterThanEqual => {
 
                // Equal2 on args with numberlike type, forced boolean output
 
                let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
                let progress_arg_base = self.apply_template_constraint(ctx, arg1_id, &NUMBERLIKE_TEMPLATE)?;
 
                let (progress_arg1, progress_arg2) =
 
                    self.apply_equal2_constraint(ctx, upcast_id, arg1_id, 0, arg2_id, 0)?;
 

	
 
                (progress_expr, progress_arg_base || progress_arg1, progress_arg_base || progress_arg2)
 
            },
 
            BO::Add | BO::Subtract | BO::Multiply | BO::Divide => {
 
                // All equal of number type
 
                let progress_base = self.apply_template_constraint(ctx, upcast_id, &NUMBERLIKE_TEMPLATE)?;
 
                let (progress_expr, progress_arg1, progress_arg2) =
 
                    self.apply_equal3_constraint(ctx, upcast_id, arg1_id, arg2_id, 0)?;
 

	
 
                (progress_base || progress_expr, progress_base || progress_arg1, progress_base || progress_arg2)
 
            },
 
        };
 

	
 
        debug_log!(" * After:");
 
        debug_log!("   - Arg1 type [{}]: {}", progress_arg1, self.debug_get_display_name(ctx, arg1_id));
 
        debug_log!("   - Arg2 type [{}]: {}", progress_arg2, self.debug_get_display_name(ctx, arg2_id));
 
        debug_log!("   - Expr type [{}]: {}", progress_expr, self.debug_get_display_name(ctx, upcast_id));
 

	
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_arg1 { self.queue_expr(ctx, arg1_id); }
 
        if progress_arg2 { self.queue_expr(ctx, arg2_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_unary_expr(&mut self, ctx: &mut Ctx, id: UnaryExpressionId) -> Result<(), ParseError> {
 
        use UnaryOperator as UO;
 

	
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let arg_id = expr.expression;
 

	
 
        debug_log!("Unary expr '{:?}': {}", expr.operation, upcast_id.index);
 
        debug_log!(" * Before:");
 
        debug_log!("   - Arg  type: {}", self.debug_get_display_name(ctx, arg_id));
 
        debug_log!("   - Expr type: {}", self.debug_get_display_name(ctx, upcast_id));
 

	
 
        let (progress_expr, progress_arg) = match expr.operation {
 
            UO::Positive | UO::Negative => {
 
                // Equal types of numeric class
 
                let progress_base = self.apply_template_constraint(ctx, upcast_id, &NUMBERLIKE_TEMPLATE)?;
 
                let (progress_expr, progress_arg) =
 
                    self.apply_equal2_constraint(ctx, upcast_id, upcast_id, 0, arg_id, 0)?;
 

	
 
                (progress_base || progress_expr, progress_base || progress_arg)
 
            },
 
            UO::BitwiseNot => {
 
                // Equal types of integer class
 
                let progress_base = self.apply_template_constraint(ctx, upcast_id, &INTEGERLIKE_TEMPLATE)?;
 
                let (progress_expr, progress_arg) =
 
                    self.apply_equal2_constraint(ctx, upcast_id, upcast_id, 0, arg_id, 0)?;
 

	
 
                (progress_base || progress_expr, progress_base || progress_arg)
 
            },
 
            UO::LogicalNot => {
 
                // Both bools
 
                let progress_expr = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
                let progress_arg = self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?;
 
                (progress_expr, progress_arg)
 
            }
 
        };
 

	
 
        debug_log!(" * After:");
 
        debug_log!("   - Arg  type [{}]: {}", progress_arg, self.debug_get_display_name(ctx, arg_id));
 
        debug_log!("   - Expr type [{}]: {}", progress_expr, self.debug_get_display_name(ctx, upcast_id));
 

	
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_arg { self.queue_expr(ctx, arg_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_indexing_expr(&mut self, ctx: &mut Ctx, id: IndexingExpressionId) -> Result<(), ParseError> {
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let subject_id = expr.subject;
 
        let index_id = expr.index;
 

	
 
        debug_log!("Indexing expr: {}", upcast_id.index);
 
        debug_log!(" * Before:");
 
        debug_log!("   - Subject type: {}", self.debug_get_display_name(ctx, subject_id));
 
        debug_log!("   - Index   type: {}", self.debug_get_display_name(ctx, index_id));
 
        debug_log!("   - Expr    type: {}", self.debug_get_display_name(ctx, upcast_id));
 

	
 
        // Make sure subject is arraylike and index is integerlike
 
        let progress_subject_base = self.apply_template_constraint(ctx, subject_id, &ARRAYLIKE_TEMPLATE)?;
 
        let progress_index = self.apply_template_constraint(ctx, index_id, &INTEGERLIKE_TEMPLATE)?;
 

	
 
        // Make sure if output is of T then subject is Array<T>
 
        let (progress_expr, progress_subject) =
 
            self.apply_equal2_constraint(ctx, upcast_id, upcast_id, 0, subject_id, 1)?;
 

	
 
        debug_log!(" * After:");
 
        debug_log!("   - Subject type [{}]: {}", progress_subject_base || progress_subject, self.debug_get_display_name(ctx, subject_id));
 
        debug_log!("   - Index   type [{}]: {}", progress_index, self.debug_get_display_name(ctx, index_id));
 
        debug_log!("   - Expr    type [{}]: {}", progress_expr, self.debug_get_display_name(ctx, upcast_id));
 

	
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_subject_base || progress_subject { self.queue_expr(ctx, subject_id); }
 
        if progress_index { self.queue_expr(ctx, index_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_slicing_expr(&mut self, ctx: &mut Ctx, id: SlicingExpressionId) -> Result<(), ParseError> {
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let subject_id = expr.subject;
 
        let from_id = expr.from_index;
 
        let to_id = expr.to_index;
 

	
 
        debug_log!("Slicing expr: {}", upcast_id.index);
 
        debug_log!(" * Before:");
 
        debug_log!("   - Subject type: {}", self.debug_get_display_name(ctx, subject_id));
 
        debug_log!("   - FromIdx type: {}", self.debug_get_display_name(ctx, from_id));
 
        debug_log!("   - ToIdx   type: {}", self.debug_get_display_name(ctx, to_id));
 
        debug_log!("   - Expr    type: {}", self.debug_get_display_name(ctx, upcast_id));
 

	
 
        // Make sure subject is arraylike and indices are of equal integerlike
 
        let progress_subject_base = self.apply_template_constraint(ctx, subject_id, &ARRAYLIKE_TEMPLATE)?;
 
        let progress_idx_base = self.apply_template_constraint(ctx, from_id, &INTEGERLIKE_TEMPLATE)?;
 
        let (progress_from, progress_to) = self.apply_equal2_constraint(ctx, upcast_id, from_id, 0, to_id, 0)?;
 

	
 
        let (progress_expr, progress_subject) = match self.type_is_certainly_or_certainly_not_string(ctx, subject_id) {
 
            (true, _) => {
 
                // Certainly a string
 
                (self.apply_forced_constraint(ctx, upcast_id, &STRING_TEMPLATE)?, false)
 
            },
 
            (_, true) => {
 
                // Certainly not a string
 
                let progress_expr_base = self.apply_template_constraint(ctx, upcast_id, &SLICE_TEMPLATE)?;
 
                let (progress_expr, progress_subject) =
 
                    self.apply_equal2_constraint(ctx, upcast_id, upcast_id, 1, subject_id, 1)?;
 

	
 
                (progress_expr_base || progress_expr, progress_subject)
 
            },
 
            _ => {
 
                // Could be anything, at least attempt to progress subtype
 
                let progress_expr_base = self.apply_template_constraint(ctx, upcast_id, &ARRAYLIKE_TEMPLATE)?;
 
                let (progress_expr, progress_subject) =
 
                    self.apply_equal2_constraint(ctx, upcast_id, upcast_id, 1, subject_id, 1)?;
 

	
 
                (progress_expr_base || progress_expr, progress_subject)
 
            }
 
        };
 

	
 
        debug_log!(" * After:");
 
        debug_log!("   - Subject type [{}]: {}", progress_subject_base || progress_subject, self.debug_get_display_name(ctx, subject_id));
 
        debug_log!("   - FromIdx type [{}]: {}", progress_idx_base || progress_from, self.debug_get_display_name(ctx, from_id));
 
        debug_log!("   - ToIdx   type [{}]: {}", progress_idx_base || progress_to, self.debug_get_display_name(ctx, to_id));
 
        debug_log!("   - Expr    type [{}]: {}", progress_expr, self.debug_get_display_name(ctx, upcast_id));
 

	
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 
        if progress_subject_base || progress_subject { self.queue_expr(ctx, subject_id); }
 
        if progress_idx_base || progress_from { self.queue_expr(ctx, from_id); }
 
        if progress_idx_base || progress_to { self.queue_expr(ctx, to_id); }
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_select_expr(&mut self, ctx: &mut Ctx, id: SelectExpressionId) -> Result<(), ParseError> {
 
        let upcast_id = id.upcast();
 
        
 
        debug_log!("Select expr: {}", upcast_id.index);
 
        debug_log!(" * Before:");
 
        debug_log!("   - Subject type: {}", self.debug_get_display_name(ctx, ctx.heap[id].subject));
 
        debug_log!("   - Expr    type: {}", self.debug_get_display_name(ctx, upcast_id));
 

	
 
        let subject_id = ctx.heap[id].subject;
 
        let subject_expr_idx = ctx.heap[subject_id].get_unique_id_in_definition();
 
        let select_expr = &ctx.heap[id];
 
        let expr_idx = select_expr.unique_id_in_definition;
 

	
 
        let infer_expr = &self.expr_types[expr_idx as usize];
 
        let extra_idx = infer_expr.extra_data_idx;
 

	
 
        fn determine_inference_type_instance<'a>(types: &'a TypeTable, infer_type: &InferenceType) -> Result<Option<&'a DefinedType>, ()> {
 
            for part in &infer_type.parts {
 
                if part.is_marker() || !part.is_concrete() {
 
                    continue;
 
                }
 

	
 
                // Part is concrete, check if it is an instance of something
 
                if let InferenceTypePart::Instance(definition_id, _num_sub) = part {
 
                    // Lookup type definition and ensure the specified field 
 
                    // name exists on the struct
 
                    let definition = types.get_base_definition(definition_id);
 
                    debug_assert!(definition.is_some());
 
                    let definition = definition.unwrap();
 

	
 
                    return Ok(Some(definition))
 
                } else {
 
                    // Expected an instance of something
 
                    return Err(())
 
                }
 
            }
 

	
 
            // Nothing is concrete yet
 
            Ok(None)
 
        }
 

	
 
        if infer_expr.field_or_monomorph_idx < 0 {
 
            // We don't know the field or the definition it is pointing to yet
 
            // Not yet known, check if we can determine it
 
            let subject_type = &self.expr_types[subject_expr_idx as usize].expr_type;
 
            let type_def = determine_inference_type_instance(&ctx.types, subject_type);
 

	
 
            match type_def {
 
                Ok(Some(type_def)) => {
 
                    // Subject type is known, check if it is a
 
                    // struct and the field exists on the struct
 
                    let struct_def = if let DefinedTypeVariant::Struct(struct_def) = &type_def.definition {
 
                        struct_def
 
                    } else {
 
                        return Err(ParseError::new_error_at_span(
 
                            &ctx.module.source, select_expr.field_name.span, format!(
 
                                "Can only apply field access to structs, got a subject of type '{}'",
 
                                subject_type.display_name(&ctx.heap)
 
                            )
 
                        ));
 
                    };
 

	
 
                    let mut struct_def_id = None;
 

	
 
                    for (field_def_idx, field_def) in struct_def.fields.iter().enumerate() {
 
                        if field_def.identifier == select_expr.field_name {
 
                            // Set field definition and index
 
                            let infer_expr = &mut self.expr_types[expr_idx as usize];
 
                            infer_expr.field_or_monomorph_idx = field_def_idx as i32;
 
                            struct_def_id = Some(type_def.ast_definition);
 
                            break;
 
                        }
 
                    }
 

	
 
                    if struct_def_id.is_none() {
 
                        let ast_struct_def = ctx.heap[type_def.ast_definition].as_struct();
 
                        return Err(ParseError::new_error_at_span(
 
                            &ctx.module.source, select_expr.field_name.span, format!(
 
                                "this field does not exist on the struct '{}'",
 
                                ast_struct_def.identifier.value.as_str()
 
                            )
 
                        ))
 
                    }
 

	
 
                    // Encountered definition and field index for the
 
                    // first time
 
                    self.insert_initial_select_polymorph_data(ctx, id, struct_def_id.unwrap());
 
                },
 
                Ok(None) => {
 
                    // Type of subject is not yet known, so we
 
                    // cannot make any progress yet
 
                    return Ok(())
 
                },
 
                Err(()) => {
 
                    return Err(ParseError::new_error_at_span(
 
                        &ctx.module.source, select_expr.field_name.span, format!(
 
                            "Can only apply field access to structs, got a subject of type '{}'",
 
                            subject_type.display_name(&ctx.heap)
 
                        )
 
                    ));
 
                }
 
            }
 
        }
 

	
 
        // If here then field index is known, and the referenced struct type
 
        // information is inserted into `extra_data`. Check to see if we can
 
        // do some mutual inference.
 
        let poly_data = &mut self.extra_data[extra_idx as usize];
 
        let mut poly_progress = HashSet::new();
 

	
 
        // Apply to struct's type
 
        let signature_type: *mut _ = &mut poly_data.embedded[0];
 
        let subject_type: *mut _ = &mut self.expr_types[subject_expr_idx as usize].expr_type;
 

	
 
        let (_, progress_subject) = Self::apply_equal2_signature_constraint(
 
            ctx, upcast_id, Some(subject_id), poly_data, &mut poly_progress,
 
            signature_type, 0, subject_type, 0
 
        )?;
 

	
 
        if progress_subject {
 
            self.expr_queued.push_back(subject_expr_idx);
 
        }
 

	
 
        // Apply to field's type
 
        let signature_type: *mut _ = &mut poly_data.returned;
 
        let expr_type: *mut _ = &mut self.expr_types[expr_idx as usize].expr_type;
 

	
 
        let (_, progress_expr) = Self::apply_equal2_signature_constraint(
 
            ctx, upcast_id, None, poly_data, &mut poly_progress,
 
            signature_type, 0, expr_type, 0
 
        )?;
 

	
 
        if progress_expr {
 
            if let Some(parent_id) = ctx.heap[upcast_id].parent_expr_id() {
 
                let parent_idx = ctx.heap[parent_id].get_unique_id_in_definition();
 
                self.expr_queued.push_back(parent_idx);
 
            }
 
        }
 

	
 
        // Reapply progress in polymorphic variables to struct's type
 
        let signature_type: *mut _ = &mut poly_data.embedded[0];
 
        let subject_type: *mut _ = &mut self.expr_types[subject_expr_idx as usize].expr_type;
 

	
 
        let progress_subject = Self::apply_equal2_polyvar_constraint(
 
            poly_data, &poly_progress, signature_type, subject_type
 
        );
 

	
 
        let signature_type: *mut _ = &mut poly_data.returned;
 
        let expr_type: *mut _ = &mut self.expr_types[expr_idx as usize].expr_type;
 

	
 
        let progress_expr = Self::apply_equal2_polyvar_constraint(
 
            poly_data, &poly_progress, signature_type, expr_type
 
        );
 

	
 
        if progress_subject { self.queue_expr(ctx, subject_id); }
 
        if progress_expr { self.queue_expr_parent(ctx, upcast_id); }
 

	
 
        debug_log!(" * After:");
 
        debug_log!("   - Subject type [{}]: {}", progress_subject, self.debug_get_display_name(ctx, subject_id));
 
        debug_log!("   - Expr    type [{}]: {}", progress_expr, self.debug_get_display_name(ctx, upcast_id));
 

	
 
        Ok(())
 
    }
 

	
 
    fn progress_literal_expr(&mut self, ctx: &mut Ctx, id: LiteralExpressionId) -> Result<(), ParseError> {
 
        let upcast_id = id.upcast();
 
        let expr = &ctx.heap[id];
 
        let expr_idx = expr.unique_id_in_definition;
 
        let extra_idx = self.expr_types[expr_idx as usize].extra_data_idx;
 

	
 
        debug_log!("Literal expr: {}", upcast_id.index);
 
        debug_log!(" * Before:");
 
        debug_log!("   - Expr type: {}", self.debug_get_display_name(ctx, upcast_id));
 

	
 
        let progress_expr = match &expr.value {
 
            Literal::Null => {
 
                self.apply_template_constraint(ctx, upcast_id, &MESSAGE_TEMPLATE)?
 
            },
 
            Literal::Integer(_) => {
 
                self.apply_template_constraint(ctx, upcast_id, &INTEGERLIKE_TEMPLATE)?
 
            },
 
            Literal::True | Literal::False => {
 
                self.apply_forced_constraint(ctx, upcast_id, &BOOL_TEMPLATE)?
 
            },
 
            Literal::Character(_) => {
 
                self.apply_forced_constraint(ctx, upcast_id, &CHARACTER_TEMPLATE)?
 
            },
 
            Literal::String(_) => {
 
                self.apply_forced_constraint(ctx, upcast_id, &STRING_TEMPLATE)?
 
            },
 
            Literal::Struct(data) => {
 
                let extra = &mut self.extra_data[extra_idx as usize];
 
                for _poly in &extra.poly_vars {
 
                    debug_log!(" * Poly: {}", _poly.display_name(&ctx.heap));
 
                }
 
                let mut poly_progress = HashSet::new();
 
                debug_assert_eq!(extra.embedded.len(), data.fields.len());
 

	
 
                debug_log!(" * During (inferring types from fields and struct type):");
 

	
 
                // Mutually infer field signature/expression types
 
                for (field_idx, field) in data.fields.iter().enumerate() {
 
                    let field_expr_id = field.value;
 
                    let field_expr_idx = ctx.heap[field_expr_id].get_unique_id_in_definition();
 
                    let signature_type: *mut _ = &mut extra.embedded[field_idx];
 
                    let field_type: *mut _ = &mut self.expr_types[field_expr_idx as usize].expr_type;
 
                    let (_, progress_arg) = Self::apply_equal2_signature_constraint(
 
                        ctx, upcast_id, Some(field_expr_id), extra, &mut poly_progress,
 
                        signature_type, 0, field_type, 0
 
                    )?;
 

	
 
                    debug_log!(
 
                        "   - Field {} type | sig: {}, field: {}", field_idx,
 
                        unsafe{&*signature_type}.display_name(&ctx.heap),
 
                        unsafe{&*field_type}.display_name(&ctx.heap)
 
                    );
 

	
 
                    if progress_arg {
 
                        self.expr_queued.push_back(field_expr_idx);
 
                    }
 
                }
 

	
 
                debug_log!("   - Field poly progress | {:?}", poly_progress);
 

	
 
                // Same for the type of the struct itself
 
                let signature_type: *mut _ = &mut extra.returned;
 
                let expr_type: *mut _ = &mut self.expr_types[expr_idx as usize].expr_type;
 
                let (_, progress_expr) = Self::apply_equal2_signature_constraint(
 
                    ctx, upcast_id, None, extra, &mut poly_progress,
 
                    signature_type, 0, expr_type, 0
 
                )?;
 

	
 
                debug_log!(
 
                    "   - Ret type | sig: {}, expr: {}",
 
                    unsafe{&*signature_type}.display_name(&ctx.heap),
 
                    unsafe{&*expr_type}.display_name(&ctx.heap)
 
                );
 
                debug_log!("   - Ret poly progress | {:?}", poly_progress);
 

	
 
                if progress_expr {
 
                    // TODO: @cleanup, cannot call utility self.queue_parent thingo
 
                    if let Some(parent_id) = ctx.heap[upcast_id].parent_expr_id() {
 
                        let parent_idx = ctx.heap[parent_id].get_unique_id_in_definition();
 
                        self.expr_queued.push_back(parent_idx);
 
                    }
 
                }
 

	
 
                // Check which expressions use the polymorphic arguments. If the
 
                // polymorphic variables have been progressed then we try to 
 
                // progress them inside the expression as well.
 
                debug_log!(" * During (reinferring from progressed polyvars):");
 

	
 
                // For all field expressions
 
                for field_idx in 0..extra.embedded.len() {
 
                    // Note: fields in extra.embedded are in the same order as
 
                    // they are specified in the literal. Whereas
 
                    // `data.fields[...].field_idx` points to the field in the
 
                    // struct definition.
 
                    let signature_type: *mut _ = &mut extra.embedded[field_idx];
 
                    let field_expr_id = data.fields[field_idx].value;
 
                    let field_expr_idx = ctx.heap[field_expr_id].get_unique_id_in_definition();
 
                    let field_type: *mut _ = &mut self.expr_types[field_expr_idx as usize].expr_type;
 

	
 
                    let progress_arg = Self::apply_equal2_polyvar_constraint(
 
                        extra, &poly_progress, signature_type, field_type
 
                    );
 

	
 
                    debug_log!(
 
                        "   - Field {} type | sig: {}, field: {}", field_idx,
 
                        unsafe{&*signature_type}.display_name(&ctx.heap),
 
                        unsafe{&*field_type}.display_name(&ctx.heap)
 
                    );
 
                    if progress_arg {
 
                        self.expr_queued.push_back(field_expr_idx);
 
                    }
 
                }
 
                
 
                // For the return type
 
                let signature_type: *mut _ = &mut extra.returned;
 
                let expr_type: *mut _ = &mut self.expr_types[expr_idx as usize].expr_type;
 

	
 
                let progress_expr = Self::apply_equal2_polyvar_constraint(
 
                    extra, &poly_progress, signature_type, expr_type
 
                );
 

	
 
                progress_expr
 
            },
 
            Literal::Enum(_) => {
 
                let extra = &mut self.extra_data[extra_idx as usize];
 
                for _poly in &extra.poly_vars {
 
                    debug_log!(" * Poly: {}", _poly.display_name(&ctx.heap));
 
                }
 
                let mut poly_progress = HashSet::new();
 
                
 
                debug_log!(" * During (inferring types from return type)");
 

	
 
                let signature_type: *mut _ = &mut extra.returned;
 
                let expr_type: *mut _ = &mut self.expr_types[expr_idx as usize].expr_type;
 
                let (_, progress_expr) = Self::apply_equal2_signature_constraint(
 
                    ctx, upcast_id, None, extra, &mut poly_progress,
 
                    signature_type, 0, expr_type, 0
 
                )?;
 

	
 
                debug_log!(
 
                    "   - Ret type | sig: {}, expr: {}",
 
                    unsafe{&*signature_type}.display_name(&ctx.heap),
 
                    unsafe{&*expr_type}.display_name(&ctx.heap)
 
                );
 

	
 
                if progress_expr {
 
                    // TODO: @cleanup
 
                    if let Some(parent_id) = ctx.heap[upcast_id].parent_expr_id() {
 
                        let parent_idx = ctx.heap[parent_id].get_unique_id_in_definition();
 
                        self.expr_queued.push_back(parent_idx);
 
                    }
 
                }
 

	
 
                debug_log!(" * During (reinferring from progress polyvars):");
 
                let progress_expr = Self::apply_equal2_polyvar_constraint(
 
                    extra, &poly_progress, signature_type, expr_type
 
                );
 

	
 
                progress_expr
 
            },
 
@@ -2754,1145 +2779,1147 @@ impl PassTyping {
 
    fn apply_forced_constraint(
 
        &mut self, ctx: &Ctx, expr_id: ExpressionId, template: &[InferenceTypePart]
 
    ) -> Result<bool, ParseError> {
 
        let expr_idx = ctx.heap[expr_id].get_unique_id_in_definition();
 
        let expr_type = &mut self.expr_types[expr_idx as usize].expr_type;
 
        match InferenceType::infer_subtree_for_single_type(expr_type, 0, template, 0, true) {
 
            SingleInferenceResult::Modified => Ok(true),
 
            SingleInferenceResult::Unmodified => Ok(false),
 
            SingleInferenceResult::Incompatible => Err(
 
                self.construct_template_type_error(ctx, expr_id, template)
 
            )
 
        }
 
    }
 

	
 
    /// Applies a type constraint that expects the two provided types to be
 
    /// equal. We attempt to make progress in inferring the types. If the call
 
    /// is successful then the composition of all types are made equal.
 
    /// The "parent" `expr_id` is provided to construct errors.
 
    fn apply_equal2_constraint(
 
        &mut self, ctx: &Ctx, expr_id: ExpressionId,
 
        arg1_id: ExpressionId, arg1_start_idx: usize,
 
        arg2_id: ExpressionId, arg2_start_idx: usize
 
    ) -> Result<(bool, bool), ParseError> {
 
        let arg1_expr_idx = ctx.heap[arg1_id].get_unique_id_in_definition(); // TODO: @Temp
 
        let arg2_expr_idx = ctx.heap[arg2_id].get_unique_id_in_definition();
 
        let arg1_type: *mut _ = &mut self.expr_types[arg1_expr_idx as usize].expr_type;
 
        let arg2_type: *mut _ = &mut self.expr_types[arg2_expr_idx as usize].expr_type;
 

	
 
        let infer_res = unsafe{ InferenceType::infer_subtrees_for_both_types(
 
            arg1_type, arg1_start_idx,
 
            arg2_type, arg2_start_idx
 
        ) };
 
        if infer_res == DualInferenceResult::Incompatible {
 
            return Err(self.construct_arg_type_error(ctx, expr_id, arg1_id, arg2_id));
 
        }
 

	
 
        Ok((infer_res.modified_lhs(), infer_res.modified_rhs()))
 
    }
 

	
 
    /// Applies an equal2 constraint between a signature type (e.g. a function
 
    /// argument or struct field) and an expression whose type should match that
 
    /// expression. If we make progress on the signature, then we try to see if
 
    /// any of the embedded polymorphic types can be progressed.
 
    ///
 
    /// `outer_expr_id` is the main expression we're progressing (e.g. a 
 
    /// function call), while `expr_id` is the embedded expression we're 
 
    /// matching against the signature. `expression_type` and 
 
    /// `expression_start_idx` belong to `expr_id`.
 
    fn apply_equal2_signature_constraint(
 
        ctx: &Ctx, outer_expr_id: ExpressionId, expr_id: Option<ExpressionId>,
 
        polymorph_data: &mut ExtraData, polymorph_progress: &mut HashSet<u32>,
 
        signature_type: *mut InferenceType, signature_start_idx: usize,
 
        expression_type: *mut InferenceType, expression_start_idx: usize
 
    ) -> Result<(bool, bool), ParseError> {
 
        // Safety: all pointers distinct
 

	
 
        // Infer the signature and expression type
 
        let infer_res = unsafe { 
 
            InferenceType::infer_subtrees_for_both_types(
 
                signature_type, signature_start_idx,
 
                expression_type, expression_start_idx
 
            ) 
 
        };
 

	
 
        if infer_res == DualInferenceResult::Incompatible {
 
            // TODO: Check if I still need to use this
 
            let outer_span = ctx.heap[outer_expr_id].full_span();
 
            let (span_name, span) = match expr_id {
 
                Some(expr_id) => ("argument's", ctx.heap[expr_id].full_span()),
 
                None => ("type's", outer_span)
 
            };
 
            let (signature_display_type, expression_display_type) = unsafe { (
 
                (&*signature_type).display_name(&ctx.heap),
 
                (&*expression_type).display_name(&ctx.heap)
 
            ) };
 

	
 
            return Err(ParseError::new_error_str_at_span(
 
                &ctx.module.source, outer_span,
 
                "failed to fully resolve the types of this expression"
 
            ).with_info_at_span(
 
                &ctx.module.source, span, format!(
 
                    "because the {} signature has been resolved to '{}', but the expression has been resolved to '{}'",
 
                    span_name, signature_display_type, expression_display_type
 
                )
 
            ));
 
        }
 

	
 
        // Try to see if we can progress any of the polymorphic variables
 
        let progress_sig = infer_res.modified_lhs();
 
        let progress_expr = infer_res.modified_rhs();
 

	
 
        if progress_sig {
 
            let signature_type = unsafe{&mut *signature_type};
 
            debug_assert!(
 
                signature_type.has_marker,
 
                "made progress on signature type, but it doesn't have a marker"
 
            );
 
            for (poly_idx, poly_section) in signature_type.marker_iter() {
 
                let polymorph_type = &mut polymorph_data.poly_vars[poly_idx as usize];
 
                match Self::apply_template_constraint_to_types(
 
                    polymorph_type, 0, poly_section, 0
 
                ) {
 
                    Ok(true) => { polymorph_progress.insert(poly_idx); },
 
                    Ok(false) => {},
 
                    Err(()) => { return Err(Self::construct_poly_arg_error(ctx, polymorph_data, outer_expr_id))}
 
                }
 
            }
 
        }
 
        Ok((progress_sig, progress_expr))
 
    }
 

	
 
    /// Applies equal2 constraints on the signature type for each of the 
 
    /// polymorphic variables. If the signature type is progressed then we 
 
    /// progress the expression type as well.
 
    ///
 
    /// This function assumes that the polymorphic variables have already been
 
    /// progressed as far as possible by calling 
 
    /// `apply_equal2_signature_constraint`. As such, we expect to not encounter
 
    /// any errors.
 
    ///
 
    /// This function returns true if the expression's type has been progressed
 
    fn apply_equal2_polyvar_constraint(
 
        polymorph_data: &ExtraData, _polymorph_progress: &HashSet<u32>,
 
        signature_type: *mut InferenceType, expr_type: *mut InferenceType
 
    ) -> bool {
 
        // Safety: all pointers should be distinct
 
        //         polymorph_data containers may not be modified
 
        let signature_type = unsafe{&mut *signature_type};
 
        let expr_type = unsafe{&mut *expr_type};
 

	
 
        // Iterate through markers in signature type to try and make progress
 
        // on the polymorphic variable        
 
        let mut seek_idx = 0;
 
        let mut modified_sig = false;
 
        
 
        while let Some((poly_idx, start_idx)) = signature_type.find_marker(seek_idx) {
 
            let end_idx = InferenceType::find_subtree_end_idx(&signature_type.parts, start_idx);
 
            // if polymorph_progress.contains(&poly_idx) {
 
                // Need to match subtrees
 
                let polymorph_type = &polymorph_data.poly_vars[poly_idx as usize];
 
                let modified_at_marker = Self::apply_template_constraint_to_types(
 
                    signature_type, start_idx, 
 
                    &polymorph_type.parts, 0
 
                ).expect("no failure when applying polyvar constraints");
 

	
 
                modified_sig = modified_sig || modified_at_marker;
 
            // }
 

	
 
            seek_idx = end_idx;
 
        }
 

	
 
        // If we made any progress on the signature's type, then we also need to
 
        // apply it to the expression that is supposed to match the signature.
 
        if modified_sig {
 
            match InferenceType::infer_subtree_for_single_type(
 
                expr_type, 0, &signature_type.parts, 0, true
 
            ) {
 
                SingleInferenceResult::Modified => true,
 
                SingleInferenceResult::Unmodified => false,
 
                SingleInferenceResult::Incompatible =>
 
                    unreachable!("encountered failure while reapplying modified signature to expression after polyvar inference")
 
            }
 
        } else {
 
            false
 
        }
 
    }
 

	
 
    /// Applies a type constraint that expects all three provided types to be
 
    /// equal. In case we can make progress in inferring the types then we
 
    /// attempt to do so. If the call is successful then the composition of all
 
    /// types is made equal.
 
    fn apply_equal3_constraint(
 
        &mut self, ctx: &Ctx, expr_id: ExpressionId,
 
        arg1_id: ExpressionId, arg2_id: ExpressionId,
 
        start_idx: usize
 
    ) -> Result<(bool, bool, bool), ParseError> {
 
        // Safety: all points are unique
 
        //         containers may not be modified
 
        let expr_expr_idx = ctx.heap[expr_id].get_unique_id_in_definition(); // TODO: @Temp
 
        let arg1_expr_idx = ctx.heap[arg1_id].get_unique_id_in_definition();
 
        let arg2_expr_idx = ctx.heap[arg2_id].get_unique_id_in_definition();
 

	
 
        let expr_type: *mut _ = &mut self.expr_types[expr_expr_idx as usize].expr_type;
 
        let arg1_type: *mut _ = &mut self.expr_types[arg1_expr_idx as usize].expr_type;
 
        let arg2_type: *mut _ = &mut self.expr_types[arg2_expr_idx as usize].expr_type;
 

	
 
        let expr_res = unsafe{
 
            InferenceType::infer_subtrees_for_both_types(expr_type, start_idx, arg1_type, start_idx)
 
        };
 
        if expr_res == DualInferenceResult::Incompatible {
 
            return Err(self.construct_expr_type_error(ctx, expr_id, arg1_id));
 
        }
 

	
 
        let args_res = unsafe{
 
            InferenceType::infer_subtrees_for_both_types(arg1_type, start_idx, arg2_type, start_idx) };
 
        if args_res == DualInferenceResult::Incompatible {
 
            return Err(self.construct_arg_type_error(ctx, expr_id, arg1_id, arg2_id));
 
        }
 

	
 
        // If all types are compatible, but the second call caused the arg1_type
 
        // to be expanded, then we must also assign this to expr_type.
 
        let mut progress_expr = expr_res.modified_lhs();
 
        let mut progress_arg1 = expr_res.modified_rhs();
 
        let progress_arg2 = args_res.modified_rhs();
 

	
 
        if args_res.modified_lhs() { 
 
            unsafe {
 
                let end_idx = InferenceType::find_subtree_end_idx(&(*arg2_type).parts, start_idx);
 
                let subtree = &((*arg2_type).parts[start_idx..end_idx]);
 
                (*expr_type).replace_subtree(start_idx, subtree);
 
            }
 
            progress_expr = true;
 
            progress_arg1 = true;
 
        }
 

	
 
        Ok((progress_expr, progress_arg1, progress_arg2))
 
    }
 

	
 
    // TODO: @optimize Since we only deal with a single type this might be done
 
    //  a lot more efficiently, methinks (disregarding the allocations here)
 
    fn apply_equal_n_constraint(
 
        &mut self, ctx: &Ctx, expr_id: ExpressionId, args: &[ExpressionId],
 
    ) -> Result<Vec<bool>, ParseError> {
 
        // Early exit
 
        match args.len() {
 
            0 => return Ok(vec!()),         // nothing to progress
 
            1 => return Ok(vec![false]),    // only one type, so nothing to infer
 
            _ => {}
 
        }
 

	
 
        let mut progress = Vec::new();
 
        progress.resize(args.len(), false);
 

	
 
        // Do pairwise inference, keep track of the last entry we made progress
 
        // on. Once done we need to update everything to the most-inferred type.
 
        let mut arg_iter = args.iter();
 
        let mut last_arg_id = *arg_iter.next().unwrap();
 
        let mut last_lhs_progressed = 0;
 
        let mut lhs_arg_idx = 0;
 

	
 
        while let Some(next_arg_id) = arg_iter.next() {
 
            let last_expr_idx = ctx.heap[last_arg_id].get_unique_id_in_definition(); // TODO: @Temp
 
            let next_expr_idx = ctx.heap[*next_arg_id].get_unique_id_in_definition();
 
            let last_type: *mut _ = &mut self.expr_types[last_expr_idx as usize].expr_type;
 
            let next_type: *mut _ = &mut self.expr_types[next_expr_idx as usize].expr_type;
 

	
 
            let res = unsafe {
 
                InferenceType::infer_subtrees_for_both_types(last_type, 0, next_type, 0)
 
            };
 

	
 
            if res == DualInferenceResult::Incompatible {
 
                return Err(self.construct_arg_type_error(ctx, expr_id, last_arg_id, *next_arg_id));
 
            }
 

	
 
            if res.modified_lhs() {
 
                // We re-inferred something on the left hand side, so everything
 
                // up until now should be re-inferred.
 
                progress[lhs_arg_idx] = true;
 
                last_lhs_progressed = lhs_arg_idx;
 
            }
 
            progress[lhs_arg_idx + 1] = res.modified_rhs();
 

	
 
            last_arg_id = *next_arg_id;
 
            lhs_arg_idx += 1;
 
        }
 

	
 
        // Re-infer everything. Note that we do not need to re-infer the type
 
        // exactly at `last_lhs_progressed`, but only everything up to it.
 
        let last_arg_expr_idx = ctx.heap[*args.last().unwrap()].get_unique_id_in_definition();
 
        let last_type: *mut _ = &mut self.expr_types[last_arg_expr_idx as usize].expr_type;
 
        for arg_idx in 0..last_lhs_progressed {
 
            let other_arg_expr_idx = ctx.heap[args[arg_idx]].get_unique_id_in_definition();
 
            let arg_type: *mut _ = &mut self.expr_types[other_arg_expr_idx as usize].expr_type;
 
            unsafe{
 
                (*arg_type).replace_subtree(0, &(*last_type).parts);
 
            }
 
            progress[arg_idx] = true;
 
        }
 

	
 
        Ok(progress)
 
    }
 

	
 
    /// Determines the `InferenceType` for the expression based on the
 
    /// expression parent. Note that if the parent is another expression, we do
 
    /// not take special action, instead we let parent expressions fix the type
 
    /// of subexpressions before they have a chance to call this function.
 
    fn insert_initial_expr_inference_type(
 
        &mut self, ctx: &mut Ctx, expr_id: ExpressionId
 
    ) -> Result<(), ParseError> {
 
        use ExpressionParent as EP;
 
        use InferenceTypePart as ITP;
 

	
 
        let expr = &ctx.heap[expr_id];
 
        let inference_type = match expr.parent() {
 
            EP::None =>
 
                // Should have been set by linker
 
                unreachable!(),
 
            EP::ExpressionStmt(_) =>
 
                // Determined during type inference
 
                InferenceType::new(false, false, vec![ITP::Unknown]),
 
            EP::Expression(parent_id, idx_in_parent) => {
 
                // If we are the test expression of a conditional expression,
 
                // then we must resolve to a boolean
 
                let is_conditional = if let Expression::Conditional(_) = &ctx.heap[*parent_id] {
 
                    true
 
                } else {
 
                    false
 
                };
 

	
 
                if is_conditional && *idx_in_parent == 0 {
 
                    InferenceType::new(false, true, vec![ITP::Bool])
 
                } else {
 
                    InferenceType::new(false, false, vec![ITP::Unknown])
 
                }
 
            },
 
            EP::If(_) | EP::While(_) =>
 
                // Must be a boolean
 
                InferenceType::new(false, true, vec![ITP::Bool]),
 
            EP::Return(_) =>
 
                // Must match the return type of the function
 
                if let DefinitionType::Function(func_id) = self.definition_type {
 
                    debug_assert_eq!(ctx.heap[func_id].return_types.len(), 1);
 
                    let returned = &ctx.heap[func_id].return_types[0];
 
                    self.determine_inference_type_from_parser_type_elements(&returned.elements, true)
 
                } else {
 
                    // Cannot happen: definition always set upon body traversal
 
                    // and "return" calls in components are illegal.
 
                    unreachable!();
 
                },
 
            EP::New(_) =>
 
                // Must be a component call, which we assign a "Void" return
 
                // type
 
                InferenceType::new(false, true, vec![ITP::Void]),
 
        };
 

	
 
        let infer_expr = &mut self.expr_types[expr.get_unique_id_in_definition() as usize];
 
        let needs_extra_data = match expr {
 
            Expression::Call(_) => true,
 
            Expression::Literal(expr) => match expr.value {
 
                Literal::Enum(_) | Literal::Union(_) | Literal::Struct(_) => true,
 
                _ => false,
 
            },
 
            Expression::Select(_) => true,
 
            _ => false,
 
        };
 

	
 
        if infer_expr.expr_id.is_invalid() {
 
            // Nothing is set yet
 
            infer_expr.expr_type = inference_type;
 
            infer_expr.expr_id = expr_id;
 
            if needs_extra_data {
 
                let extra_idx = self.extra_data.len() as i32;
 
                self.extra_data.push(ExtraData::default());
 
                infer_expr.extra_data_idx = extra_idx;
 
            }
 
        } else {
 
            // We already have an entry
 
            debug_assert!(false, "does this ever happen?");
 
            if let SingleInferenceResult::Incompatible = InferenceType::infer_subtree_for_single_type(
 
                &mut infer_expr.expr_type, 0, &inference_type.parts, 0, false
 
            ) {
 
                return Err(self.construct_expr_type_error(ctx, expr_id, expr_id));
 
            }
 

	
 
            debug_assert!((infer_expr.extra_data_idx != -1) == needs_extra_data);
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    fn insert_initial_call_polymorph_data(
 
        &mut self, ctx: &mut Ctx, call_id: CallExpressionId
 
    ) {
 
        // Note: the polymorph variables may be partially specified and may
 
        // contain references to the wrapping definition's (i.e. the proctype
 
        // we are currently visiting) polymorphic arguments.
 
        //
 
        // The arguments of the call may refer to polymorphic variables in the
 
        // definition of the function we're calling, not of the wrapping
 
        // definition. We insert markers in these inferred types to be able to
 
        // map them back and forth to the polymorphic arguments of the function
 
        // we are calling.
 
        let call = &ctx.heap[call_id];
 
        let extra_data_idx = self.expr_types[call.unique_id_in_definition as usize].extra_data_idx; // TODO: @Temp
 
        debug_assert!(extra_data_idx != -1, "insert initial call polymorph data, no preallocated ExtraData");
 

	
 
        // Handle the polymorphic arguments (if there are any)
 
        let num_poly_args = call.parser_type.elements[0].variant.num_embedded();
 
        let mut poly_args = Vec::with_capacity(num_poly_args);
 
        for embedded_elements in call.parser_type.iter_embedded(0) {
 
            poly_args.push(self.determine_inference_type_from_parser_type_elements(embedded_elements, true));
 
        }
 

	
 
        // Handle the arguments and return types
 
        let definition = &ctx.heap[call.definition];
 
        let (parameters, returned) = match definition {
 
            Definition::Component(definition) => {
 
                debug_assert_eq!(poly_args.len(), definition.poly_vars.len());
 
                (&definition.parameters, None)
 
            },
 
            Definition::Function(definition) => {
 
                debug_assert_eq!(poly_args.len(), definition.poly_vars.len());
 
                (&definition.parameters, Some(&definition.return_types))
 
            },
 
            Definition::Struct(_) | Definition::Enum(_) | Definition::Union(_) => {
 
                unreachable!("insert_initial_call_polymorph data for non-procedure type");
 
            },
 
        };
 

	
 
        let mut parameter_types = Vec::with_capacity(parameters.len());
 
        for parameter_id in parameters.clone().into_iter() { // TODO: @Performance @Now
 
            let param = &ctx.heap[parameter_id];
 
            parameter_types.push(self.determine_inference_type_from_parser_type_elements(&param.parser_type.elements, false));
 
        }
 

	
 
        let return_type = match returned {
 
            None => {
 
                // Component, so returns a "Void"
 
                InferenceType::new(false, true, vec![InferenceTypePart::Void])
 
            },
 
            Some(returned) => {
 
                debug_assert_eq!(returned.len(), 1); // TODO: @ReturnTypes
 
                let returned = &returned[0];
 
                self.determine_inference_type_from_parser_type_elements(&returned.elements, false)
 
            }
 
        };
 

	
 
        self.extra_data[extra_data_idx as usize] = ExtraData{
 
            expr_id: call_id.upcast(),
 
            definition_id: call.definition,
 
            poly_vars: poly_args,
 
            embedded: parameter_types,
 
            returned: return_type
 
        };
 
    }
 

	
 
    fn insert_initial_struct_polymorph_data(
 
        &mut self, ctx: &mut Ctx, lit_id: LiteralExpressionId,
 
    ) {
 
        use InferenceTypePart as ITP;
 
        let literal = &ctx.heap[lit_id];
 
        let extra_data_idx = self.expr_types[literal.unique_id_in_definition as usize].extra_data_idx; // TODO: @Temp
 
        debug_assert!(extra_data_idx != -1, "initial struct polymorph data, but no preallocated ExtraData");
 
        let literal = ctx.heap[lit_id].value.as_struct();
 

	
 
        // Handle polymorphic arguments
 
        let num_embedded = literal.parser_type.elements[0].variant.num_embedded();
 
        let mut total_num_poly_parts = 0;
 
        let mut poly_args = Vec::with_capacity(num_embedded);
 

	
 
        for embedded_elements in literal.parser_type.iter_embedded(0) {
 
            let poly_type = self.determine_inference_type_from_parser_type_elements(embedded_elements, true);
 
            total_num_poly_parts += poly_type.parts.len();
 
            poly_args.push(poly_type);
 
        }
 

	
 
        // Handle parser types on struct definition
 
        let defined_type = ctx.types.get_base_definition(&literal.definition).unwrap();
 
        let struct_type = defined_type.definition.as_struct();
 
        debug_assert_eq!(poly_args.len(), defined_type.poly_vars.len());
 

	
 
        // Note: programmer is capable of specifying fields in a struct literal
 
        // in a different order than on the definition. We take the literal-
 
        // specified order to be leading.
 
        let mut embedded_types = Vec::with_capacity(struct_type.fields.len());
 
        for lit_field in literal.fields.iter() {
 
            let def_field = &struct_type.fields[lit_field.field_idx];
 
            let inference_type = self.determine_inference_type_from_parser_type_elements(&def_field.parser_type.elements, false);
 
            embedded_types.push(inference_type);
 
        }
 

	
 
        // Return type is the struct type itself, with the appropriate 
 
        // polymorphic variables. So:
 
        // - 1 part for definition
 
        // - N_poly_arg marker parts for each polymorphic argument
 
        // - all the parts for the currently known polymorphic arguments 
 
        let parts_reserved = 1 + poly_args.len() + total_num_poly_parts;
 
        let mut parts = Vec::with_capacity(parts_reserved);
 
        parts.push(ITP::Instance(literal.definition, poly_args.len() as u32));
 
        let mut return_type_done = true;
 
        for (poly_var_idx, poly_var) in poly_args.iter().enumerate() {
 
            if !poly_var.is_done { return_type_done = false; }
 

	
 
            parts.push(ITP::Marker(poly_var_idx as u32));
 
            parts.extend(poly_var.parts.iter().cloned());
 
        }
 

	
 
        debug_assert_eq!(parts.len(), parts_reserved);
 
        let return_type = InferenceType::new(!poly_args.is_empty(), return_type_done, parts);
 

	
 
        self.extra_data[extra_data_idx as usize] = ExtraData{
 
            expr_id: lit_id.upcast(),
 
            definition_id: literal.definition,
 
            poly_vars: poly_args,
 
            embedded: embedded_types,
 
            returned: return_type,
 
        };
 
    }
 

	
 
    /// Inserts the extra polymorphic data struct for enum expressions. These
 
    /// can never be determined from the enum itself, but may be inferred from
 
    /// the use of the enum.
 
    fn insert_initial_enum_polymorph_data(
 
        &mut self, ctx: &Ctx, lit_id: LiteralExpressionId
 
    ) {
 
        use InferenceTypePart as ITP;
 
        let literal = &ctx.heap[lit_id];
 
        let extra_data_idx = self.expr_types[literal.unique_id_in_definition as usize].extra_data_idx; // TODO: @Temp
 
        debug_assert!(extra_data_idx != -1, "initial enum polymorph data, but no preallocated ExtraData");
 
        let literal = ctx.heap[lit_id].value.as_enum();
 

	
 
        // Handle polymorphic arguments to the enum
 
        let num_poly_args = literal.parser_type.elements[0].variant.num_embedded();
 
        let mut total_num_poly_parts = 0;
 
        let mut poly_args = Vec::with_capacity(num_poly_args);
 

	
 
        for embedded_elements in literal.parser_type.iter_embedded(0) {
 
            let poly_type = self.determine_inference_type_from_parser_type_elements(embedded_elements, true);
 
            total_num_poly_parts += poly_type.parts.len();
 
            poly_args.push(poly_type);
 
        }
 

	
 
        // Handle enum type itself
 
        let parts_reserved = 1 + poly_args.len() + total_num_poly_parts;
 
        let mut parts = Vec::with_capacity(parts_reserved);
 
        parts.push(ITP::Instance(literal.definition, poly_args.len() as u32));
 
        let mut enum_type_done = true;
 
        for (poly_var_idx, poly_var) in poly_args.iter().enumerate() {
 
            if !poly_var.is_done { enum_type_done = false; }
 

	
 
            parts.push(ITP::Marker(poly_var_idx as u32));
 
            parts.extend(poly_var.parts.iter().cloned());
 
        }
 

	
 
        debug_assert_eq!(parts.len(), parts_reserved);
 
        let enum_type = InferenceType::new(!poly_args.is_empty(), enum_type_done, parts);
 

	
 
        self.extra_data[extra_data_idx as usize] = ExtraData{
 
            expr_id: lit_id.upcast(),
 
            definition_id: literal.definition,
 
            poly_vars: poly_args,
 
            embedded: Vec::new(),
 
            returned: enum_type,
 
        };
 
    }
 

	
 
    /// Inserts the extra polymorphic data struct for unions. The polymorphic
 
    /// arguments may be partially determined from embedded values in the union.
 
    fn insert_initial_union_polymorph_data(
 
        &mut self, ctx: &Ctx, lit_id: LiteralExpressionId
 
    ) {
 
        use InferenceTypePart as ITP;
 
        let literal = &ctx.heap[lit_id];
 
        let extra_data_idx = self.expr_types[literal.unique_id_in_definition as usize].extra_data_idx; // TODO: @Temp
 
        debug_assert!(extra_data_idx != -1, "initial union polymorph data, but no preallocated ExtraData");
 
        let literal = ctx.heap[lit_id].value.as_union();
 

	
 
        // Construct the polymorphic variables
 
        let num_poly_args = literal.parser_type.elements[0].variant.num_embedded();
 
        let mut total_num_poly_parts = 0;
 
        let mut poly_args = Vec::with_capacity(num_poly_args);
 

	
 
        for embedded_elements in literal.parser_type.iter_embedded(0) {
 
            let poly_type = self.determine_inference_type_from_parser_type_elements(embedded_elements, true);
 
            total_num_poly_parts += poly_type.parts.len();
 
            poly_args.push(poly_type);
 
        }
 

	
 
        // Handle any of the embedded values in the variant, if specified
 
        let definition_id = literal.definition;
 
        let type_definition = ctx.types.get_base_definition(&definition_id).unwrap();
 
        let union_definition = type_definition.definition.as_union();
 
        debug_assert_eq!(poly_args.len(), type_definition.poly_vars.len());
 

	
 
        let variant_definition = &union_definition.variants[literal.variant_idx];
 
        debug_assert_eq!(variant_definition.embedded.len(), literal.values.len());
 

	
 
        let mut embedded = Vec::with_capacity(variant_definition.embedded.len());
 
        for embedded_parser_type in &variant_definition.embedded {
 
            let inference_type = self.determine_inference_type_from_parser_type_elements(&embedded_parser_type.elements, false);
 
            embedded.push(inference_type);
 
        }
 

	
 
        // Handle the type of the union itself
 
        let parts_reserved = 1 + poly_args.len() + total_num_poly_parts;
 
        let mut parts = Vec::with_capacity(parts_reserved);
 
        parts.push(ITP::Instance(definition_id, poly_args.len() as u32));
 
        let mut union_type_done = true;
 
        for (poly_var_idx, poly_var) in poly_args.iter().enumerate() {
 
            if !poly_var.is_done { union_type_done = false; }
 

	
 
            parts.push(ITP::Marker(poly_var_idx as u32));
 
            parts.extend(poly_var.parts.iter().cloned());
 
        }
 

	
 
        debug_assert_eq!(parts_reserved, parts.len());
 
        let union_type = InferenceType::new(!poly_args.is_empty(), union_type_done, parts);
 

	
 
        self.extra_data[extra_data_idx as usize] = ExtraData{
 
            expr_id: lit_id.upcast(),
 
            definition_id: literal.definition,
 
            poly_vars: poly_args,
 
            embedded,
 
            returned: union_type
 
        };
 
    }
 

	
 
    /// Inserts the extra polymorphic data struct. Assumes that the select
 
    /// expression's referenced (definition_id, field_idx) has been resolved.
 
    fn insert_initial_select_polymorph_data(
 
        &mut self, ctx: &Ctx, select_id: SelectExpressionId, struct_def_id: DefinitionId
 
    ) {
 
        use InferenceTypePart as ITP;
 

	
 
        // Retrieve relevant data
 
        let expr = &ctx.heap[select_id];
 
        let expr_type = &self.expr_types[expr.unique_id_in_definition as usize];
 
        let field_idx = expr_type.field_or_monomorph_idx as usize;
 
        let extra_data_idx = expr_type.extra_data_idx; // TODO: @Temp
 
        debug_assert!(extra_data_idx != -1, "initial select polymorph data, but no preallocated ExtraData");
 

	
 
        let definition = ctx.heap[struct_def_id].as_struct();
 

	
 
        // Generate initial polyvar types and struct type
 
        // TODO: @Performance: we can immediately set the polyvars of the subject's struct type
 
        let num_poly_vars = definition.poly_vars.len();
 
        let mut poly_vars = Vec::with_capacity(num_poly_vars);
 
        let struct_parts_reserved = 1 + 2 * num_poly_vars;
 
        let mut struct_parts = Vec::with_capacity(struct_parts_reserved);
 
        struct_parts.push(ITP::Instance(struct_def_id, num_poly_vars as u32));
 

	
 
        for poly_idx in 0..num_poly_vars {
 
            poly_vars.push(InferenceType::new(true, false, vec![
 
                ITP::Marker(poly_idx as u32), ITP::Unknown,
 
            ]));
 
            struct_parts.push(ITP::Marker(poly_idx as u32));
 
            struct_parts.push(ITP::Unknown);
 
        }
 
        debug_assert_eq!(struct_parts.len(), struct_parts_reserved);
 

	
 
        // Generate initial field type
 
        let field_type = self.determine_inference_type_from_parser_type_elements(&definition.fields[field_idx].parser_type.elements, false);
 
        self.extra_data[extra_data_idx as usize] = ExtraData{
 
            expr_id: select_id.upcast(),
 
            definition_id: struct_def_id,
 
            poly_vars,
 
            embedded: vec![InferenceType::new(num_poly_vars != 0, num_poly_vars == 0, struct_parts)],
 
            returned: field_type
 
        };
 
    }
 

	
 
    /// Determines the initial InferenceType from the provided ParserType. This
 
    /// may be called with two kinds of intentions:
 
    /// 1. To resolve a ParserType within the body of a function, or on
 
    ///     polymorphic arguments to calls/instantiations within that body. This
 
    ///     means that the polymorphic variables are known and can be replaced
 
    ///     with the monomorph we're instantiating.
 
    /// 2. To resolve a ParserType on a called function's definition or on
 
    ///     an instantiated datatype's members. This means that the polymorphic
 
    ///     arguments inside those ParserTypes refer to the polymorphic
 
    ///     variables in the called/instantiated type's definition.
 
    /// In the second case we place InferenceTypePart::Marker instances such
 
    /// that we can perform type inference on the polymorphic variables.
 
    fn determine_inference_type_from_parser_type_elements(
 
        &mut self, elements: &[ParserTypeElement],
 
        use_definitions_known_poly_args: bool
 
    ) -> InferenceType {
 
        use ParserTypeVariant as PTV;
 
        use InferenceTypePart as ITP;
 

	
 
        let mut infer_type = Vec::with_capacity(elements.len());
 
        let mut has_inferred = false;
 
        let mut has_markers = false;
 

	
 
        for element in elements {
 
            match &element.variant {
 
                // Compiler-only types
 
                PTV::Void => { infer_type.push(ITP::Void); },
 
                PTV::InputOrOutput => { infer_type.push(ITP::PortLike); has_inferred = true },
 
                PTV::ArrayLike => { infer_type.push(ITP::ArrayLike); has_inferred = true },
 
                PTV::IntegerLike => { infer_type.push(ITP::IntegerLike); has_inferred = true },
 
                // Builtins
 
                PTV::Message => {
 
                    // TODO: @types Remove the Message -> Byte hack at some point...
 
                    infer_type.push(ITP::Message);
 
                    infer_type.push(ITP::UInt8);
 
                },
 
                PTV::Bool => { infer_type.push(ITP::Bool); },
 
                PTV::UInt8 => { infer_type.push(ITP::UInt8); },
 
                PTV::UInt16 => { infer_type.push(ITP::UInt16); },
 
                PTV::UInt32 => { infer_type.push(ITP::UInt32); },
 
                PTV::UInt64 => { infer_type.push(ITP::UInt64); },
 
                PTV::SInt8 => { infer_type.push(ITP::SInt8); },
 
                PTV::SInt16 => { infer_type.push(ITP::SInt16); },
 
                PTV::SInt32 => { infer_type.push(ITP::SInt32); },
 
                PTV::SInt64 => { infer_type.push(ITP::SInt64); },
 
                PTV::Character => { infer_type.push(ITP::Character); },
 
                PTV::String => {
 
                    infer_type.push(ITP::String);
 
                    infer_type.push(ITP::Character);
 
                },
 
                // Special markers
 
                PTV::IntegerLiteral => { unreachable!("integer literal type on variable type"); },
 
                PTV::Inferred => {
 
                    infer_type.push(ITP::Unknown);
 
                    has_inferred = true;
 
                },
 
                // With nested types
 
                PTV::Array => { infer_type.push(ITP::Array); },
 
                PTV::Input => { infer_type.push(ITP::Input); },
 
                PTV::Output => { infer_type.push(ITP::Output); },
 
                PTV::PolymorphicArgument(belongs_to_definition, poly_arg_idx) => {
 
                    let poly_arg_idx = *poly_arg_idx;
 
                    if use_definitions_known_poly_args {
 
                        // Refers to polymorphic argument on procedure we're currently processing.
 
                        // This argument is already known.
 
                        debug_assert_eq!(*belongs_to_definition, self.definition_type.definition_id());
 
                        debug_assert!((poly_arg_idx as usize) < self.poly_vars.len());
 

	
 
                        Self::determine_inference_type_from_concrete_type(
 
                            &mut infer_type, &self.poly_vars[poly_arg_idx as usize].parts
 
                        );
 
                    } else {
 
                        // Polymorphic argument has to be inferred
 
                        has_markers = true;
 
                        has_inferred = true;
 
                        infer_type.push(ITP::Marker(poly_arg_idx));
 
                        infer_type.push(ITP::Unknown)
 
                    }
 
                },
 
                PTV::Definition(definition_id, num_embedded) => {
 
                    infer_type.push(ITP::Instance(*definition_id, *num_embedded));
 
                }
 
            }
 
        }
 

	
 
        InferenceType::new(has_markers, !has_inferred, infer_type)
 
    }
 

	
 
    /// Determines the inference type from an already concrete type. Applies the
 
    /// various type "hacks" inside the type inferencer.
 
    fn determine_inference_type_from_concrete_type(parser_type: &mut Vec<InferenceTypePart>, concrete_type: &[ConcreteTypePart]) {
 
        use InferenceTypePart as ITP;
 
        use ConcreteTypePart as CTP;
 

	
 
        for concrete_part in concrete_type {
 
            match concrete_part {
 
                CTP::Void => parser_type.push(ITP::Void),
 
                CTP::Message => parser_type.push(ITP::Message),
 
                CTP::Bool => parser_type.push(ITP::Bool),
 
                CTP::UInt8 => parser_type.push(ITP::UInt8),
 
                CTP::UInt16 => parser_type.push(ITP::UInt16),
 
                CTP::UInt32 => parser_type.push(ITP::UInt32),
 
                CTP::UInt64 => parser_type.push(ITP::UInt64),
 
                CTP::SInt8 => parser_type.push(ITP::SInt8),
 
                CTP::SInt16 => parser_type.push(ITP::SInt16),
 
                CTP::SInt32 => parser_type.push(ITP::SInt32),
 
                CTP::SInt64 => parser_type.push(ITP::SInt64),
 
                CTP::Character => parser_type.push(ITP::Character),
 
                CTP::String => {
 
                    parser_type.push(ITP::String);
 
                    parser_type.push(ITP::Character)
 
                },
 
                CTP::Array => parser_type.push(ITP::Array),
 
                CTP::Slice => parser_type.push(ITP::Slice),
 
                CTP::Input => parser_type.push(ITP::Input),
 
                CTP::Output => parser_type.push(ITP::Output),
 
                CTP::Instance(id, num) => parser_type.push(ITP::Instance(*id, *num)),
 
                CTP::Function(_, _) => unreachable!("function type during concrete to inference type conversion"),
 
                CTP::Component(_, _) => unreachable!("component type during concrete to inference type conversion"),
 
            }
 
        }
 
    }
 

	
 
    /// Construct an error when an expression's type does not match. This
 
    /// happens if we infer the expression type from its arguments (e.g. the
 
    /// expression type of an addition operator is the type of the arguments)
 
    /// But the expression type was already set due to our parent (e.g. an
 
    /// "if statement" or a "logical not" always expecting a boolean)
 
    fn construct_expr_type_error(
 
        &self, ctx: &Ctx, expr_id: ExpressionId, arg_id: ExpressionId
 
    ) -> ParseError {
 
        // TODO: Expand and provide more meaningful information for humans
 
        let expr = &ctx.heap[expr_id];
 
        let arg_expr = &ctx.heap[arg_id];
 
        let expr_idx = expr.get_unique_id_in_definition();
 
        let arg_expr_idx = arg_expr.get_unique_id_in_definition();
 
        let expr_type = &self.expr_types[expr_idx as usize].expr_type;
 
        let arg_type = &self.expr_types[arg_expr_idx as usize].expr_type;
 

	
 
        return ParseError::new_error_at_span(
 
            &ctx.module.source, expr.operation_span(), format!(
 
                "incompatible types: this expression expected a '{}'",
 
                expr_type.display_name(&ctx.heap)
 
            )
 
        ).with_info_at_span(
 
            &ctx.module.source, arg_expr.full_span(), format!(
 
                "but this expression yields a '{}'",
 
                arg_type.display_name(&ctx.heap)
 
            )
 
        )
 
    }
 

	
 
    fn construct_arg_type_error(
 
        &self, ctx: &Ctx, expr_id: ExpressionId,
 
        arg1_id: ExpressionId, arg2_id: ExpressionId
 
    ) -> ParseError {
 
        let expr = &ctx.heap[expr_id];
 
        let arg1 = &ctx.heap[arg1_id];
 
        let arg2 = &ctx.heap[arg2_id];
 

	
 
        let arg1_idx = arg1.get_unique_id_in_definition();
 
        let arg1_type = &self.expr_types[arg1_idx as usize].expr_type;
 
        let arg2_idx = arg2.get_unique_id_in_definition();
 
        let arg2_type = &self.expr_types[arg2_idx as usize].expr_type;
 

	
 
        return ParseError::new_error_str_at_span(
 
            &ctx.module.source, expr.operation_span(),
 
            "incompatible types: cannot apply this expression"
 
        ).with_info_at_span(
 
            &ctx.module.source, arg1.full_span(), format!(
 
                "Because this expression has type '{}'",
 
                arg1_type.display_name(&ctx.heap)
 
            )
 
        ).with_info_at_span(
 
            &ctx.module.source, arg2.full_span(), format!(
 
                "But this expression has type '{}'",
 
                arg2_type.display_name(&ctx.heap)
 
            )
 
        )
 
    }
 

	
 
    fn construct_template_type_error(
 
        &self, ctx: &Ctx, expr_id: ExpressionId, template: &[InferenceTypePart]
 
    ) -> ParseError {
 
        let expr = &ctx.heap[expr_id];
 
        let expr_idx = expr.get_unique_id_in_definition();
 
        let expr_type = &self.expr_types[expr_idx as usize].expr_type;
 

	
 
        return ParseError::new_error_at_span(
 
            &ctx.module.source, expr.full_span(), format!(
 
                "incompatible types: got a '{}' but expected a '{}'",
 
                expr_type.display_name(&ctx.heap), 
 
                InferenceType::partial_display_name(&ctx.heap, template)
 
            )
 
        )
 
    }
 

	
 
    /// Constructs a human interpretable error in the case that type inference
 
    /// on a polymorphic variable to a function call or literal construction 
 
    /// failed. This may only be caused by a pair of inference types (which may 
 
    /// come from arguments or the return type) having two different inferred 
 
    /// values for that polymorphic variable.
 
    ///
 
    /// So we find this pair and construct the error using it.
 
    ///
 
    /// We assume that the expression is a function call or a struct literal,
 
    /// and that an actual error has occurred.
 
    fn construct_poly_arg_error(
 
        ctx: &Ctx, poly_data: &ExtraData, expr_id: ExpressionId
 
    ) -> ParseError {
 
        // Helper function to check for polymorph mismatch between two inference
 
        // types.
 
        fn has_poly_mismatch<'a>(type_a: &'a InferenceType, type_b: &'a InferenceType) -> Option<(u32, &'a [InferenceTypePart], &'a [InferenceTypePart])> {
 
            if !type_a.has_marker || !type_b.has_marker {
 
                return None
 
            }
 

	
 
            for (marker_a, section_a) in type_a.marker_iter() {
 
                for (marker_b, section_b) in type_b.marker_iter() {
 
                    if marker_a != marker_b {
 
                        // Not the same polymorphic variable
 
                        continue;
 
                    }
 

	
 
                    if !InferenceType::check_subtrees(section_a, 0, section_b, 0) {
 
                        // Not compatible
 
                        return Some((marker_a, section_a, section_b))
 
                    }
 
                }
 
            }
 

	
 
            None
 
        }
 

	
 
        // Helper function to check for polymorph mismatch between an inference
 
        // type and the polymorphic variables in the poly_data struct.
 
        fn has_explicit_poly_mismatch<'a>(
 
            poly_vars: &'a [InferenceType], arg: &'a InferenceType
 
        ) -> Option<(u32, &'a [InferenceTypePart], &'a [InferenceTypePart])> {
 
            for (marker, section) in arg.marker_iter() {
 
                debug_assert!((marker as usize) < poly_vars.len());
 
                let poly_section = &poly_vars[marker as usize].parts;
 
                if !InferenceType::check_subtrees(poly_section, 0, section, 0) {
 
                    return Some((marker, poly_section, section))
 
                }
 
            }
 

	
 
            None
 
        }
 

	
 
        // Helpers function to retrieve polyvar name and definition name
 
        fn get_poly_var_and_definition_name<'a>(ctx: &'a Ctx, poly_var_idx: u32, definition_id: DefinitionId) -> (&'a str, &'a str) {
 
            let definition = &ctx.heap[definition_id];
 
            let poly_var = definition.poly_vars()[poly_var_idx as usize].value.as_str();
 
            let func_name = definition.identifier().value.as_str();
 

	
 
            (poly_var, func_name)
 
        }
 

	
 
        // Helper function to construct initial error
 
        fn construct_main_error(ctx: &Ctx, poly_data: &ExtraData, poly_var_idx: u32, expr: &Expression) -> ParseError {
 
            match expr {
 
                Expression::Call(expr) => {
 
                    let (poly_var, func_name) = get_poly_var_and_definition_name(ctx, poly_var_idx, poly_data.definition_id);
 
                    return ParseError::new_error_at_span(
 
                        &ctx.module.source, expr.func_span, format!(
 
                            "Conflicting type for polymorphic variable '{}' of '{}'",
 
                            poly_var, func_name
 
                        )
 
                    )
 
                },
 
                Expression::Literal(expr) => {
 
                    let (poly_var, type_name) = get_poly_var_and_definition_name(ctx, poly_var_idx, poly_data.definition_id);
 
                    return ParseError::new_error_at_span(
 
                        &ctx.module.source, expr.span, format!(
 
                            "Conflicting type for polymorphic variable '{}' of instantiation of '{}'",
 
                            poly_var, type_name
 
                        )
 
                    );
 
                },
 
                Expression::Select(expr) => {
 
                    let (poly_var, struct_name) = get_poly_var_and_definition_name(ctx, poly_var_idx, poly_data.definition_id);
 
                    return ParseError::new_error_at_span(
 
                        &ctx.module.source, expr.full_span, format!(
 
                            "Conflicting type for polymorphic variable '{}' while accessing field '{}' of '{}'",
 
                            poly_var, expr.field_name.value.as_str(), struct_name
 
                        )
 
                    )
 
                }
 
                _ => unreachable!("called construct_poly_arg_error without an expected expression, got: {:?}", expr)
 
            }
 
        }
 

	
 
        // Actual checking
 
        let expr = &ctx.heap[expr_id];
 
        let (expr_args, expr_return_name) = match expr {
 
            Expression::Call(expr) => 
 
                (
 
                    expr.arguments.clone(),
 
                    "return type"
 
                ),
 
            Expression::Literal(expr) => {
 
                let expressions = match &expr.value {
 
                    Literal::Struct(v) => v.fields.iter()
 
                        .map(|f| f.value)
 
                        .collect(),
 
                    Literal::Enum(_) => Vec::new(),
 
                    Literal::Union(v) => v.values.clone(),
 
                    _ => unreachable!()
 
                };
 

	
 
                ( expressions, "literal" )
 
            },
 
            Expression::Select(expr) =>
 
                // Select expression uses the polymorphic variables of the 
 
                // struct it is accessing, so get the subject expression.
 
                (
 
                    vec![expr.subject],
 
                    "selected field"
 
                ),
 
            _ => unreachable!(),
 
        };
 

	
 
        // - check return type with itself
 
        if let Some((poly_idx, section_a, section_b)) = has_poly_mismatch(
 
            &poly_data.returned, &poly_data.returned
 
        ) {
 
            return construct_main_error(ctx, poly_data, poly_idx, expr)
 
                .with_info_at_span(
 
                    &ctx.module.source, expr.full_span(), format!(
 
                        "The {} inferred the conflicting types '{}' and '{}'",
 
                        expr_return_name,
 
                        InferenceType::partial_display_name(&ctx.heap, section_a),
 
                        InferenceType::partial_display_name(&ctx.heap, section_b)
 
                    )
 
                );
 
        }
 

	
 
        // - check arguments with each other argument and with return type
 
        for (arg_a_idx, arg_a) in poly_data.embedded.iter().enumerate() {
 
            for (arg_b_idx, arg_b) in poly_data.embedded.iter().enumerate() {
 
                if arg_b_idx > arg_a_idx {
 
                    break;
 
                }
 

	
 
                if let Some((poly_idx, section_a, section_b)) = has_poly_mismatch(&arg_a, &arg_b) {
 
                    let error = construct_main_error(ctx, poly_data, poly_idx, expr);
 
                    if arg_a_idx == arg_b_idx {
 
                        // Same argument
 
                        let arg = &ctx.heap[expr_args[arg_a_idx]];
 
                        return error.with_info_at_span(
 
                            &ctx.module.source, arg.full_span(), format!(
 
                                "This argument inferred the conflicting types '{}' and '{}'",
 
                                InferenceType::partial_display_name(&ctx.heap, section_a),
 
                                InferenceType::partial_display_name(&ctx.heap, section_b)
 
                            )
 
                        );
 
                    } else {
 
                        let arg_a = &ctx.heap[expr_args[arg_a_idx]];
 
                        let arg_b = &ctx.heap[expr_args[arg_b_idx]];
 
                        return error.with_info_at_span(
 
                            &ctx.module.source, arg_a.full_span(), format!(
 
                                "This argument inferred it to '{}'",
 
                                InferenceType::partial_display_name(&ctx.heap, section_a)
 
                            )
 
                        ).with_info_at_span(
 
                            &ctx.module.source, arg_b.full_span(), format!(
 
                                "While this argument inferred it to '{}'",
 
                                InferenceType::partial_display_name(&ctx.heap, section_b)
 
                            )
 
                        )
 
                    }
 
                }
 
            }
 

	
 
            // Check with return type
 
            if let Some((poly_idx, section_arg, section_ret)) = has_poly_mismatch(arg_a, &poly_data.returned) {
 
                let arg = &ctx.heap[expr_args[arg_a_idx]];
 
                return construct_main_error(ctx, poly_data, poly_idx, expr)
 
                    .with_info_at_span(
 
                        &ctx.module.source, arg.full_span(), format!(
 
                            "This argument inferred it to '{}'",
 
                            InferenceType::partial_display_name(&ctx.heap, section_arg)
 
                        )
 
                    )
 
                    .with_info_at_span(
 
                        &ctx.module.source, expr.full_span(), format!(
 
                            "While the {} inferred it to '{}'",
 
                            expr_return_name,
 
                            InferenceType::partial_display_name(&ctx.heap, section_ret)
 
                        )
 
                    );
 
            }
 
        }
 

	
 
        // Now check against the explicitly specified polymorphic variables (if
 
        // any).
 
        for (arg_idx, arg) in poly_data.embedded.iter().enumerate() {
 
            if let Some((poly_idx, poly_section, arg_section)) = has_explicit_poly_mismatch(&poly_data.poly_vars, arg) {
 
                let arg = &ctx.heap[expr_args[arg_idx]];
 
                return construct_main_error(ctx, poly_data, poly_idx, expr)
 
                    .with_info_at_span(
 
                        &ctx.module.source, arg.full_span(), format!(
 
                            "The polymorphic variable has type '{}' (which might have been partially inferred) while the argument inferred it to '{}'",
 
                            InferenceType::partial_display_name(&ctx.heap, poly_section),
 
                            InferenceType::partial_display_name(&ctx.heap, arg_section)
 
                        )
 
                    );
 
            }
 
        }
 

	
 
        if let Some((poly_idx, poly_section, ret_section)) = has_explicit_poly_mismatch(&poly_data.poly_vars, &poly_data.returned) {
 
            return construct_main_error(ctx, poly_data, poly_idx, expr)
 
                .with_info_at_span(
 
                    &ctx.module.source, expr.full_span(), format!(
 
                        "The polymorphic variable has type '{}' (which might have been partially inferred) while the {} inferred it to '{}'",
 
                        InferenceType::partial_display_name(&ctx.heap, poly_section),
 
                        expr_return_name,
 
                        InferenceType::partial_display_name(&ctx.heap, ret_section)
 
                    )
 
                )
 
        }
 

	
 
        unreachable!("construct_poly_arg_error without actual error found?")
 
    }
 
}
 

	
 
#[cfg(test)]
 
mod tests {
 
    use super::*;
 
    use crate::protocol::arena::Id;
 
    use InferenceTypePart as ITP;
 
    use InferenceType as IT;
 

	
 
    #[test]
 
    fn test_single_part_inference() {
 
        // lhs argument inferred from rhs
 
        let pairs = [
 
            (ITP::NumberLike, ITP::UInt8),
 
            (ITP::IntegerLike, ITP::SInt32),
 
            (ITP::Unknown, ITP::UInt64),
 
            (ITP::Unknown, ITP::Bool)
 
        ];
 
        for (lhs, rhs) in pairs.iter() {
 
            // Using infer-both
 
            let mut lhs_type = IT::new(false, false, vec![lhs.clone()]);
 
            let mut rhs_type = IT::new(false, true, vec![rhs.clone()]);
 
            let result = unsafe{ IT::infer_subtrees_for_both_types(
 
                &mut lhs_type, 0, &mut rhs_type, 0
 
            ) };
 
            assert_eq!(DualInferenceResult::First, result);
 
            assert_eq!(lhs_type.parts, rhs_type.parts);
 

	
 
            // Using infer-single
 
            let mut lhs_type = IT::new(false, false, vec![lhs.clone()]);
 
            let rhs_type = IT::new(false, true, vec![rhs.clone()]);
 
            let result = IT::infer_subtree_for_single_type(
 
                &mut lhs_type, 0, &rhs_type.parts, 0, false
 
            );
 
            assert_eq!(SingleInferenceResult::Modified, result);
 
            assert_eq!(lhs_type.parts, rhs_type.parts);
 
        }
 
    }
 

	
 
    #[test]
 
    fn test_multi_part_inference() {
 
        let pairs = [
 
            (vec![ITP::ArrayLike, ITP::NumberLike], vec![ITP::Slice, ITP::SInt8]),
 
            (vec![ITP::Unknown], vec![ITP::Input, ITP::Array, ITP::String, ITP::Character]),
 
            (vec![ITP::PortLike, ITP::SInt32], vec![ITP::Input, ITP::SInt32]),
 
            (vec![ITP::Unknown], vec![ITP::Output, ITP::SInt32]),
 
            (
 
                vec![ITP::Instance(Id::new(0), 2), ITP::Input, ITP::Unknown, ITP::Output, ITP::Unknown],
 
                vec![ITP::Instance(Id::new(0), 2), ITP::Input, ITP::Array, ITP::SInt32, ITP::Output, ITP::SInt32]
 
            )
 
        ];
 

	
 
        for (lhs, rhs) in pairs.iter() {
 
            let mut lhs_type = IT::new(false, false, lhs.clone());
 
            let mut rhs_type = IT::new(false, true, rhs.clone());
 
            let result = unsafe{ IT::infer_subtrees_for_both_types(
 
                &mut lhs_type, 0, &mut rhs_type, 0
 
            ) };
 
            assert_eq!(DualInferenceResult::First, result);
 
            assert_eq!(lhs_type.parts, rhs_type.parts);
 

	
 
            let mut lhs_type = IT::new(false, false, lhs.clone());
 
            let rhs_type = IT::new(false, true, rhs.clone());
 
            let result = IT::infer_subtree_for_single_type(
 
                &mut lhs_type, 0, &rhs_type.parts, 0, false
 
            );
 
            assert_eq!(SingleInferenceResult::Modified, result);
 
            assert_eq!(lhs_type.parts, rhs_type.parts)
 
        }
 
    }
 
}
 
\ No newline at end of file
src/protocol/parser/type_table.rs
Show inline comments
 
/**
 
 * type_table.rs
 
 *
 
 * The type table is a lookup from AST definition (which contains just what the
 
 * programmer typed) to a type with additional information computed (e.g. the
 
 * byte size and offsets of struct members). The type table should be considered
 
 * the authoritative source of information on types by the compiler (not the
 
 * AST itself!).
 
 *
 
 * The type table operates in two modes: one is where we just look up the type,
 
 * check its fields for correctness and mark whether it is polymorphic or not.
 
 * The second one is where we compute byte sizes, alignment and offsets.
 
 *
 
 * The basic algorithm for type resolving and computing byte sizes is to
 
 * recursively try to lay out each member type of a particular type. This is
 
 * done in a stack-like fashion, where each embedded type pushes a breadcrumb
 
 * unto the stack. We may discover a cycle in embedded types (we call this a
 
 * "type loop"). After which the type table attempts to break the type loop by
 
 * making specific types heap-allocated. Upon doing so we know their size
 
 * because their stack-size is now based on pointers. Hence breaking the type
 
 * loop required for computing the byte size of types.
 
 *
 
 * The reason for these type shenanigans is because PDL is a value-based
 
 * language, but we would still like to be able to express recursively defined
 
 * types like trees or linked lists. Hence we need to insert pointers somewhere
 
 * to break these cycles.
 
 *
 
 * We will insert these pointers into the variants of unions. However note that
 
 * we can only compute the stack size of a union until we've looked at *all*
 
 * variants. Hence we perform an initial pass where we detect type loops, a
 
 * second pass where we compute the stack sizes of everything, and a third pass
 
 * where we actually compute the size of the heap allocations for unions.
 
 *
 
 * As a final bit of global documentation: non-polymorphic types will always
 
 * have one "monomorph" entry. This contains the non-polymorphic type's memory
 
 * layout.
 
 */
 

	
 
use std::fmt::{Formatter, Result as FmtResult};
 
use std::collections::HashMap;
 

	
 
use crate::protocol::ast::*;
 
use crate::protocol::parser::symbol_table::SymbolScope;
 
use crate::protocol::input_source::ParseError;
 
use crate::protocol::parser::*;
 

	
 
//------------------------------------------------------------------------------
 
// Defined Types
 
//------------------------------------------------------------------------------
 

	
 
#[derive(Copy, Clone, PartialEq, Eq)]
 
pub enum TypeClass {
 
    Enum,
 
    Union,
 
    Struct,
 
    Function,
 
    Component
 
}
 

	
 
impl TypeClass {
 
    pub(crate) fn display_name(&self) -> &'static str {
 
        match self {
 
            TypeClass::Enum => "enum",
 
            TypeClass::Union => "union",
 
            TypeClass::Struct => "struct",
 
            TypeClass::Function => "function",
 
            TypeClass::Component => "component",
 
        }
 
    }
 
}
 

	
 
impl std::fmt::Display for TypeClass {
 
    fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
 
        write!(f, "{}", self.display_name())
 
    }
 
}
 

	
 
/// Struct wrapping around a potentially polymorphic type. If the type does not
 
/// have any polymorphic arguments then it will not have any monomorphs and
 
/// `is_polymorph` will be set to `false`. A type with polymorphic arguments
 
/// only has `is_polymorph` set to `true` if the polymorphic arguments actually
 
/// appear in the types associated types (function return argument, struct
 
/// field, enum variant, etc.). Otherwise the polymorphic argument is just a
 
/// marker and does not influence the bytesize of the type.
 
pub struct DefinedType {
 
    pub(crate) ast_root: RootId,
 
    pub(crate) ast_definition: DefinitionId,
 
    pub(crate) definition: DefinedTypeVariant,
 
    pub(crate) poly_vars: Vec<PolymorphicVariable>,
 
    pub(crate) is_polymorph: bool,
 
}
 

	
 
impl DefinedType {
 
    /// Returns the number of monomorphs that are instantiated. Remember that
 
    /// during the type loop detection, and the memory layout phase we will
 
    /// pre-allocate monomorphs which are not yet fully laid out in memory.
 
    pub(crate) fn num_monomorphs(&self) -> usize {
 
        use DefinedTypeVariant as DTV;
 
        match &self.definition {
 
            DTV::Enum(def) => def.monomorphs.len(),
 
            DTV::Union(def) => def.monomorphs.len(),
 
            DTV::Struct(def) => def.monomorphs.len(),
 
            DTV::Function(_) | DTV::Component(_) => unreachable!(),
 
        }
 
    }
 
    /// Returns the index at which a monomorph occurs. Will only check the
 
    /// polymorphic arguments that are in use (none of the, in rust lingo,
 
    /// phantom types). If the type is not polymorphic and its memory has been
 
    /// layed out, then this will always return `Some(0)`.
 
    pub(crate) fn get_monomorph_index(&self, concrete_type: &ConcreteType) -> Option<usize> {
 
        use DefinedTypeVariant as DTV;
 

	
 
        // Helper to compare two types, while disregarding the polymorphic
 
        // variables that are not in use.
 
        let concrete_types_match = |type_a: &ConcreteType, type_b: &ConcreteType| -> bool {
 
            let mut a_iter = type_a.embedded_iter(0).enumerate();
 
            let mut b_iter = type_b.embedded_iter(0);
 

	
 
            while let Some((section_idx, a_section)) = a_iter.next() {
 
                let b_section = b_iter.next().unwrap();
 

	
 
                if !self.poly_vars[section_idx].is_in_use {
 
                    continue;
 
                }
 

	
 
                if a_section != b_section {
 
                    return false;
 
                }
 
            }
 

	
 
            return true;
 
        };
 

	
 
        // Check check if type is polymorphic to some degree at all
 
        if cfg!(debug_assertions) {
 
            if let ConcreteTypePart::Instance(definition_id, num_poly_args) = concrete_type.parts[0] {
 
                assert_eq!(definition_id, self.ast_definition);
 
                assert_eq!(num_poly_args as usize, self.poly_vars.len());
 
            } else {
 
                assert!(false, "concrete type {:?} is not a user-defined type", concrete_type);
 
            }
 
        }
 

	
 
        match &self.definition {
 
            DTV::Enum(definition) => {
 
                // Special case, enum is never a "true polymorph"
 
                debug_assert!(!self.is_polymorph);
 
                if definition.monomorphs.is_empty() {
 
                    return None
 
                } else {
 
                    return Some(0)
 
                }
 
            },
 
            DTV::Union(definition) => {
 
                for (monomorph_idx, monomorph) in definition.monomorphs.iter().enumerate() {
 
                    if concrete_types_match(&monomorph.concrete_type, concrete_type) {
 
                        return Some(monomorph_idx);
 
                    }
 
                }
 
            },
 
            DTV::Struct(definition) => {
 
                for (monomorph_idx, monomorph) in definition.monomorphs.iter().enumerate() {
 
                    if concrete_types_match(&monomorph.concrete_type, concrete_type) {
 
                        return Some(monomorph_idx);
 
                    }
 
                }
 
            },
 
            DTV::Function(_) | DTV::Component(_) => {
 
                unreachable!("called get_monomorph_index on a procedure type");
 
            }
 
        }
 

	
 
        // Nothing matched
 
        return None;
 
    }
 

	
 
    /// Retrieves size and alignment of the particular type's monomorph if it
 
    /// has been layed out in memory.
 
    pub(crate) fn get_monomorph_size_alignment(&self, idx: usize) -> Option<(usize, usize)> {
 
        use DefinedTypeVariant as DTV;
 
        let (size, alignment) = match &self.definition {
 
            DTV::Enum(def) => {
 
                debug_assert!(idx == 0);
 
                (def.size, def.alignment)
 
            },
 
            DTV::Union(def) => {
 
                let monomorph = &def.monomorphs[idx];
 
                (monomorph.stack_size, monomorph.stack_alignment)
 
            },
 
            DTV::Struct(def) => {
 
                let monomorph = &def.monomorphs[idx];
 
                (monomorph.size, monomorph.alignment)
 
            },
 
            DTV::Function(_) | DTV::Component(_) => {
 
                // Type table should never be able to arrive here during layout
 
                // of types. Types may only contain function prototypes.
 
                unreachable!("retrieving size and alignment of procedure type");
 
            }
 
        };
 

	
 
        if size == 0 && alignment == 0 {
 
            // The "marker" for when the type has not been layed out yet. Even
 
            // for zero-size types we will set alignment to `1` to simplify
 
            // alignment calculations.
 
            return None;
 
        } else {
 
            return Some((size, alignment));
 
        }
 
    }
 
}
 

	
 
pub enum DefinedTypeVariant {
 
    Enum(EnumType),
 
    Union(UnionType),
 
    Struct(StructType),
 
    Function(FunctionType),
 
    Component(ComponentType)
 
}
 

	
 
impl DefinedTypeVariant {
 
    pub(crate) fn type_class(&self) -> TypeClass {
 
        match self {
 
            DefinedTypeVariant::Enum(_) => TypeClass::Enum,
 
            DefinedTypeVariant::Union(_) => TypeClass::Union,
 
            DefinedTypeVariant::Struct(_) => TypeClass::Struct,
 
            DefinedTypeVariant::Function(_) => TypeClass::Function,
 
            DefinedTypeVariant::Component(_) => TypeClass::Component
 
        }
 
    }
 

	
 
    pub(crate) fn as_struct(&self) -> &StructType {
 
        match self {
 
            DefinedTypeVariant::Struct(v) => v,
 
            _ => unreachable!("Cannot convert {} to struct variant", self.type_class())
 
        }
 
    }
 

	
 
    pub(crate) fn as_struct_mut(&mut self) -> &mut StructType {
 
        match self {
 
            DefinedTypeVariant::Struct(v) => v,
 
            _ => unreachable!("Cannot convert {} to struct variant", self.type_class())
 
        }
 
    }
 

	
 
    pub(crate) fn as_enum(&self) -> &EnumType {
 
        match self {
 
            DefinedTypeVariant::Enum(v) => v,
 
            _ => unreachable!("Cannot convert {} to enum variant", self.type_class())
 
        }
 
    }
 

	
 
    pub(crate) fn as_enum_mut(&mut self) -> &mut EnumType {
 
        match self {
 
            DefinedTypeVariant::Enum(v) => v,
 
            _ => unreachable!("Cannot convert {} to enum variant", self.type_class())
 
        }
 
    }
 

	
 
    pub(crate) fn as_union(&self) -> &UnionType {
 
        match self {
 
            DefinedTypeVariant::Union(v) => v,
 
            _ => unreachable!("Cannot convert {} to union variant", self.type_class())
 
        }
 
    }
 

	
 
    pub(crate) fn as_union_mut(&mut self) -> &mut UnionType {
 
        match self {
 
            DefinedTypeVariant::Union(v) => v,
 
            _ => unreachable!("Cannot convert {} to union variant", self.type_class())
 
        }
 
    }
 

	
 
    pub(crate) fn procedure_monomorphs(&self) -> &Vec<ProcedureMonomorph> {
 
        use DefinedTypeVariant::*;
 

	
 
        match self {
 
            Function(v) => &v.monomorphs,
 
            Component(v) => &v.monomorphs,
 
            _ => unreachable!("cannot get procedure monomorphs from {}", self.type_class()),
 
        }
 
    }
 

	
 
    pub(crate) fn procedure_monomorphs_mut(&mut self) -> &mut Vec<ProcedureMonomorph> {
 
        use DefinedTypeVariant::*;
 

	
 
        match self {
 
            Function(v) => &mut v.monomorphs,
 
            Component(v) => &mut v.monomorphs,
 
            _ => unreachable!("cannot get procedure monomorphs from {}", self.type_class()),
 
        }
 
    }
 
}
 

	
 
pub struct PolymorphicVariable {
 
    identifier: Identifier,
 
    is_in_use: bool, // a polymorphic argument may be defined, but not used by the type definition
 
}
 

	
 
/// Data associated with a monomorphized procedure type. Has the wrong name,
 
/// because it will also be used to store expression data for a non-polymorphic
 
/// procedure. (in that case, there will only ever be one)
 
pub struct ProcedureMonomorph {
 
    // Expression data for one particular monomorph
 
    pub poly_args: Vec<ConcreteType>,
 
    pub expr_data: Vec<MonomorphExpression>,
 
}
 

	
 
/// `EnumType` is the classical C/C++ enum type. It has various variants with
 
/// an assigned integer value. The integer values may be user-defined,
 
/// compiler-defined, or a mix of the two. If a user assigns the same enum
 
/// value multiple times, we assume the user is an expert and we consider both
 
/// variants to be equal to one another.
 
pub struct EnumType {
 
    pub variants: Vec<EnumVariant>,
 
    pub monomorphs: Vec<EnumMonomorph>,
 
    pub minimum_tag_value: i64,
 
    pub maximum_tag_value: i64,
 
    pub tag_type: ConcreteType,
 
    pub size: usize,
 
    pub alignment: usize,
 
}
 

	
 
// TODO: Also support maximum u64 value
 
pub struct EnumVariant {
 
    pub identifier: Identifier,
 
    pub value: i64,
 
}
 

	
 
pub struct EnumMonomorph {
 
    pub concrete_type: ConcreteType,
 
}
 

	
 
/// `UnionType` is the algebraic datatype (or sum type, or discriminated union).
 
/// A value is an element of the union, identified by its tag, and may contain
 
/// a single subtype.
 
/// For potentially infinite types (i.e. a tree, or a linked list) only unions
 
/// can break the infinite cycle. So when we lay out these unions in memory we
 
/// will reserve enough space on the stack for all union variants that do not
 
/// cause "type loops" (i.e. a union `A` with a variant containing a struct
 
/// `B`). And we will reserve enough space on the heap (and store a pointer in
 
/// the union) for all variants which do cause type loops (i.e. a union `A`
 
/// with a variant to a struct `B` that contains the union `A` again).
 
pub struct UnionType {
 
    pub variants: Vec<UnionVariant>,
 
    pub monomorphs: Vec<UnionMonomorph>,
 
    pub tag_type: ConcreteType,
 
    pub tag_size: usize,
 
}
 

	
 
pub struct UnionVariant {
 
    pub identifier: Identifier,
 
    pub embedded: Vec<ParserType>, // zero-length does not have embedded values
 
    pub tag_value: i64,
 
}
 

	
 
pub struct UnionMonomorph {
 
    pub concrete_type: ConcreteType,
 
    pub variants: Vec<UnionMonomorphVariant>,
 
    // stack_size is the size of the union on the stack, includes the tag
 
    pub stack_size: usize,
 
    pub stack_alignment: usize,
 
    // heap_size contains the allocated size of the union in the case it
 
    // is used to break a type loop. If it is 0, then it doesn't require
 
    // allocation and lives entirely on the stack.
 
    pub heap_size: usize,
 
    pub heap_alignment: usize,
 
}
 

	
 
pub struct UnionMonomorphVariant {
 
    pub lives_on_heap: bool,
 
    pub embedded: Vec<UnionMonomorphEmbedded>,
 
}
 

	
 
pub struct UnionMonomorphEmbedded {
 
    pub concrete_type: ConcreteType,
 
    // Note that the meaning of the offset (and alignment) depend on whether or
 
    // not the variant lives on the stack/heap. If it lives on the stack then
 
    // they refer to the offset from the start of the union value (so the first
 
    // embedded type lives at a non-zero offset, because the union tag sits in
 
    // the front). If it lives on the heap then it refers to the offset from the
 
    // allocated memory region (so the first embedded type lives at a 0 offset).
 
    pub size: usize,
 
    pub alignment: usize,
 
    pub offset: usize,
 
}
 

	
 
/// `StructType` is a generic C-like struct type (or record type, or product
 
/// type) type.
 
pub struct StructType {
 
    pub fields: Vec<StructField>,
 
    pub monomorphs: Vec<StructMonomorph>,
 
}
 

	
 
pub struct StructField {
 
    pub identifier: Identifier,
 
    pub parser_type: ParserType,
 
}
 

	
 
pub struct StructMonomorph {
 
    pub concrete_type: ConcreteType,
 
    pub fields: Vec<StructMonomorphField>,
 
    pub size: usize,
 
    pub alignment: usize,
 
}
 

	
 
pub struct StructMonomorphField {
 
    pub concrete_type: ConcreteType,
 
    pub size: usize,
 
    pub alignment: usize,
 
    pub offset: usize,
 
}
 

	
 
/// `FunctionType` is what you expect it to be: a particular function's
 
/// signature.
 
pub struct FunctionType {
 
    pub return_types: Vec<ParserType>,
 
    pub arguments: Vec<FunctionArgument>,
 
    pub monomorphs: Vec<ProcedureMonomorph>,
 
}
 

	
 
pub struct ComponentType {
 
    pub variant: ComponentVariant,
 
    pub arguments: Vec<FunctionArgument>,
 
    pub monomorphs: Vec<ProcedureMonomorph>
 
}
 

	
 
pub struct FunctionArgument {
 
    identifier: Identifier,
 
    parser_type: ParserType,
 
}
 

	
 
/// Represents the data associated with a single expression after type inference
 
/// for a monomorph (or just the normal expression types, if dealing with a
 
/// non-polymorphic function/component).
 
pub struct MonomorphExpression {
 
    // The output type of the expression. Note that for a function it is not the
 
    // function's signature but its return type
 
    pub(crate) expr_type: ConcreteType,
 
    // Has multiple meanings: the field index for select expressions, the
 
    // monomorph index for polymorphic function calls or literals. Negative
 
    // values are never used, but used to catch programming errors.
 
    pub(crate) field_or_monomorph_idx: i32,
 
}
 

	
 
//------------------------------------------------------------------------------
 
// Type table
 
//------------------------------------------------------------------------------
 

	
 
struct TypeLoopBreadcrumb {
 
    definition_id: DefinitionId,
 
    monomorph_idx: usize,
 
    next_member: usize,
 
    next_embedded: usize, // for unions, the index into the variant's embedded types
 
}
 

	
 
#[derive(PartialEq, Eq)]
 
#[derive(Debug, PartialEq, Eq)]
 
enum BreadcrumbResult {
 
    TypeExists,
 
    PushedBreadcrumb,
 
    TypeLoop(usize), // index into vec of breadcrumbs at which the type matched
 
}
 

	
 
enum MemoryLayoutResult {
 
    TypeExists(usize, usize), // (size, alignment)
 
    PushBreadcrumb(TypeLoopBreadcrumb),
 
}
 

	
 
// TODO: @Optimize, initial memory-unoptimized implementation
 
struct TypeLoopEntry {
 
    definition_id: DefinitionId,
 
    monomorph_idx: usize,
 
    is_union: bool,
 
}
 

	
 
struct TypeLoop {
 
    members: Vec<TypeLoopEntry>
 
}
 

	
 
pub struct TypeTable {
 
    /// Lookup from AST DefinitionId to a defined type. Considering possible
 
    /// polymorphs is done inside the `DefinedType` struct.
 
    lookup: HashMap<DefinitionId, DefinedType>,
 
    /// Breadcrumbs left behind while trying to find type loops. Also used to
 
    /// determine sizes of types when all type loops are detected.
 
    breadcrumbs: Vec<TypeLoopBreadcrumb>,
 
    type_loops: Vec<TypeLoop>,
 
    encountered_types: Vec<TypeLoopEntry>,
 
}
 

	
 
impl TypeTable {
 
    /// Construct a new type table without any resolved types.
 
    pub(crate) fn new() -> Self {
 
        Self{ 
 
            lookup: HashMap::new(), 
 
            breadcrumbs: Vec::with_capacity(32),
 
            type_loops: Vec::with_capacity(8),
 
            encountered_types: Vec::with_capacity(32),
 
        }
 
    }
 

	
 
    /// Iterates over all defined types (polymorphic and non-polymorphic) and
 
    /// add their types in two passes. In the first pass we will just add the
 
    /// base types (we will not consider monomorphs, and we will not compute
 
    /// byte sizes). In the second pass we will compute byte sizes of
 
    /// non-polymorphic types, and potentially the monomorphs that are embedded
 
    /// in those types.
 
    pub(crate) fn build_base_types(&mut self, modules: &mut [Module], ctx: &mut PassCtx) -> Result<(), ParseError> {
 
        // Make sure we're allowed to cast root_id to index into ctx.modules
 
        debug_assert!(modules.iter().all(|m| m.phase >= ModuleCompilationPhase::DefinitionsParsed));
 
        debug_assert!(self.lookup.is_empty());
 

	
 
        if cfg!(debug_assertions) {
 
            for (index, module) in modules.iter().enumerate() {
 
                debug_assert_eq!(index, module.root_id.index as usize);
 
            }
 
        }
 

	
 
        // Use context to guess hashmap size of the base types
 
        let reserve_size = ctx.heap.definitions.len();
 
        self.lookup.reserve(reserve_size);
 

	
 
        // Resolve all base types
 
        for definition_idx in 0..ctx.heap.definitions.len() {
 
            let definition_id = ctx.heap.definitions.get_id(definition_idx);
 
            let definition = &ctx.heap[definition_id];
 

	
 
            match definition {
 
                Definition::Enum(_) => self.build_base_enum_definition(modules, ctx, definition_id)?,
 
                Definition::Union(_) => self.build_base_union_definition(modules, ctx, definition_id)?,
 
                Definition::Struct(_) => self.build_base_struct_definition(modules, ctx, definition_id)?,
 
                Definition::Function(_) => self.build_base_function_definition(modules, ctx, definition_id)?,
 
                Definition::Component(_) => self.build_base_component_definition(modules, ctx, definition_id)?,
 
            }
 
        }
 

	
 
        debug_assert_eq!(self.lookup.len(), reserve_size, "mismatch in reserved size of type table"); // NOTE: Temp fix for builtin functions
 
        for module in modules {
 
            module.phase = ModuleCompilationPhase::TypesAddedToTable;
 
        }
 

	
 
        // Go through all types again, lay out all types that are not
 
        // polymorphic. This might cause us to lay out types that are monomorphs
 
        // of polymorphic types.
 
        let empty_concrete_type = ConcreteType{ parts: Vec::new() };
 
        for definition_idx in 0..ctx.heap.definitions.len() {
 
            let definition_id = ctx.heap.definitions.get_id(definition_idx);
 
            let poly_type = self.lookup.get(&definition_id).unwrap();
 

	
 
            // Here we explicitly want to instantiate types which have no
 
            // polymorphic arguments (even if it has phantom polymorphic
 
            // arguments) because otherwise the user will see very weird
 
            // error messages.
 
            if poly_type.poly_vars.is_empty() && poly_type.num_monomorphs() == 0 {
 
                self.detect_and_resolve_type_loops_for(
 
                    modules, ctx,
 
                    ConcreteType{
 
                        parts: vec![ConcreteTypePart::Instance(definition_id, 0)]
 
                    },
 
                )?;
 
                self.lay_out_memory_for_encountered_types(ctx);
 
            }
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    /// Retrieves base definition from type table. We must be able to retrieve
 
    /// it as we resolve all base types upon type table construction (for now).
 
    /// However, in the future we might do on-demand type resolving, so return
 
    /// an option anyway
 
    pub(crate) fn get_base_definition(&self, definition_id: &DefinitionId) -> Option<&DefinedType> {
 
        self.lookup.get(&definition_id)
 
    }
 

	
 
    /// Returns the index into the monomorph type array if the procedure type
 
    /// already has a (reserved) monomorph.
 
    pub(crate) fn get_procedure_monomorph_index(&self, definition_id: &DefinitionId, types: &Vec<ConcreteType>) -> Option<i32> {
 
        let def = self.lookup.get(definition_id).unwrap();
 
        if def.is_polymorph {
 
            let monos = def.definition.procedure_monomorphs();
 
            return monos.iter()
 
                .position(|v| v.poly_args == *types)
 
                .map(|v| v as i32);
 
        } else {
 
            // We don't actually care about the types
 
            let monos = def.definition.procedure_monomorphs();
 
            if monos.is_empty() {
 
                return None
 
            } else {
 
                return Some(0)
 
            }
 
        }
 
    }
 

	
 
    /// Returns a mutable reference to a procedure's monomorph expression data.
 
    /// Used by typechecker to fill in previously reserved type information
 
    pub(crate) fn get_procedure_expression_data_mut(&mut self, definition_id: &DefinitionId, monomorph_idx: i32) -> &mut ProcedureMonomorph {
 
        debug_assert!(monomorph_idx >= 0);
 
        let def = self.lookup.get_mut(definition_id).unwrap();
 
        let monomorphs = def.definition.procedure_monomorphs_mut();
 
        return &mut monomorphs[monomorph_idx as usize];
 
    }
 

	
 
    pub(crate) fn get_procedure_expression_data(&self, definition_id: &DefinitionId, monomorph_idx: i32) -> &ProcedureMonomorph {
 
        debug_assert!(monomorph_idx >= 0);
 
        let def = self.lookup.get(definition_id).unwrap();
 
        let monomorphs = def.definition.procedure_monomorphs();
 
        return &monomorphs[monomorph_idx as usize];
 
    }
 

	
 
    /// Reserves space for a monomorph of a polymorphic procedure. The index
 
    /// will point into a (reserved) slot of the array of expression types. The
 
    /// monomorph may NOT exist yet (because the reservation implies that we're
 
    /// going to be performing typechecking on it, and we don't want to
 
    /// check the same monomorph twice)
 
    pub(crate) fn reserve_procedure_monomorph_index(&mut self, definition_id: &DefinitionId, types: Option<Vec<ConcreteType>>) -> i32 {
 
        let def = self.lookup.get_mut(definition_id).unwrap();
 
        if let Some(types) = types {
 
            // Expecting a polymorphic procedure
 
            let monos = def.definition.procedure_monomorphs_mut();
 
            debug_assert!(def.is_polymorph);
 
            debug_assert!(def.poly_vars.len() == types.len());
 
            debug_assert!(monos.iter().find(|v| v.poly_args == types).is_none());
 

	
 
            let mono_idx = monos.len();
 
            monos.push(ProcedureMonomorph{ poly_args: types, expr_data: Vec::new() });
 

	
 
            return mono_idx as i32;
 
        } else {
 
            // Expecting a non-polymorphic procedure
 
            let monos = def.definition.procedure_monomorphs_mut();
 
            debug_assert!(!def.is_polymorph);
 
            debug_assert!(def.poly_vars.is_empty());
 
            debug_assert!(monos.is_empty());
 

	
 
            monos.push(ProcedureMonomorph{ poly_args: Vec::new(), expr_data: Vec::new() });
 

	
 
            return 0;
 
        }
 
    }
 

	
 
    /// Adds a datatype polymorph to the type table. Will not add the
 
    /// monomorph if it is already present, or if the type's polymorphic
 
    /// variables are all unused.
 
    pub(crate) fn add_data_monomorph(&mut self, definition_id: &DefinitionId, types: Vec<ConcreteType>) -> i32 {
 
        let def = self.lookup.get_mut(definition_id).unwrap();
 
        if !def.is_polymorph {
 
            // Not a polymorph, or polyvars are not used in type definition
 
            return 0;
 
    pub(crate) fn add_data_monomorph(
 
        &mut self, modules: &[Module], ctx: &PassCtx, definition_id: &DefinitionId, concrete_type: ConcreteType
 
    ) -> Result<i32, ParseError> {
 
        debug_assert_eq!(*definition_id, get_concrete_type_definition(&concrete_type));
 

	
 
        // Check if the monomorph already exists
 
        let poly_type = self.lookup.get_mut(definition_id).unwrap();
 
        if let Some(idx) = poly_type.get_monomorph_index(&concrete_type) {
 
            return idx as i32;
 
        }
 

	
 
        let monos = def.definition.data_monomorphs_mut();
 
        if let Some(index) = monos.iter().position(|v| v.poly_args == types) {
 
            // We already know about this monomorph
 
            return index as i32;
 
        }
 
        // Doesn't exist, so instantiate a monomorph and determine its memory
 
        // layout.
 
        self.detect_and_resolve_type_loops_for(modules, ctx, concrete_type)?;
 
        debug_assert_eq!(self.encountered_types[0].definition_id, definition_id);
 
        let mono_idx = self.encountered_types[0].monomorph_idx;
 
        self.lay_out_memory_for_encountered_types(ctx);
 

	
 
        let index = monos.len();
 
        monos.push(DataMonomorph{ poly_args: types });
 
        return index as i32;
 
        return mono_idx as i32;
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Building base types
 
    //--------------------------------------------------------------------------
 

	
 
    /// Builds the base type for an enum. Will not compute byte sizes
 
    fn build_base_enum_definition(&mut self, modules: &[Module], ctx: &mut PassCtx, definition_id: DefinitionId) -> Result<(), ParseError> {
 
        debug_assert!(!self.lookup.contains_key(&definition_id), "base enum already built");
 
        let definition = ctx.heap[definition_id].as_enum();
 
        let root_id = definition.defined_in;
 

	
 
        // Determine enum variants
 
        let mut enum_value = -1;
 
        let mut variants = Vec::with_capacity(definition.variants.len());
 

	
 
        for variant in &definition.variants {
 
            if enum_value == i64::MAX {
 
                let source = &modules[definition.defined_in.index as usize].source;
 
                return Err(ParseError::new_error_str_at_span(
 
                    source, variant.identifier.span,
 
                    "this enum variant has an integer value that is too large"
 
                ));
 
            }
 

	
 
            enum_value += 1;
 
            if let EnumVariantValue::Integer(explicit_value) = variant.value {
 
                enum_value = explicit_value;
 
            }
 

	
 
            variants.push(EnumVariant{
 
                identifier: variant.identifier.clone(),
 
                value: enum_value,
 
            });
 
        }
 

	
 
        // Determine tag size
 
        let mut min_enum_value = 0;
 
        let mut max_enum_value = 0;
 
        if !variants.is_empty() {
 
            min_enum_value = variants[0].value;
 
            max_enum_value = variants[0].value;
 
            for variant in variants.iter().skip(1) {
 
                min_enum_value = min_enum_value.min(variant.value);
 
                max_enum_value = max_enum_value.max(variant.value);
 
            }
 
        }
 

	
 
        let (tag_type, size_and_alignment) = Self::variant_tag_type_from_values(min_enum_value, max_enum_value);
 

	
 
        // Enum names and polymorphic args do not conflict
 
        Self::check_identifier_collision(
 
            modules, root_id, &variants, |variant| &variant.identifier, "enum variant"
 
        )?;
 

	
 
        // Polymorphic arguments cannot appear as embedded types, because
 
        // they can only consist of integer variants.
 
        Self::check_poly_args_collision(modules, ctx, root_id, &definition.poly_vars)?;
 
        let poly_vars = Self::create_polymorphic_variables(&definition.poly_vars);
 

	
 
        self.lookup.insert(definition_id, DefinedType {
 
            ast_root: root_id,
 
            ast_definition: definition_id,
 
            definition: DefinedTypeVariant::Enum(EnumType{
 
                variants,
 
                monomorphs: Vec::new(),
 
                minimum_tag_value: min_enum_value,
 
                maximum_tag_value: max_enum_value,
 
                tag_type,
 
                size: size_and_alignment,
 
                alignment: size_and_alignment
 
            }),
 
            poly_vars,
 
            is_polymorph: false,
 
        });
 

	
 
        return Ok(());
 
    }
 

	
 
    /// Builds the base type for a union. Will compute byte sizes.
 
    fn build_base_union_definition(&mut self, modules: &[Module], ctx: &mut PassCtx, definition_id: DefinitionId) -> Result<(), ParseError> {
 
        debug_assert!(!self.lookup.contains_key(&definition_id), "base union already built");
 
        let definition = ctx.heap[definition_id].as_union();
 
        let root_id = definition.defined_in;
 

	
 
        // Check all variants and their embedded types
 
        let mut variants = Vec::with_capacity(definition.variants.len());
 
        let mut tag_counter = 0;
 
        for variant in &definition.variants {
 
            for embedded in &variant.value {
 
                Self::check_member_parser_type(
 
                    modules, ctx, root_id, embedded, false
 
                )?;
 
            }
 

	
 
            let has_embedded = !variant.value.is_empty();
 
            variants.push(UnionVariant{
 
                identifier: variant.identifier.clone(),
 
                embedded: variant.value.clone(),
 
                tag_value: tag_counter,
 
            });
 
            tag_counter += 1;
 
        }
 

	
 
        let mut max_tag_value = 0;
 
        if tag_counter != 0 {
 
            max_tag_value = tag_counter - 1
 
        }
 

	
 
        let (tag_type, tag_size) = Self::variant_tag_type_from_values(0, max_tag_value);
 

	
 
        // Make sure there are no conflicts in identifiers
 
        Self::check_identifier_collision(
 
            modules, root_id, &variants, |variant| &variant.identifier, "union variant"
 
        )?;
 
        Self::check_poly_args_collision(modules, ctx, root_id, &definition.poly_vars);
 

	
 
        // Construct internal representation of union
 
        let mut poly_vars = Self::create_polymorphic_variables(&definition.poly_vars);
 
        for variant in &definition.variants {
 
            for embedded in &variant.value {
 
                Self::mark_used_polymorphic_variables(&mut poly_vars, embedded);
 
            }
 
        }
 

	
 
        let is_polymorph = poly_vars.iter().any(|arg| arg.is_in_use);
 

	
 
        self.lookup.insert(definition_id, DefinedType{
 
            ast_root: root_id,
 
            ast_definition: definition_id,
 
            definition: DefinedTypeVariant::Union(UnionType{
 
                variants,
 
                monomorphs: Vec::new(),
 
                tag_type,
 
                tag_size,
 
            }),
 
            poly_vars,
 
            is_polymorph
 
        });
 

	
 
        return Ok(());
 
    }
 

	
 
    /// Builds base struct type. Will not compute byte sizes.
 
    fn build_base_struct_definition(&mut self, modules: &[Module], ctx: &mut PassCtx, definition_id: DefinitionId) -> Result<(), ParseError> {
 
        debug_assert!(!self.lookup.contains_key(&definition_id), "base struct already built");
 
        let definition = ctx.heap[definition_id].as_struct();
 
        let root_id = definition.defined_in;
 

	
 
        // Check all struct fields and construct internal representation
 
        let mut fields = Vec::with_capacity(definition.fields.len());
 

	
 
        for field in &definition.fields {
 
            Self::check_member_parser_type(
 
                modules, ctx, root_id, &field.parser_type, false
 
            )?;
 

	
 
            fields.push(StructField{
 
                identifier: field.field.clone(),
 
                parser_type: field.parser_type.clone(),
 
            });
 
        }
 

	
 
        // Make sure there are no conflicting variables
 
        Self::check_identifier_collision(
 
            modules, root_id, &fields, |field| &field.identifier, "struct field"
 
        )?;
 
        Self::check_poly_args_collision(modules, ctx, root_id, &definition.poly_vars)?;
 

	
 
        // Construct base type in table
 
        let mut poly_vars = Self::create_polymorphic_variables(&definition.poly_vars);
 
        for field in &fields {
 
            Self::mark_used_polymorphic_variables(&mut poly_vars, &field.parser_type);
 
        }
 

	
 
        let is_polymorph = poly_vars.iter().any(|arg| arg.is_in_use);
 

	
 
        self.lookup.insert(definition_id, DefinedType{
 
            ast_root: root_id,
 
            ast_definition: definition_id,
 
            definition: DefinedTypeVariant::Struct(StructType{
 
                fields,
 
                monomorphs: Vec::new(),
 
            }),
 
            poly_vars,
 
            is_polymorph
 
        });
 

	
 
        return Ok(())
 
    }
 

	
 
    /// Builds base function type.
 
    fn build_base_function_definition(&mut self, modules: &[Module], ctx: &mut PassCtx, definition_id: DefinitionId) -> Result<(), ParseError> {
 
        debug_assert!(!self.lookup.contains_key(&definition_id), "base function already built");
 
        let definition = ctx.heap[definition_id].as_function();
 
        let root_id = definition.defined_in;
 

	
 
        // Check and construct return types and argument types.
 
        debug_assert_eq!(definition.return_types.len(), 1, "not one return type"); // TODO: @ReturnValues
 
        for return_type in &definition.return_types {
 
            Self::check_member_parser_type(
 
                modules, ctx, root_id, return_type, definition.builtin
 
            )?;
 
        }
 

	
 
        let mut arguments = Vec::with_capacity(definition.parameters.len());
 
        for parameter_id in &definition.parameters {
 
            let parameter = &ctx.heap[*parameter_id];
 
            Self::check_member_parser_type(
 
                modules, ctx, root_id, &parameter.parser_type, definition.builtin
 
            )?;
 

	
 
            arguments.push(FunctionArgument{
 
                identifier: parameter.identifier.clone(),
 
                parser_type: parameter.parser_type.clone(),
 
            });
 
        }
 

	
 
        // Check conflict of identifiers
 
        Self::check_identifier_collision(
 
            modules, root_id, &arguments, |arg| &arg.identifier, "function argument"
 
        )?;
 
        Self::check_poly_args_collision(modules, ctx, root_id, &definition.poly_vars)?;
 

	
 
        // Construct internal representation of function type
 
        let mut poly_vars = Self::create_polymorphic_variables(&definition.poly_vars);
 
        for return_type in &definition.return_types {
 
            Self::mark_used_polymorphic_variables(&mut poly_vars, return_type);
 
        }
 
        for argument in &arguments {
 
            Self::mark_used_polymorphic_variables(&mut poly_vars, &argument.parser_type);
 
        }
 

	
 
        let is_polymorph = poly_vars.iter().any(|arg| arg.is_in_use);
 

	
 
        self.lookup.insert(definition_id, DefinedType{
 
            ast_root: root_id,
 
            ast_definition: definition_id,
 
            definition: DefinedTypeVariant::Function(FunctionType{
 
                return_types: definition.return_types.clone(),
 
                arguments,
 
                monomorphs: Vec::new(),
 
            }),
 
            poly_vars,
 
            is_polymorph
 
        });
 

	
 
        return Ok(());
 
    }
 

	
 
    /// Builds base component type.
 
    fn build_base_component_definition(&mut self, modules: &[Module], ctx: &mut PassCtx, definition_id: DefinitionId) -> Result<(), ParseError> {
 
        debug_assert!(self.lookup.contains_key(&definition_id), "base component already built");
 

	
 
        let definition = &ctx.heap[definition_id].as_component();
 
        let root_id = definition.defined_in;
 

	
 
        // Check the argument types
 
        let mut arguments = Vec::with_capacity(definition.parameters.len());
 
        for parameter_id in &definition.parameters {
 
            let parameter = &ctx.heap[*parameter_id];
 
            Self::check_member_parser_type(
 
                modules, ctx, root_id, &parameter.parser_type, false
 
            )?;
 

	
 
            arguments.push(FunctionArgument{
 
                identifier: parameter.identifier.clone(),
 
                parser_type: parameter.parser_type.clone(),
 
            });
 
        }
 

	
 
        // Check conflict of identifiers
 
        Self::check_identifier_collision(
 
            modules, root_id, &arguments, |arg| &arg.identifier, "connector argument"
 
        )?;
 
        Self::check_poly_args_collision(modules, ctx, root_id, &definition.poly_vars)?;
 

	
 
        // Construct internal representation of component
 
        let mut poly_vars = Self::create_polymorphic_variables(&definition.poly_vars);
 
        for argument in &arguments {
 
            Self::mark_used_polymorphic_variables(&mut poly_vars, &argument.parser_type);
 
        }
 

	
 
        let is_polymorph = poly_vars.iter().any(|arg| arg.is_in_use);
 

	
 
        self.lookup.insert(definition_id, DefinedType{
 
            ast_root: root_id,
 
            ast_definition: definition_id,
 
            definition: DefinedTypeVariant::Component(ComponentType{
 
                variant: definition.variant,
 
                arguments,
 
                monomorphs: Vec::new()
 
            }),
 
            poly_vars,
 
            is_polymorph
 
        });
 

	
 
        Ok(())
 
    }
 

	
 
    /// Will check if the member type (field of a struct, embedded type in a
 
    /// union variant) is valid.
 
    fn check_member_parser_type(
 
        modules: &[Module], ctx: &PassCtx, base_definition_root_id: RootId,
 
        member_parser_type: &ParserType, allow_special_compiler_types: bool
 
    ) -> Result<(), ParseError> {
 
        use ParserTypeVariant as PTV;
 

	
 
        for element in &member_parser_type.elements {
 
            match element.variant {
 
                // Special cases
 
                PTV::Void | PTV::InputOrOutput | PTV::ArrayLike | PTV::IntegerLike => {
 
                    if !allow_special_compiler_types {
 
                        unreachable!("compiler-only ParserTypeVariant in member type");
 
                    }
 
                },
 
                // Builtin types, always valid
 
                PTV::Message | PTV::Bool |
 
                PTV::UInt8 | PTV::UInt16 | PTV::UInt32 | PTV::UInt64 |
 
                PTV::SInt8 | PTV::SInt16 | PTV::SInt32 | PTV::SInt64 |
 
                PTV::Character | PTV::String |
 
                PTV::Array | PTV::Input | PTV::Output |
 
                // Likewise, polymorphic variables are always valid
 
                PTV::PolymorphicArgument(_, _) => {},
 
                // Types that are not constructable, or types that are not
 
                // allowed (and checked earlier)
 
                PTV::IntegerLiteral | PTV::Inferred => {
 
                    unreachable!("illegal ParserTypeVariant within type definition");
 
                },
 
                // Finally, user-defined types
 
                PTV::Definition(definition_id, _) => {
 
                    let definition = &ctx.heap[definition_id];
 
                    if !(definition.is_struct() || definition.is_enum() || definition.is_union()) {
 
                        let source = &modules[base_definition_root_id.index as usize].source;
 
                        return Err(ParseError::new_error_str_at_span(
 
                            source, element.element_span, "expected a datatype (a struct, enum or union)"
 
                        ));
 
                    }
 

	
 
                    // Otherwise, we're fine
 
                }
 
            }
 
        }
 

	
 
        // If here, then all elements check out
 
        return Ok(());
 
    }
 

	
 
    /// Go through a list of identifiers and ensure that all identifiers have
 
    /// unique names
 
    fn check_identifier_collision<T: Sized, F: Fn(&T) -> &Identifier>(
 
        modules: &[Module], root_id: RootId, items: &[T], getter: F, item_name: &'static str
 
    ) -> Result<(), ParseError> {
 
        for (item_idx, item) in items.iter().enumerate() {
 
            let item_ident = getter(item);
 
            for other_item in &items[0..item_idx] {
 
                let other_item_ident = getter(other_item);
 
                if item_ident == other_item_ident {
 
                    let module_source = &modules[root_id.index as usize].source;
 
                    return Err(ParseError::new_error_at_span(
 
                        module_source, item_ident.span, format!("This {} is defined more than once", item_name)
 
                    ).with_info_at_span(
 
                        module_source, other_item_ident.span, format!("The other {} is defined here", item_name)
 
                    ));
 
                }
 
            }
 
        }
 

	
 
        Ok(())
 
    }
 

	
 
    /// Go through a list of polymorphic arguments and make sure that the
 
    /// arguments all have unique names, and the arguments do not conflict with
 
    /// any symbols defined at the module scope.
 
    fn check_poly_args_collision(
 
        modules: &[Module], ctx: &PassCtx, root_id: RootId, poly_args: &[Identifier]
 
    ) -> Result<(), ParseError> {
 
        // Make sure polymorphic arguments are unique and none of the
 
        // identifiers conflict with any imported scopes
 
        for (arg_idx, poly_arg) in poly_args.iter().enumerate() {
 
            for other_poly_arg in &poly_args[..arg_idx] {
 
                if poly_arg == other_poly_arg {
 
                    let module_source = &modules[root_id.index as usize].source;
 
                    return Err(ParseError::new_error_str_at_span(
 
                        module_source, poly_arg.span,
 
                        "This polymorphic argument is defined more than once"
 
                    ).with_info_str_at_span(
 
                        module_source, other_poly_arg.span,
 
                        "It conflicts with this polymorphic argument"
 
                    ));
 
                }
 
            }
 

	
 
            // Check if identifier conflicts with a symbol defined or imported
 
            // in the current module
 
            if let Some(symbol) = ctx.symbols.get_symbol_by_name(SymbolScope::Module(root_id), poly_arg.value.as_bytes()) {
 
                // We have a conflict
 
                let module_source = &modules[root_id.index as usize].source;
 
                let introduction_span = symbol.variant.span_of_introduction(ctx.heap);
 
                return Err(ParseError::new_error_str_at_span(
 
                    module_source, poly_arg.span,
 
                    "This polymorphic argument conflicts with another symbol"
 
                ).with_info_str_at_span(
 
                    module_source, introduction_span,
 
                    "It conflicts due to this symbol"
 
                ));
 
            }
 
        }
 

	
 
        // All arguments are fine
 
        Ok(())
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Detecting type loops
 
    //--------------------------------------------------------------------------
 

	
 
    /// Internal function that will detect type loops and check if they're
 
    /// resolvable. If so then the appropriate union variants will be marked as
 
    /// "living on heap". If not then a `ParseError` will be returned
 
    fn detect_and_resolve_type_loops_for(&mut self, modules: &[Module], ctx: &PassCtx, concrete_type: ConcreteType) -> Result<(), ParseError> {
 
        use DefinedTypeVariant as DTV;
 

	
 
        debug_assert!(self.breadcrumbs.is_empty());
 
        debug_assert!(self.type_loops.is_empty());
 
        debug_assert!(self.encountered_types.is_empty());
 

	
 
        // Push the initial breadcrumb
 
        let _initial_result = self.push_breadcrumb_for_type_loops(get_concrete_type_definition(&concrete_type), &concrete_type);
 
        debug_assert_eq!(_initial_result, BreadcrumbResult::PushedBreadcrumb);
 

	
 
        // Enter into the main resolving loop
 
        while !self.breadcrumbs.is_empty() {
 
            let breadcrumb_idx = self.breadcrumbs.len() - 1;
 
            let breadcrumb = self.breadcrumbs.last_mut().unwrap();
 

	
 
            let poly_type = self.lookup.get(&breadcrumb.definition_id).unwrap();
 

	
 
            // TODO: Misuse of BreadcrumbResult enum?
 
            let resolve_result = match &poly_type.definition {
 
                DTV::Enum(_) => {
 
                    BreadcrumbResult::TypeExists
 
                },
 
                DTV::Union(definition) => {
 
                    let monomorph = &definition.monomorphs[breadcrumb.monomorph_idx];
 
                    let num_variants = monomorph.variants.len();
 

	
 
                    let mut union_result = BreadcrumbResult::TypeExists;
 

	
 
                    'member_loop: while breadcrumb.next_member < num_variants {
 
                        let mono_variant = &monomorph.variants[breadcrumb.next_member];
 
                        let num_embedded = mono_variant.embedded.len();
 

	
 
                        while breadcrumb.next_embedded < num_embedded {
 
                            let mono_embedded = &mono_variant.embedded[breadcrumb.next_embedded];
 
                            union_result = self.push_breadcrumb_for_type_loops(poly_type.ast_definition, &mono_embedded.concrete_type);
 

	
 
                            if union_result != BreadcrumbResult::TypeExists {
 
                                // In type loop or new breadcrumb pushed, so
 
                                // break out of the resolving loop
 
                                break 'member_loop;
 
                            }
 

	
 
                            breadcrumb.next_embedded += 1;
 
                        }
 

	
 
                        breadcrumb.next_embedded = 0;
 
                        breadcrumb.next_member += 1
 
                    }
 

	
 
                    union_result
 
                },
 
                DTV::Struct(definition) => {
 
                    let monomorph = &definition.monomorphs[breadcrumb.monomorph_idx];
 
                    let num_fields = monomorph.fields.len();
 

	
 
                    let mut struct_result = BreadcrumbResult::TypeExists;
 
                    while breadcrumb.next_member < num_fields {
 
                        let mono_field = &monomorph.fields[breadcrumb.next_member];
 
                        struct_result = self.push_breadcrumb_for_type_loops(poly_type.ast_definition, &mono_field.concrete_type);
 

	
 
                        if struct_result != BreadcrumbResult::TypeExists {
 
                            // Type loop or breadcrumb pushed, so break out of
 
                            // the resolving loop
 
                            break;
 
                        }
 

	
 
                        breadcrumb.next_member += 1;
 
                    }
 

	
 
                    struct_result
 
                },
 
                DTV::Function(_) | DTV::Component(_) => unreachable!(),
 
            };
 

	
 
            // Handle the result of attempting to resolve the current breadcrumb
 
            match resolve_result {
 
                BreadcrumbResult::TypeExists => {
 
                    // We finished parsing the type
 
                    self.breadcrumbs.pop();
 
                },
 
                BreadcrumbResult::PushedBreadcrumb => {
 
                    // We recurse into the member type, since the breadcrumb is
 
                    // already pushed we don't take any action here.
 
                },
 
                BreadcrumbResult::TypeLoop(first_idx) => {
 
                    // We're in a type loop. Add the type loop
 
                    let mut loop_members = Vec::with_capacity(self.breadcrumbs.len() - first_idx);
 
                    for breadcrumb_idx in first_idx..self.breadcrumbs.len() {
 
                        let breadcrumb = &mut self.breadcrumbs[breadcrumb_idx];
 
                        let mut is_union = false;
 

	
 
                        match self.lookup.get_mut(&breadcrumb.definition_id).unwrap() {
 
                        let entry = self.lookup.get_mut(&breadcrumb.definition_id).unwrap();
 
                        match &mut entry.definition {
 
                            DTV::Union(definition) => {
 
                                // Mark the currently processed variant as requiring heap
 
                                // allocation, then advance the *embedded* type. The loop above
 
                                // will then take care of advancing it to the next *member*.
 
                                let monomorph = &mut definition.monomorphs[breadcrumb.monomorph_idx];
 
                                let variant = &mut monomorph.variants[breadcrumb.next_member];
 
                                variant.lives_on_heap = true;
 
                                breadcrumb.next_embedded += 1;
 
                                is_union = true;
 
                            },
 
                            _ => {}, // else: we don't care for now
 
                        }
 

	
 
                        loop_members.push(TypeLoopEntry{
 
                            definition_id: breadcrumb.definition_id,
 
                            monomorph_idx: breadcrumb.monomorph_idx,
 
                            is_union
 
                        });
 
                    }
 

	
 
                    self.type_loops.push(TypeLoop{ members: loop_members });
 
                }
 
            }
 
        }
 

	
 
        // All breadcrumbs have been cleared. So now `type_loops` contains all
 
        // of the encountered type loops, and `encountered_types` contains a
 
        // list of all unique monomorphs we encountered.
 

	
 
        // The next step is to figure out if all of the type loops can be
 
        // broken. A type loop can be broken if at least one union exists in the
 
        // loop and that union ended up having variants that are not part of
 
        // a type loop.
 
        fn type_loop_source_span_and_message<'a>(
 
            modules: &'a [Module], ctx: &PassCtx, defined_type: &DefinedType, monomorph_idx: usize, index_in_loop: usize
 
        ) -> (&'a InputSource, InputSpan, String) {
 
            // Note: because we will discover the type loop the *first* time we
 
            // instantiate a monomorph with the provided polymorphic arguments
 
            // (not all arguments are actually used in the type). We don't have
 
            // to care about a second instantiation where certain unused
 
            // polymorphic arguments are different.
 
            let monomorph_type = match &defined_type.definition {
 
                DTV::Union(definition) => &definition.monomorphs[monomorph_idx].concrete_type,
 
                DTV::Struct(definition) => &definition.monomorphs[monomorph_idx].concrete_type,
 
                DTV::Enum(_) | DTV::Function(_) | DTV::Component(_) =>
 
                    unreachable!(), // impossible to have an enum/procedure in a type loop
 
            };
 

	
 
            let type_name = monomorph_type.display_name(&ctx.heap);
 
            let message = if index_in_loop == 0 {
 
                format!(
 
                    "encountered an infinitely large type for '{}' (which can be fixed by \
 
                    introducing a union type that has a variant whose embedded types are \
 
                    not part of a type loop, or do not have embedded types)",
 
                    type_name
 
                )
 
            } else if index_in_loop == 1 {
 
                format!("because it depends on the type '{}'", type_name)
 
            } else {
 
                format!("which depends on the type '{}'", type_name)
 
            };
 

	
 
            let ast_definition = &ctx.heap[defined_type.ast_definition];
 
            let ast_root_id = ast_definition.defined_in();
 

	
 
            return (
 
                &modules[ast_root_id.index as usize].source,
 
                ast_definition.identifier().span,
 
                message
 
            );
 
        }
 

	
 
        for type_loop in &self.type_loops {
 
            let mut can_be_broken = false;
 
            debug_assert!(!type_loop.members.is_empty());
 

	
 
            for entry in &type_loop.members {
 
                if entry.is_union {
 
                    let base_type = self.lookup.get(&entry.definition_id).unwrap();
 
                    let monomorph = &base_type.definition.as_union().monomorphs[entry.monomorph_idx];
 

	
 
                    debug_assert!(!monomorph.variants.is_empty()); // otherwise it couldn't be part of the type loop
 
                    let has_stack_variant = monomorph.variants.iter().any(|variant| !variant.lives_on_heap);
 
                    if has_stack_variant {
 
                        can_be_broken = true;
 
                    }
 
                }
 
            }
 

	
 
            if !can_be_broken {
 
                // Construct a type loop error
 
                let first_entry = &type_loop.members[0];
 
                let first_type = self.lookup.get(&first_entry.definition_id).unwrap();
 
                let (first_module, first_span, first_message) = type_loop_source_span_and_message(
 
                    modules, ctx, first_type, first_entry.monomorph_idx, 0
 
                );
 
                let mut parse_error = ParseError::new_error_at_span(first_module, first_span, first_message);
 

	
 
                for member_idx in 1..type_loop.members.len() {
 
                    let entry = &type_loop.members[member_idx];
 
                    let entry_type = self.lookup.get(&first_entry.definition_id).unwrap();
 
                    let (module, span, message) = type_loop_source_span_and_message(
 
                        modules, ctx, entry_type, entry.monomorph_idx, member_idx
 
                    );
 
                    parse_error = parse_error.with_info_at_span(module, span, message);
 
                }
 

	
 
                return Err(parse_error);
 
            }
 
        }
 

	
 
        // If here, then all type loops have been resolved and we can lay out
 
        // all of the members
 
        self.type_loops.clear();
 

	
 
        return Ok(());
 
    }
 

	
 
    // TODO: Pass in definition_type by value?
 
    fn push_breadcrumb_for_type_loops(&mut self, definition_id: DefinitionId, definition_type: &ConcreteType) -> BreadcrumbResult {
 
        use DefinedTypeVariant as DTV;
 

	
 
        let mut base_type = self.lookup.get_mut(&definition_id).unwrap();
 
        if let Some(mono_idx) = base_type.get_monomorph_index(&definition_type) {
 
            // Monomorph is already known. Check if it is present in the
 
            // breadcrumbs. If so, then we are in a type loop
 
            for (breadcrumb_idx, breadcrumb) in self.breadcrumbs.iter().enumerate() {
 
                if breadcrumb.definition_id == definition_id && breadcrumb.monomorph_idx == mono_idx {
 
                    return BreadcrumbResult::TypeLoop(breadcrumb_idx);
 
                }
 
            }
 

	
 
            return BreadcrumbResult::TypeExists;
 
        }
 

	
 
        // Type is not yet known, so we need to insert it into the lookup and
 
        // push a new breadcrumb.
 
        let mut is_union = false;
 
        let monomorph_idx = match &mut base_type.definition {
 
            DTV::Enum(definition) => {
 
                debug_assert!(definition.monomorphs.is_empty());
 
                definition.monomorphs.push(EnumMonomorph{
 
                    concrete_type: definition_type.clone(),
 
                });
 
                0
 
            },
 
            DTV::Union(definition) => {
 
                // Create all the variants with their concrete types
 
                let mut mono_variants = Vec::with_capacity(definition.variants.len());
 
                for poly_variant in &definition.variants {
 
                    let mut mono_embedded = Vec::with_capacity(poly_variant.embedded.len());
 
                    for poly_embedded in &poly_variant.embedded {
 
                        let mono_concrete = Self::construct_concrete_type(poly_embedded, definition_type);
 
                        mono_embedded.push(UnionMonomorphEmbedded{
 
                            concrete_type: mono_concrete,
 
                            size: 0,
 
                            alignment: 0,
 
                            offset: 0
 
                        });
 
                    }
 

	
 
                    mono_variants.push(UnionMonomorphVariant{
 
                        lives_on_heap: false,
 
                        embedded: mono_embedded,
 
                    })
 
                }
 

	
 
                let mono_idx = definition.monomorphs.len();
 
                definition.monomorphs.push(UnionMonomorph{
 
                    concrete_type: definition_type.clone(),
 
                    variants: mono_variants,
 
                    stack_size: 0,
 
                    stack_alignment: 0,
 
                    heap_size: 0,
 
                    heap_alignment: 0
 
                });
 

	
 
                is_union = true;
 
                mono_idx
 
            },
 
            DTV::Struct(definition) => {
 
                let mut mono_fields = Vec::with_capacity(definition.fields.len());
 
                for poly_field in &definition.fields {
 
                    let mono_concrete = Self::construct_concrete_type(&poly_field.parser_type, definition_type);
 
                    mono_fields.push(StructMonomorphField{
 
                        concrete_type: mono_concrete,
 
                        size: 0,
 
                        alignment: 0,
 
                        offset: 0
 
                    })
 
                }
 

	
 
                let mono_idx = definition.monomorphs.len();
 
                definition.monomorphs.push(StructMonomorph{
 
                    concrete_type: definition_type.clone(),
 
                    fields: mono_fields,
 
                    size: 0,
 
                    alignment: 0
 
                });
 

	
 
                mono_idx
 
            },
 
            DTV::Function(_) | DTV::Component(_) => {
 
                unreachable!("pushing type resolving breadcrumb for procedure type {:?}", base_type)
 
                unreachable!("pushing type resolving breadcrumb for procedure type")
 
            },
 
        };
 

	
 
        self.breadcrumbs.push(TypeLoopBreadcrumb{
 
            definition_id,
 
            monomorph_idx,
 
            next_member: 0,
 
            next_embedded: 0
 
        });
 

	
 
        // With the breadcrumb constructed we know this is a new type, so we
 
        // also need to add an entry in the list of all encountered types
 
        self.encountered_types.push(TypeLoopEntry{
 
            definition_id,
 
            monomorph_idx,
 
            is_union,
 
        });
 

	
 
        return BreadcrumbResult::PushedBreadcrumb;
 
    }
 

	
 
    /// Constructs a concrete type out of a parser type for a struct field or
 
    /// union embedded type. It will do this by looking up the polymorphic
 
    /// variables in the supplied concrete type. The assumption is that the
 
    /// polymorphic variable's indices correspond to the subtrees in the
 
    /// concrete type.
 
    fn construct_concrete_type(member_type: &ParserType, container_type: &ConcreteType) -> ConcreteType {
 
        use ParserTypeVariant as PTV;
 
        use ConcreteTypePart as CTP;
 

	
 
        // TODO: Combine with code in pass_typing.rs
 
        fn parser_to_concrete_part(part: &ParserTypeVariant) -> Option<ConcreteTypePart> {
 
            match part {
 
                PTV::Void      => Some(CTP::Void),
 
                PTV::Message   => Some(CTP::Message),
 
                PTV::Bool      => Some(CTP::Bool),
 
                PTV::UInt8     => Some(CTP::UInt8),
 
                PTV::UInt16    => Some(CTP::UInt16),
 
                PTV::UInt32    => Some(CTP::UInt32),
 
                PTV::UInt64    => Some(CTP::UInt64),
 
                PTV::SInt8     => Some(CTP::SInt8),
 
                PTV::SInt16    => Some(CTP::SInt16),
 
                PTV::SInt32    => Some(CTP::SInt32),
 
                PTV::SInt64    => Some(CTP::SInt64),
 
                PTV::Character => Some(CTP::Character),
 
                PTV::String    => Some(CTP::String),
 
                PTV::Array     => Some(CTP::Array),
 
                PTV::Input     => Some(CTP::Input),
 
                PTV::Output    => Some(CTP::Output),
 
                PTV::Definition(definition_id, num) => Some(CTP::Instance(*definition_id, *num)),
 
                _              => None
 
            }
 
        }
 

	
 
        let mut parts = Vec::with_capacity(member_type.elements.len()); // usually a correct estimation, might not be
 
        for member_part in &member_type.elements {
 
            // Check if we have a regular builtin type
 
            if let Some(part) = parser_to_concrete_part(&member_part.variant) {
 
                parts.push(part);
 
                continue;
 
            }
 

	
 
            // Not builtin, but if all code is working correctly, we only care
 
            // about the polymorphic argument at this point.
 
            if let PTV::PolymorphicArgument(_container_definition_id, poly_arg_idx) = member_part {
 
                debug_assert_eq!(*_container_definition_id, get_concrete_type_definition(container_type));
 
            if let PTV::PolymorphicArgument(_container_definition_id, poly_arg_idx) = member_part.variant {
 
                debug_assert_eq!(_container_definition_id, get_concrete_type_definition(container_type));
 

	
 
                let mut container_iter = container_type.embedded_iter(0);
 
                for _ in 0..*poly_arg_idx {
 
                for _ in 0..poly_arg_idx {
 
                    container_iter.next();
 
                }
 

	
 
                let poly_section = container_iter.next().unwrap();
 
                parts.extend(poly_section);
 

	
 
                continue;
 
            }
 

	
 
            unreachable!("unexpected type part {:?} from {:?}", member_part, member_type);
 
        }
 

	
 
        return ConcreteType{ parts };
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Determining memory layout for types
 
    //--------------------------------------------------------------------------
 

	
 
    fn lay_out_memory_for_encountered_types(&mut self, ctx: &PassCtx) {
 
        use DefinedTypeVariant as DTV;
 

	
 
        // Just finished type loop detection, so we're left with the encountered
 
        // types only
 
        debug_assert!(self.breadcrumbs.is_empty());
 
        debug_assert!(self.type_loops.is_empty());
 
        debug_assert!(!self.encountered_types.is_empty());
 

	
 
        // Push the first entry (the type we originally started with when we
 
        // were detecting type loops)
 
        let first_entry = &self.encountered_types[0];
 
        self.breadcrumbs.push(TypeLoopBreadcrumb{
 
            definition_id: first_entry.definition_id,
 
            monomorph_idx: first_entry.monomorph_idx,
 
            next_member: 0,
 
            next_embedded: 0,
 
        });
 

	
 
        // Enter the main resolving loop
 
        'breadcrumb_loop: while !self.breadcrumbs.is_empty() {
 
            let breadcrumb_idx = self.breadcrumbs.len() - 1;
 
            let breadcrumb = &mut self.breadcrumbs[breadcrumb_idx];
 

	
 
            let poly_type = self.lookup.get_mut(&breadcrumb.definition_id).unwrap();
 
            match &mut poly_type.definition {
 
                DTV::Enum(definition) => {
 
                    // Size should already be computed
 
                    debug_assert!(definition.size != 0 && definition.alignment != 0);
 
                },
 
                DTV::Union(definition) => {
 
                    // Retrieve size/alignment of each embedded type. We do not
 
                    // compute the offsets or total type sizes yet.
 
                    let mono_type = &mut definition.monomorphs[breadcrumb.monomorph_idx];
 
                    let num_variants = mono_type.variants.len();
 
                    while breadcrumb.next_member < num_variants {
 
                        let mono_variant = &mut mono_type.variants[breadcrumb.next_member];
 

	
 
                        if mono_variant.lives_on_heap {
 
                            // To prevent type loops we made this a heap-
 
                            // allocated variant. This implies we cannot
 
                            // compute sizes of members at this point.
 
                        } else {
 
                            let num_embedded = mono_variant.embedded.len();
 
                            while breadcrumb.next_embedded < num_embedded {
 
                                let mono_embedded = &mut mono_variant.embedded[breadcrumb.next_embedded];
 
                                match self.get_memory_layout_or_breadcrumb(ctx, &mono_embedded.concrete_type) {
 
                                    MemoryLayoutResult::TypeExists(size, alignment) => {
 
                                        mono_embedded.size = size;
 
                                        mono_embedded.alignment = alignment;
 
                                    },
 
                                    MemoryLayoutResult::PushBreadcrumb(new_breadcrumb) => {
 
                                        self.breadcrumbs.push(new_breadcrumb);
 
                                        continue 'breadcrumb_loop;
 
                                    }
 
                                }
 

	
 
                                breadcrumb.next_embedded += 1;
 
                            }
 
                        }
 

	
 
                        breadcrumb.next_member += 1;
 
                        breadcrumb.next_embedded = 0;
 
                    }
 

	
 
                    // If here then we can at least compute the stack size of
 
                    // the type, we'll have to come back at the very end to
 
                    // fill in the heap size/alignment/offset of each heap-
 
                    // allocated variant.
 
                    let mut max_size = definition.tag_size;
 
                    let mut max_alignment = definition.tag_size;
 

	
 
                    for variant in &mut mono_type.variants {
 
                        // We're doing stack computations, so always start with
 
                        // the tag size/alignment.
 
                        let mut variant_offset = definition.tag_size;
 
                        let mut variant_alignment = definition.tag_size;
 

	
 
                        if variant.lives_on_heap {
 
                            // Variant lives on heap, so just a pointer
 
                            let (ptr_size, ptr_align) = ctx.arch.pointer_size_alignment;
 
                            align_offset_to(&mut variant_offset, ptr_align);
 

	
 
                            variant_offset += ptr_size;
 
                            variant_alignment = variant_alignment.max(ptr_align);
 
                        } else {
 
                            // Variant lives on stack, so walk all embedded
 
                            // types.
 
                            for embedded in &mut variant.embedded {
 
                                align_offset_to(&mut variant_offset, embedded.alignment);
 
                                embedded.offset = variant_offset;
 

	
 
                                variant_offset += embedded.size;
 
                                variant_alignment = variant_alignment.max(embedded.alignment);
 
                            }
 
                        };
 

	
 
                        max_size = max_size.max(variant_offset);
 
                        max_alignment = max_alignment.max(variant_alignment);
 
                    }
 

	
 
                    mono_type.stack_size = max_size;
 
                    mono_type.stack_alignment = max_alignment;
 
                },
 
                DTV::Struct(definition) => {
 
                    // Retrieve size and alignment of each struct member. We'll
 
                    // compute the offsets once all of those are known
 
                    let mono_type = &mut definition.monomorphs[breadcrumb.monomorph_idx];
 
                    let num_fields = mono_type.fields.len();
 
                    while breadcrumb.next_member < num_fields {
 
                        let mono_field = &mut mono_type.fields[breadcrumb.next_member];
 

	
 
                        match self.get_memory_layout_or_breadcrumb(ctx, &mono_field.concrete_type) {
 
                            MemoryLayoutResult::TypeExists(size, alignment) => {
 
                                mono_field.size = size;
 
                                mono_field.alignment = alignment;
 
                            },
 
                            MemoryLayoutResult::PushBreadcrumb(new_breadcrumb) => {
 
                                self.breadcrumbs.push(new_breadcrumb);
 
                                continue 'breadcrumb_loop;
 
                            },
 
                        }
 

	
 
                        breadcrumb.next_member += 1;
 
                    }
 

	
 
                    // Compute offsets and size of total type
 
                    let mut cur_offset = 0;
 
                    let mut max_alignment = 1;
 
                    for field in &mut mono_type.fields {
 
                        align_offset_to(&mut cur_offset, field.alignment);
 
                        field.offset = cur_offset;
 

	
 
                        cur_offset += field.size;
 
                        max_alignment = max_alignment.max(field.alignment);
 
                    }
 

	
 
                    mono_type.size = cur_offset;
 
                    mono_type.alignment = max_alignment;
 
                },
 
                DTV::Function(_) | DTV::Component(_) => {
 
                    unreachable!();
 
                }
 
            }
 

	
 
            // If here, then we completely layed out the current type. So move
 
            // to the next breadcrumb
 
            self.breadcrumbs.pop();
 
        }
 

	
 
        // If here then all types have been layed out. What remains is to
 
        // compute the sizes/alignment/offsets of the heap variants of the
 
        // unions we have encountered.
 
        for entry in &self.encountered_types {
 
            if !entry.is_union {
 
                continue;
 
            }
 

	
 
            let poly_type = self.lookup.get_mut(&entry.definition_id).unwrap();
 
            match &mut poly_type.definition {
 
                DTV::Union(definition) => {
 
                    let mono_type = &mut definition.monomorphs[entry.monomorph_idx];
 
                    let mut max_size = 0;
 
                    let mut max_alignment = 1;
 

	
 
                    for variant in &mut mono_type.variants {
 
                        if !variant.lives_on_heap {
 
                            continue;
 
                        }
 

	
 
                        let mut variant_offset = 0;
 
                        let mut variant_alignment = 1;
 
                        debug_assert!(!variant.embedded.is_empty());
 

	
 
                        for embedded in &mut variant.embedded {
 
                            match self.get_memory_layout_or_breadcrumb(ctx, &embedded.concrete_type) {
 
                                MemoryLayoutResult::TypeExists(size, alignment) => {
 
                                    embedded.size = size;
 
                                    embedded.alignment = alignment;
 

	
 
                                    align_offset_to(&mut variant_offset, alignment);
 
                                    embedded.alignment = variant_offset;
 

	
 
                                    variant_offset += size;
 
                                    variant_alignment = variant_alignment.max(alignment);
 
                                },
 
                                _ => unreachable!(),
 
                            }
 
                        }
 

	
 
                        // Update heap size/alignment
 
                        max_size = max_size.max(variant_offset);
 
                        max_alignment = max_alignment.max(variant_alignment);
 
                    }
 

	
 
                    if max_size != 0 {
 
                        // At least one entry lives on the heap
 
                        mono_type.heap_size = max_size;
 
                        mono_type.heap_alignment = max_alignment;
 
                    }
 
                },
 
                _ => unreachable!(),
 
            }
 
        }
 

	
 
        // And now, we're actually, properly, done
 
        self.encountered_types.clear();
 
    }
 

	
 
    fn get_memory_layout_or_breadcrumb(&self, ctx: &PassCtx, concrete_type: &ConcreteType) -> MemoryLayoutResult {
 
        use ConcreteTypePart as CTP;
 

	
 
        // Before we do any fancy shenanigans, we need to check if the concrete
 
        // type actually requires laying out memory.
 
        debug_assert!(!concrete_type.parts.is_empty());
 
        let (builtin_size, builtin_alignment) = match concrete_type.parts[0] {
 
            CTP::Void   => (0, 1),
 
            CTP::Message => ctx.arch.array_size_alignment,
 
            CTP::Bool   => (1, 1),
 
            CTP::UInt8  => (1, 1),
 
            CTP::UInt16 => (2, 2),
 
            CTP::UInt32 => (4, 4),
 
            CTP::UInt64 => (8, 8),
 
            CTP::SInt8  => (1, 1),
 
            CTP::SInt16 => (2, 2),
 
            CTP::SInt32 => (4, 4),
 
            CTP::SInt64 => (8, 8),
 
            CTP::Character => (4, 4),
 
            CTP::String => ctx.arch.string_size_alignment,
 
            CTP::Array => ctx.arch.array_size_alignment,
 
            CTP::Slice => ctx.arch.array_size_alignment,
 
            CTP::Input => ctx.arch.port_size_alignment,
 
            CTP::Output => ctx.arch.port_size_alignment,
 
            CTP::Instance(definition_id, _) => {
 
                // Special case where we explicitly return to simplify the
 
                // return case for the builtins.
 
                let entry = self.lookup.get(&definition_id).unwrap();
 
                let monomorph_idx = entry.get_monomorph_index(concrete_type).unwrap();
 

	
 
                if let Some((size, alignment)) = entry.get_monomorph_size_alignment(monomorph_idx) {
 
                    // Type has been layed out in memory
 
                    return MemoryLayoutResult::TypeExists(size, alignment);
 
                } else {
 
                    return MemoryLayoutResult::PushBreadcrumb(TypeLoopBreadcrumb {
 
                        definition_id,
 
                        monomorph_idx,
 
                        next_member: 0,
 
                        next_embedded: 0,
 
                    });
 
                }
 
            }
 
        };
 

	
 
        return MemoryLayoutResult::TypeExists(builtin_size, builtin_alignment);
 
    }
 

	
 
    /// Returns tag concrete type (always a builtin integer type), the size of
 
    /// that type in bytes (and implicitly, its alignment)
 
    fn variant_tag_type_from_values(min_val: i64, max_val: i64) -> (ConcreteType, usize) {
 
        debug_assert!(min_val <= max_val);
 

	
 
        let (part, size) = if min_val >= 0 {
 
            // Can be an unsigned integer
 
            if max_val <= (u8::MAX as i64) {
 
                (ConcreteTypePart::UInt8, 1)
 
            } else if max_val <= (u16::MAX as i64) {
 
                (ConcreteTypePart::UInt16, 2)
 
            } else if max_val <= (u32::MAX as i64) {
 
                (ConcreteTypePart::UInt32, 4)
 
            } else {
 
                (ConcreteTypePart::UInt64, 8)
 
            }
 
        } else {
 
            // Must be a signed integer
 
            if min_val >= (i8::MIN as i64) && max_val <= (i8::MAX as i64) {
 
                (ConcreteTypePart::SInt8, 1)
 
            } else if min_val >= (i16::MIN as i64) && max_val <= (i16::MAX as i64) {
 
                (ConcreteTypePart::SInt16, 2)
 
            } else if min_val >= (i32::MIN as i64) && max_val <= (i32::MAX as i64) {
 
                (ConcreteTypePart::SInt32, 4)
 
            } else {
 
                (ConcreteTypePart::SInt64, 8)
 
            }
 
        };
 

	
 
        return (ConcreteType{ parts: vec![part] }, size);
 
    }
 

	
 
    //--------------------------------------------------------------------------
 
    // Small utilities
 
    //--------------------------------------------------------------------------
 

	
 
    fn create_polymorphic_variables(variables: &[Identifier]) -> Vec<PolymorphicVariable> {
 
        let mut result = Vec::with_capacity(variables.len());
 
        for variable in variables.iter() {
 
            result.push(PolymorphicVariable{ identifier: variable.clone(), is_in_use: false });
 
        }
 

	
 
        result
 
    }
 

	
 
    fn mark_used_polymorphic_variables(poly_vars: &mut Vec<PolymorphicVariable>, parser_type: &ParserType) {
 
        for element in &parser_type.elements {
 
            if let ParserTypeVariant::PolymorphicArgument(_, idx) = &element.variant {
 
                poly_vars[*idx as usize].is_in_use = true;
 
            }
 
        }
 
    }
 
}
 

	
 
#[inline] fn align_offset_to(offset: &mut usize, alignment: usize) {
 
    debug_assert!(alignment > 0);
 
    let alignment_min_1 = alignment - 1;
 
    *offset += alignment_min_1;
 
    *offset &= !(alignment_min_1);
 
}
 

	
 
#[inline] fn get_concrete_type_definition(concrete: &ConcreteType) -> DefinitionId {
 
    if let ConcreteTypePart::Instance(definition_id, _) = concrete.parts[0] {
 
        return definition_id;
 
    } else {
 
        debug_assert!(false, "passed {:?} to the type table", concrete);
 
        return DefinitionId::new_invalid()
 
    }
 
}
 
\ No newline at end of file
0 comments (0 inline, 0 general)