Changeset - 643b55b4af53
[Not reviewed]
0 1 0
MH - 4 years ago 2021-12-12 16:51:35
contact@maxhenger.nl
Prepare for rewrite of monomorphs in type table
1 file changed with 97 insertions and 59 deletions:
0 comments (0 inline, 0 general)
src/protocol/parser/type_table.rs
Show inline comments
 
@@ -222,339 +222,375 @@ impl DefinedType {
 
            // for zero-size types we will set alignment to `1` to simplify
 
            // alignment calculations.
 
            return None;
 
        } else {
 
            return Some((size, alignment));
 
        }
 
    }
 
}
 

	
 
pub enum DefinedTypeVariant {
 
    Enum(EnumType),
 
    Union(UnionType),
 
    Struct(StructType),
 
    Function(FunctionType),
 
    Component(ComponentType)
 
}
 

	
 
impl DefinedTypeVariant {
 
    pub(crate) fn type_class(&self) -> TypeClass {
 
        match self {
 
            DefinedTypeVariant::Enum(_) => TypeClass::Enum,
 
            DefinedTypeVariant::Union(_) => TypeClass::Union,
 
            DefinedTypeVariant::Struct(_) => TypeClass::Struct,
 
            DefinedTypeVariant::Function(_) => TypeClass::Function,
 
            DefinedTypeVariant::Component(_) => TypeClass::Component
 
        }
 
    }
 

	
 
    pub(crate) fn as_struct(&self) -> &StructType {
 
        match self {
 
            DefinedTypeVariant::Struct(v) => v,
 
            _ => unreachable!("Cannot convert {} to struct variant", self.type_class())
 
        }
 
    }
 

	
 
    pub(crate) fn as_struct_mut(&mut self) -> &mut StructType {
 
        match self {
 
            DefinedTypeVariant::Struct(v) => v,
 
            _ => unreachable!("Cannot convert {} to struct variant", self.type_class())
 
        }
 
    }
 

	
 
    pub(crate) fn as_enum(&self) -> &EnumType {
 
        match self {
 
            DefinedTypeVariant::Enum(v) => v,
 
            _ => unreachable!("Cannot convert {} to enum variant", self.type_class())
 
        }
 
    }
 

	
 
    pub(crate) fn as_enum_mut(&mut self) -> &mut EnumType {
 
        match self {
 
            DefinedTypeVariant::Enum(v) => v,
 
            _ => unreachable!("Cannot convert {} to enum variant", self.type_class())
 
        }
 
    }
 

	
 
    pub(crate) fn as_union(&self) -> &UnionType {
 
        match self {
 
            DefinedTypeVariant::Union(v) => v,
 
            _ => unreachable!("Cannot convert {} to union variant", self.type_class())
 
        }
 
    }
 

	
 
    pub(crate) fn as_union_mut(&mut self) -> &mut UnionType {
 
        match self {
 
            DefinedTypeVariant::Union(v) => v,
 
            _ => unreachable!("Cannot convert {} to union variant", self.type_class())
 
        }
 
    }
 

	
 
    pub(crate) fn procedure_monomorphs(&self) -> &Vec<ProcedureMonomorph> {
 
        use DefinedTypeVariant::*;
 

	
 
        match self {
 
            Function(v) => &v.monomorphs,
 
            Component(v) => &v.monomorphs,
 
            _ => unreachable!("cannot get procedure monomorphs from {}", self.type_class()),
 
        }
 
    }
 

	
 
    pub(crate) fn procedure_monomorphs_mut(&mut self) -> &mut Vec<ProcedureMonomorph> {
 
        use DefinedTypeVariant::*;
 

	
 
        match self {
 
            Function(v) => &mut v.monomorphs,
 
            Component(v) => &mut v.monomorphs,
 
            _ => unreachable!("cannot get procedure monomorphs from {}", self.type_class()),
 
        }
 
    }
 
}
 

	
 
pub struct PolymorphicVariable {
 
    identifier: Identifier,
 
    is_in_use: bool, // a polymorphic argument may be defined, but not used by the type definition
 
}
 

	
 
/// Data associated with a monomorphized procedure type. Has the wrong name,
 
/// because it will also be used to store expression data for a non-polymorphic
 
/// procedure. (in that case, there will only ever be one)
 
pub struct ProcedureMonomorph {
 
    // Expression data for one particular monomorph
 
    pub concrete_type: ConcreteType,
 
    pub arg_types: Vec<ConcreteType>,
 
    pub expr_data: Vec<MonomorphExpression>,
 
}
 

	
 
/// `EnumType` is the classical C/C++ enum type. It has various variants with
 
/// an assigned integer value. The integer values may be user-defined,
 
/// compiler-defined, or a mix of the two. If a user assigns the same enum
 
/// value multiple times, we assume the user is an expert and we consider both
 
/// variants to be equal to one another.
 
pub struct EnumType {
 
    pub variants: Vec<EnumVariant>,
 
    pub monomorphs: Vec<EnumMonomorph>,
 
    pub minimum_tag_value: i64,
 
    pub maximum_tag_value: i64,
 
    pub tag_type: ConcreteType,
 
    pub size: usize,
 
    pub alignment: usize,
 
}
 

	
 
// TODO: Also support maximum u64 value
 
pub struct EnumVariant {
 
    pub identifier: Identifier,
 
    pub value: i64,
 
}
 

	
 
pub struct EnumMonomorph {
 
    pub concrete_type: ConcreteType,
 
}
 

	
 
/// `UnionType` is the algebraic datatype (or sum type, or discriminated union).
 
/// A value is an element of the union, identified by its tag, and may contain
 
/// a single subtype.
 
/// For potentially infinite types (i.e. a tree, or a linked list) only unions
 
/// can break the infinite cycle. So when we lay out these unions in memory we
 
/// will reserve enough space on the stack for all union variants that do not
 
/// cause "type loops" (i.e. a union `A` with a variant containing a struct
 
/// `B`). And we will reserve enough space on the heap (and store a pointer in
 
/// the union) for all variants which do cause type loops (i.e. a union `A`
 
/// with a variant to a struct `B` that contains the union `A` again).
 
pub struct UnionType {
 
    pub variants: Vec<UnionVariant>,
 
    pub monomorphs: Vec<UnionMonomorph>,
 
    pub tag_type: ConcreteType,
 
    pub tag_size: usize,
 
}
 

	
 
pub struct UnionVariant {
 
    pub identifier: Identifier,
 
    pub embedded: Vec<ParserType>, // zero-length does not have embedded values
 
    pub tag_value: i64,
 
}
 

	
 
pub struct UnionMonomorph {
 
    pub concrete_type: ConcreteType,
 
    pub variants: Vec<UnionMonomorphVariant>,
 
    // stack_size is the size of the union on the stack, includes the tag
 
    pub stack_size: usize,
 
    pub stack_alignment: usize,
 
    // heap_size contains the allocated size of the union in the case it
 
    // is used to break a type loop. If it is 0, then it doesn't require
 
    // allocation and lives entirely on the stack.
 
    pub heap_size: usize,
 
    pub heap_alignment: usize,
 
}
 

	
 
pub struct UnionMonomorphVariant {
 
    pub lives_on_heap: bool,
 
    pub embedded: Vec<UnionMonomorphEmbedded>,
 
}
 

	
 
pub struct UnionMonomorphEmbedded {
 
    pub concrete_type: ConcreteType,
 
    // Note that the meaning of the offset (and alignment) depend on whether or
 
    // not the variant lives on the stack/heap. If it lives on the stack then
 
    // they refer to the offset from the start of the union value (so the first
 
    // embedded type lives at a non-zero offset, because the union tag sits in
 
    // the front). If it lives on the heap then it refers to the offset from the
 
    // allocated memory region (so the first embedded type lives at a 0 offset).
 
    pub size: usize,
 
    pub alignment: usize,
 
    pub offset: usize,
 
}
 

	
 
/// `StructType` is a generic C-like struct type (or record type, or product
 
/// type) type.
 
pub struct StructType {
 
    pub fields: Vec<StructField>,
 
    pub monomorphs: Vec<StructMonomorph>,
 
}
 

	
 
pub struct StructField {
 
    pub identifier: Identifier,
 
    pub parser_type: ParserType,
 
}
 

	
 
pub struct StructMonomorph {
 
    pub concrete_type: ConcreteType,
 
    pub fields: Vec<StructMonomorphField>,
 
    pub size: usize,
 
    pub alignment: usize,
 
}
 

	
 
pub struct StructMonomorphField {
 
    pub concrete_type: ConcreteType,
 
    pub size: usize,
 
    pub alignment: usize,
 
    pub offset: usize,
 
}
 

	
 
/// `FunctionType` is what you expect it to be: a particular function's
 
/// signature.
 
pub struct FunctionType {
 
    pub return_types: Vec<ParserType>,
 
    pub arguments: Vec<FunctionArgument>,
 
    pub monomorphs: Vec<ProcedureMonomorph>,
 
}
 

	
 
pub struct ComponentType {
 
    pub variant: ComponentVariant,
 
    pub arguments: Vec<FunctionArgument>,
 
    pub monomorphs: Vec<ProcedureMonomorph>
 
}
 

	
 
pub struct FunctionArgument {
 
    identifier: Identifier,
 
    parser_type: ParserType,
 
}
 

	
 
/// Represents the data associated with a single expression after type inference
 
/// for a monomorph (or just the normal expression types, if dealing with a
 
/// non-polymorphic function/component).
 
pub struct MonomorphExpression {
 
    // The output type of the expression. Note that for a function it is not the
 
    // function's signature but its return type
 
    pub(crate) expr_type: ConcreteType,
 
    // Has multiple meanings: the field index for select expressions, the
 
    // monomorph index for polymorphic function calls or literals. Negative
 
    // values are never used, but used to catch programming errors.
 
    pub(crate) field_or_monomorph_idx: i32,
 
}
 

	
 
//------------------------------------------------------------------------------
 
// Type monomorph storage
 
//------------------------------------------------------------------------------
 

	
 
/// Union of all possible type monomorphs. The term "monomorph" is perhaps not
 
/// entirely correct: nonpolymorphic types will also get a "monomorph" entry to
 
/// store the size/offset/alignment data of all types.
 
enum TypeMonomorph {
 
    Enum(EnumMonomorph),
 
    Struct(StructMonomorph),
 
    Union(UnionMonomorph),
 
    Procedure(ProcedureMonomorph), // functions, components
 
    Tuple(TupleMonomorph),
 
}
 

	
 
/// Enum monomorph
 
pub struct EnumMonomorph {
 
    pub concrete_type: ConcreteType,
 
    pub size: usize,
 
    pub alignment: usize,
 
}
 

	
 
/// Struct monomorph
 
pub struct StructMonomorph {
 
    pub concrete_type: ConcreteType,
 
    pub fields: Vec<StructMonomorphField>,
 
    pub size: usize,
 
    pub alignment: usize,
 
}
 

	
 
pub struct StructMonomorphField {
 
    pub concrete_type: ConcreteType,
 
    pub size: usize,
 
    pub alignment: usize,
 
    pub offset: usize,
 
}
 

	
 
/// Union monomorph
 
pub struct UnionMonomorph {
 
    pub concrete_type: ConcreteType,
 
    pub variants: Vec<UnionMonomorphVariant>,
 
    // stack_size is the size of the union on the stack, includes the tag
 
    pub stack_size: usize,
 
    pub stack_alignment: usize,
 
    // heap_size contains the allocated size of the union in the case it
 
    // is used to break a type loop. If it is 0, then it doesn't require
 
    // allocation and lives entirely on the stack.
 
    pub heap_size: usize,
 
    pub heap_alignment: usize,
 
}
 

	
 
pub struct UnionMonomorphVariant {
 
    pub lives_on_heap: bool,
 
    pub embedded: Vec<UnionMonomorphEmbedded>,
 
}
 

	
 
pub struct UnionMonomorphEmbedded {
 
    pub concrete_type: ConcreteType,
 
    // Note that the meaning of the offset (and alignment) depend on whether or
 
    // not the variant lives on the stack/heap. If it lives on the stack then
 
    // they refer to the offset from the start of the union value (so the first
 
    // embedded type lives at a non-zero offset, because the union tag sits in
 
    // the front). If it lives on the heap then it refers to the offset from the
 
    // allocated memory region (so the first embedded type lives at a 0 offset).
 
    pub size: usize,
 
    pub alignment: usize,
 
    pub offset: usize,
 
}
 

	
 
/// Procedure (functions and components of all possible types) monomorph. Also
 
/// stores the expression type data from the typechecking/inferencing pass.
 
pub struct ProcedureMonomorph {
 
    // Expression data for one particular monomorph
 
    pub concrete_type: ConcreteType,
 
    pub arg_types: Vec<ConcreteType>,
 
    pub expr_data: Vec<MonomorphExpression>,
 
}
 

	
 
/// Tuple monomorph. Again a kind of exception because one cannot define a named
 
/// tuple type containing explicit polymorphic variables. But again: we need to
 
/// store size/offset/alignment information, so we do it here.
 
pub struct TupleMonomorph {
 
    pub concrete_type: ConcreteType,
 
    pub size: usize,
 
    pub alignment: usize,
 
    pub members: Vec<TupleMonomorphMember>
 
}
 

	
 
pub struct TupleMonomorphMember {
 
    pub concrete_type: ConcreteType,
 
    pub size: usize,
 
    pub alignment: usize,
 
    pub offset: usize,
 
}
 

	
 
//------------------------------------------------------------------------------
 
// Type table
 
//------------------------------------------------------------------------------
 

	
 
// Programmer note: keep this struct free of dynamically allocated memory
 
#[derive(Clone)]
 
struct TypeLoopBreadcrumb {
 
    definition_id: DefinitionId,
 
    monomorph_idx: usize,
 
    next_member: usize,
 
    next_embedded: usize, // for unions, the index into the variant's embedded types
 
}
 

	
 
#[derive(Clone)]
 
struct MemoryBreadcrumb {
 
    definition_id: DefinitionId,
 
    monomorph_idx: usize,
 
    next_member: usize,
 
    next_embedded: usize,
 
    first_size_alignment_idx: usize,
 
}
 

	
 
#[derive(Debug, PartialEq, Eq)]
 
enum TypeLoopResult {
 
    TypeExists,
 
    PushBreadcrumb(DefinitionId, ConcreteType),
 
    TypeLoop(usize), // index into vec of breadcrumbs at which the type matched
 
}
 

	
 
enum MemoryLayoutResult {
 
    TypeExists(usize, usize), // (size, alignment)
 
    PushBreadcrumb(MemoryBreadcrumb),
 
}
 

	
 
// TODO: @Optimize, initial memory-unoptimized implementation
 
struct TypeLoopEntry {
 
    definition_id: DefinitionId,
 
    monomorph_idx: usize,
 
    is_union: bool,
 
}
 

	
 
struct TypeLoop {
 
    members: Vec<TypeLoopEntry>
 
}
 

	
 
pub struct TypeTable {
 
    /// Lookup from AST DefinitionId to a defined type. Considering possible
 
    /// polymorphs is done inside the `DefinedType` struct.
 
    lookup: HashMap<DefinitionId, DefinedType>,
 
    /// Breadcrumbs left behind while trying to find type loops. Also used to
 
    /// determine sizes of types when all type loops are detected.
 
    type_loop_breadcrumbs: Vec<TypeLoopBreadcrumb>,
 
    type_loops: Vec<TypeLoop>,
 
    /// Stores all encountered types during type loop detection. Used afterwards
 
    /// to iterate over all types in order to compute size/alignment.
 
    encountered_types: Vec<TypeLoopEntry>,
 
    /// Breadcrumbs and temporary storage during memory layout computation.
 
    memory_layout_breadcrumbs: Vec<MemoryBreadcrumb>,
 
    size_alignment_stack: Vec<(usize, usize)>,
 
}
 

	
 
impl TypeTable {
 
    /// Construct a new type table without any resolved types.
 
    pub(crate) fn new() -> Self {
 
        Self{ 
 
            lookup: HashMap::new(), 
 
            type_loop_breadcrumbs: Vec::with_capacity(32),
 
            type_loops: Vec::with_capacity(8),
 
            encountered_types: Vec::with_capacity(32),
 
            memory_layout_breadcrumbs: Vec::with_capacity(32),
 
            size_alignment_stack: Vec::with_capacity(64),
 
        }
 
    }
 

	
 
    /// Iterates over all defined types (polymorphic and non-polymorphic) and
 
    /// add their types in two passes. In the first pass we will just add the
 
    /// base types (we will not consider monomorphs, and we will not compute
 
    /// byte sizes). In the second pass we will compute byte sizes of
 
    /// non-polymorphic types, and potentially the monomorphs that are embedded
 
    /// in those types.
 
    pub(crate) fn build_base_types(&mut self, modules: &mut [Module], ctx: &mut PassCtx) -> Result<(), ParseError> {
 
        // Make sure we're allowed to cast root_id to index into ctx.modules
 
        debug_assert!(modules.iter().all(|m| m.phase >= ModuleCompilationPhase::DefinitionsParsed));
 
        debug_assert!(self.lookup.is_empty());
 

	
 
        if cfg!(debug_assertions) {
 
            for (index, module) in modules.iter().enumerate() {
 
                debug_assert_eq!(index, module.root_id.index as usize);
 
            }
 
        }
 

	
 
        // Use context to guess hashmap size of the base types
 
        let reserve_size = ctx.heap.definitions.len();
 
        self.lookup.reserve(reserve_size);
 

	
 
        // Resolve all base types
 
@@ -1297,192 +1333,194 @@ impl TypeTable {
 
            for member_idx in 1..type_loop.members.len() {
 
                let entry = &type_loop.members[member_idx];
 
                let entry_type = table.lookup.get(&first_entry.definition_id).unwrap();
 
                let (module, span, message) = type_loop_source_span_and_message(
 
                    modules, heap, entry_type, entry.monomorph_idx, member_idx
 
                );
 
                parse_error = parse_error.with_info_at_span(module, span, message);
 
            }
 

	
 
            parse_error
 
        }
 

	
 
        for type_loop in &self.type_loops {
 
            let mut can_be_broken = false;
 
            debug_assert!(!type_loop.members.is_empty());
 

	
 
            for entry in &type_loop.members {
 
                if entry.is_union {
 
                    let base_type = self.lookup.get(&entry.definition_id).unwrap();
 
                    let monomorph = &base_type.definition.as_union().monomorphs[entry.monomorph_idx];
 

	
 
                    debug_assert!(!monomorph.variants.is_empty()); // otherwise it couldn't be part of the type loop
 
                    let has_stack_variant = monomorph.variants.iter().any(|variant| !variant.lives_on_heap);
 
                    if has_stack_variant {
 
                        can_be_broken = true;
 
                    }
 
                }
 
            }
 

	
 
            if !can_be_broken {
 
                // Construct a type loop error
 
                return Err(construct_type_loop_error(self, type_loop, modules, heap));
 
            }
 
        }
 

	
 
        // If here, then all type loops have been resolved and we can lay out
 
        // all of the members
 
        self.type_loops.clear();
 

	
 
        return Ok(());
 
    }
 

	
 
    /// Checks if the specified type needs to be resolved (i.e. we need to push
 
    /// a breadcrumb), is already resolved (i.e. we can continue with the next
 
    /// member of the currently considered type) or is in the process of being
 
    /// resolved (i.e. we're in a type loop). Because of borrowing rules we
 
    /// don't do any modifications of internal types here. Hence: if we
 
    /// return `PushBreadcrumb` then call `handle_new_breadcrumb_for_type_loops`
 
    /// to take care of storing the appropriate types.
 
    fn check_member_for_type_loops(&self, definition_type: &ConcreteType) -> TypeLoopResult {
 
        use ConcreteTypePart as CTP;
 

	
 
        // We're only interested in user-defined types, so exit if it is a
 
        // builtin of some sort.
 
        debug_assert!(!definition_type.parts.is_empty());
 
        let definition_id = match &definition_type.parts[0] {
 
            CTP::Instance(definition_id, _) |
 
            CTP::Function(definition_id, _) |
 
            CTP::Component(definition_id, _) => {
 
                *definition_id
 
            },
 
            _ => {
 
                return TypeLoopResult::TypeExists
 
            },
 
        };
 

	
 
        let base_type = self.lookup.get(&definition_id).unwrap();
 
        if let Some(mono_idx) = base_type.get_monomorph_index(&definition_type.parts) {
 
            // Monomorph is already known. Check if it is present in the
 
            // breadcrumbs. If so, then we are in a type loop
 
            for (breadcrumb_idx, breadcrumb) in self.type_loop_breadcrumbs.iter().enumerate() {
 
                if breadcrumb.definition_id == definition_id && breadcrumb.monomorph_idx == mono_idx {
 
                    return TypeLoopResult::TypeLoop(breadcrumb_idx);
 
                }
 
            }
 

	
 
            return TypeLoopResult::TypeExists;
 
        }
 

	
 
        // Type is not yet known, so we need to insert it into the lookup and
 
        // push a new breadcrumb.
 
        return TypeLoopResult::PushBreadcrumb(definition_id, definition_type.clone());
 
    }
 

	
 
    /// Handles the `PushBreadcrumb` result for a `check_member_for_type_loops`
 
    /// call.
 
    fn handle_new_breadcrumb_for_type_loops(&mut self, definition_id: DefinitionId, definition_type: ConcreteType) {
 
        use DefinedTypeVariant as DTV;
 

	
 
        let base_type = self.lookup.get_mut(&definition_id).unwrap();
 
        let mut is_union = false;
 
        let monomorph_idx = match &mut base_type.definition {
 
            DTV::Enum(definition) => {
 
                debug_assert!(definition.monomorphs.is_empty());
 
                definition.monomorphs.push(EnumMonomorph{
 
                    concrete_type: definition_type,
 
                    size: 0,
 
                    alignment: 0,
 
                });
 
                0
 
            },
 
            DTV::Union(definition) => {
 
                // Create all the variants with their concrete types
 
                let mut mono_variants = Vec::with_capacity(definition.variants.len());
 
                for poly_variant in &definition.variants {
 
                    let mut mono_embedded = Vec::with_capacity(poly_variant.embedded.len());
 
                    for poly_embedded in &poly_variant.embedded {
 
                        let mono_concrete = Self::construct_concrete_type(poly_embedded, &definition_type);
 
                        mono_embedded.push(UnionMonomorphEmbedded{
 
                            concrete_type: mono_concrete,
 
                            size: 0,
 
                            alignment: 0,
 
                            offset: 0
 
                        });
 
                    }
 

	
 
                    mono_variants.push(UnionMonomorphVariant{
 
                        lives_on_heap: false,
 
                        embedded: mono_embedded,
 
                    })
 
                }
 

	
 
                let mono_idx = definition.monomorphs.len();
 
                definition.monomorphs.push(UnionMonomorph{
 
                    concrete_type: definition_type,
 
                    variants: mono_variants,
 
                    stack_size: 0,
 
                    stack_alignment: 0,
 
                    heap_size: 0,
 
                    heap_alignment: 0
 
                });
 

	
 
                is_union = true;
 
                mono_idx
 
            },
 
            DTV::Struct(definition) => {
 
                let mut mono_fields = Vec::with_capacity(definition.fields.len());
 
                for poly_field in &definition.fields {
 
                    let mono_concrete = Self::construct_concrete_type(&poly_field.parser_type, &definition_type);
 
                    mono_fields.push(StructMonomorphField{
 
                        concrete_type: mono_concrete,
 
                        size: 0,
 
                        alignment: 0,
 
                        offset: 0
 
                    })
 
                }
 

	
 
                let mono_idx = definition.monomorphs.len();
 
                definition.monomorphs.push(StructMonomorph{
 
                    concrete_type: definition_type,
 
                    fields: mono_fields,
 
                    size: 0,
 
                    alignment: 0
 
                });
 

	
 
                mono_idx
 
            },
 
            DTV::Function(_) | DTV::Component(_) => {
 
                unreachable!("pushing type resolving breadcrumb for procedure type")
 
            },
 
        };
 

	
 
        self.encountered_types.push(TypeLoopEntry{
 
            definition_id,
 
            monomorph_idx,
 
            is_union,
 
        });
 

	
 
        self.type_loop_breadcrumbs.push(TypeLoopBreadcrumb{
 
            definition_id,
 
            monomorph_idx,
 
            next_member: 0,
 
            next_embedded: 0,
 
        });
 
    }
 

	
 
    /// Constructs a concrete type out of a parser type for a struct field or
 
    /// union embedded type. It will do this by looking up the polymorphic
 
    /// variables in the supplied concrete type. The assumption is that the
 
    /// polymorphic variable's indices correspond to the subtrees in the
 
    /// concrete type.
 
    fn construct_concrete_type(member_type: &ParserType, container_type: &ConcreteType) -> ConcreteType {
 
        use ParserTypeVariant as PTV;
 
        use ConcreteTypePart as CTP;
 

	
 
        // TODO: Combine with code in pass_typing.rs
 
        fn parser_to_concrete_part(part: &ParserTypeVariant) -> Option<ConcreteTypePart> {
 
            match part {
 
                PTV::Void      => Some(CTP::Void),
 
                PTV::Message   => Some(CTP::Message),
 
                PTV::Bool      => Some(CTP::Bool),
 
                PTV::UInt8     => Some(CTP::UInt8),
 
                PTV::UInt16    => Some(CTP::UInt16),
 
                PTV::UInt32    => Some(CTP::UInt32),
0 comments (0 inline, 0 general)