Changeset - 6929a6091ed6
[Not reviewed]
0 7 0
MH - 4 years ago 2021-04-08 10:05:57
henger@cwi.nl
start on binding expressions
7 files changed with 77 insertions and 8 deletions:
0 comments (0 inline, 0 general)
src/protocol/ast.rs
Show inline comments
 
@@ -61,192 +61,193 @@ macro_rules! define_new_ast_id {
 
    // Variant where we just defined the new type, without any indexing
 
    ($name:ident, $parent:ty) => {
 
        #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, serde::Serialize, serde::Deserialize)]
 
        pub struct $name (pub(crate) $parent);
 

	
 
        impl $name {
 
            pub fn upcast(self) -> $parent {
 
                self.0
 
            }
 
        }
 
    };
 
    // Variant where we define the type, and the Index and IndexMut traits
 
    (
 
        $name:ident, $parent:ty, 
 
        index($indexed_type:ty, $wrapper_type:path, $indexed_arena:ident)
 
    ) => {
 
        define_new_ast_id!($name, $parent);
 
        impl Index<$name> for Heap {
 
            type Output = $indexed_type;
 
            fn index(&self, index: $name) -> &Self::Output {
 
                if let $wrapper_type(v) = &self.$indexed_arena[index.0] {
 
                    v
 
                } else {
 
                    unreachable!()
 
                }
 
            }
 
        }
 

	
 
        impl IndexMut<$name> for Heap {
 
            fn index_mut(&mut self, index: $name) -> &mut Self::Output {
 
                if let $wrapper_type(v) = &mut self.$indexed_arena[index.0] {
 
                    v
 
                } else {
 
                    unreachable!()
 
                }
 
            }
 
        }
 
    };
 
    // Variant where we define the type, the Index and IndexMut traits, and an allocation function
 
    (
 
        $name:ident, $parent:ty, 
 
        index($indexed_type:ty, $wrapper_type:path, $indexed_arena:ident),
 
        alloc($fn_name:ident)
 
    ) => {
 
        define_new_ast_id!($name, $parent, index($indexed_type, $wrapper_type, $indexed_arena));
 
        impl Heap {
 
            pub fn $fn_name(&mut self, f: impl FnOnce($name) -> $indexed_type) -> $name {
 
                $name(
 
                    self.$indexed_arena.alloc_with_id(|id| {
 
                        $wrapper_type(f($name(id)))
 
                    })
 
                )
 
            }
 
        }
 
    }
 
}
 

	
 
define_aliased_ast_id!(RootId, Id<Root>, index(Root, protocol_descriptions), alloc(alloc_protocol_description));
 
define_aliased_ast_id!(PragmaId, Id<Pragma>, index(Pragma, pragmas), alloc(alloc_pragma));
 
define_aliased_ast_id!(ImportId, Id<Import>, index(Import, imports), alloc(alloc_import));
 
define_aliased_ast_id!(ParserTypeId, Id<ParserType>, index(ParserType, parser_types), alloc(alloc_parser_type));
 

	
 
define_aliased_ast_id!(VariableId, Id<Variable>, index(Variable, variables));
 
define_new_ast_id!(ParameterId, VariableId, index(Parameter, Variable::Parameter, variables), alloc(alloc_parameter));
 
define_new_ast_id!(LocalId, VariableId, index(Local, Variable::Local, variables), alloc(alloc_local));
 

	
 
define_aliased_ast_id!(DefinitionId, Id<Definition>, index(Definition, definitions));
 
define_new_ast_id!(StructId, DefinitionId, index(StructDefinition, Definition::Struct, definitions), alloc(alloc_struct_definition));
 
define_new_ast_id!(EnumId, DefinitionId, index(EnumDefinition, Definition::Enum, definitions), alloc(alloc_enum_definition));
 
define_new_ast_id!(UnionId, DefinitionId, index(UnionDefinition, Definition::Union, definitions), alloc(alloc_union_definition));
 
define_new_ast_id!(ComponentId, DefinitionId, index(Component, Definition::Component, definitions), alloc(alloc_component));
 
define_new_ast_id!(FunctionId, DefinitionId, index(Function, Definition::Function, definitions), alloc(alloc_function));
 

	
 
define_aliased_ast_id!(StatementId, Id<Statement>, index(Statement, statements));
 
define_new_ast_id!(BlockStatementId, StatementId, index(BlockStatement, Statement::Block, statements), alloc(alloc_block_statement));
 
define_new_ast_id!(LocalStatementId, StatementId, index(LocalStatement, Statement::Local, statements), alloc(alloc_local_statement));
 
define_new_ast_id!(MemoryStatementId, LocalStatementId);
 
define_new_ast_id!(ChannelStatementId, LocalStatementId);
 
define_new_ast_id!(SkipStatementId, StatementId, index(SkipStatement, Statement::Skip, statements), alloc(alloc_skip_statement));
 
define_new_ast_id!(LabeledStatementId, StatementId, index(LabeledStatement, Statement::Labeled, statements), alloc(alloc_labeled_statement));
 
define_new_ast_id!(IfStatementId, StatementId, index(IfStatement, Statement::If, statements), alloc(alloc_if_statement));
 
define_new_ast_id!(EndIfStatementId, StatementId, index(EndIfStatement, Statement::EndIf, statements), alloc(alloc_end_if_statement));
 
define_new_ast_id!(WhileStatementId, StatementId, index(WhileStatement, Statement::While, statements), alloc(alloc_while_statement));
 
define_new_ast_id!(EndWhileStatementId, StatementId, index(EndWhileStatement, Statement::EndWhile, statements), alloc(alloc_end_while_statement));
 
define_new_ast_id!(BreakStatementId, StatementId, index(BreakStatement, Statement::Break, statements), alloc(alloc_break_statement));
 
define_new_ast_id!(ContinueStatementId, StatementId, index(ContinueStatement, Statement::Continue, statements), alloc(alloc_continue_statement));
 
define_new_ast_id!(SynchronousStatementId, StatementId, index(SynchronousStatement, Statement::Synchronous, statements), alloc(alloc_synchronous_statement));
 
define_new_ast_id!(EndSynchronousStatementId, StatementId, index(EndSynchronousStatement, Statement::EndSynchronous, statements), alloc(alloc_end_synchronous_statement));
 
define_new_ast_id!(ReturnStatementId, StatementId, index(ReturnStatement, Statement::Return, statements), alloc(alloc_return_statement));
 
define_new_ast_id!(AssertStatementId, StatementId, index(AssertStatement, Statement::Assert, statements), alloc(alloc_assert_statement));
 
define_new_ast_id!(GotoStatementId, StatementId, index(GotoStatement, Statement::Goto, statements), alloc(alloc_goto_statement));
 
define_new_ast_id!(NewStatementId, StatementId, index(NewStatement, Statement::New, statements), alloc(alloc_new_statement));
 
define_new_ast_id!(ExpressionStatementId, StatementId, index(ExpressionStatement, Statement::Expression, statements), alloc(alloc_expression_statement));
 

	
 
define_aliased_ast_id!(ExpressionId, Id<Expression>, index(Expression, expressions));
 
define_new_ast_id!(AssignmentExpressionId, ExpressionId, index(AssignmentExpression, Expression::Assignment, expressions), alloc(alloc_assignment_expression));
 
define_new_ast_id!(BindingExpressionId, ExpressionId, index(BindingExpression, Expression::Binding, expressions), alloc(alloc_binding_expression));
 
define_new_ast_id!(ConditionalExpressionId, ExpressionId, index(ConditionalExpression, Expression::Conditional, expressions), alloc(alloc_conditional_expression));
 
define_new_ast_id!(BinaryExpressionId, ExpressionId, index(BinaryExpression, Expression::Binary, expressions), alloc(alloc_binary_expression));
 
define_new_ast_id!(UnaryExpressionId, ExpressionId, index(UnaryExpression, Expression::Unary, expressions), alloc(alloc_unary_expression));
 
define_new_ast_id!(IndexingExpressionId, ExpressionId, index(IndexingExpression, Expression::Indexing, expressions), alloc(alloc_indexing_expression));
 
define_new_ast_id!(SlicingExpressionId, ExpressionId, index(SlicingExpression, Expression::Slicing, expressions), alloc(alloc_slicing_expression));
 
define_new_ast_id!(SelectExpressionId, ExpressionId, index(SelectExpression, Expression::Select, expressions), alloc(alloc_select_expression));
 
define_new_ast_id!(ArrayExpressionId, ExpressionId, index(ArrayExpression, Expression::Array, expressions), alloc(alloc_array_expression));
 
define_new_ast_id!(LiteralExpressionId, ExpressionId, index(LiteralExpression, Expression::Literal, expressions), alloc(alloc_literal_expression));
 
define_new_ast_id!(CallExpressionId, ExpressionId, index(CallExpression, Expression::Call, expressions), alloc(alloc_call_expression));
 
define_new_ast_id!(VariableExpressionId, ExpressionId, index(VariableExpression, Expression::Variable, expressions), alloc(alloc_variable_expression));
 

	
 
// TODO: @cleanup - pub qualifiers can be removed once done
 
#[derive(Debug, serde::Serialize, serde::Deserialize)]
 
pub struct Heap {
 
    // Root arena, contains the entry point for different modules. Each root
 
    // contains lists of IDs that correspond to the other arenas.
 
    pub(crate) protocol_descriptions: Arena<Root>,
 
    // Contents of a file, these are the elements the `Root` elements refer to
 
    pragmas: Arena<Pragma>,
 
    pub(crate) imports: Arena<Import>,
 
    identifiers: Arena<Identifier>,
 
    pub(crate) parser_types: Arena<ParserType>,
 
    pub(crate) variables: Arena<Variable>,
 
    pub(crate) definitions: Arena<Definition>,
 
    pub(crate) statements: Arena<Statement>,
 
    pub(crate) expressions: Arena<Expression>,
 
}
 

	
 
impl Heap {
 
    pub fn new() -> Heap {
 
        Heap {
 
            // string_alloc: StringAllocator::new(),
 
            protocol_descriptions: Arena::new(),
 
            pragmas: Arena::new(),
 
            imports: Arena::new(),
 
            identifiers: Arena::new(),
 
            parser_types: Arena::new(),
 
            variables: Arena::new(),
 
            definitions: Arena::new(),
 
            statements: Arena::new(),
 
            expressions: Arena::new(),
 
        }
 
    }
 
    pub fn alloc_memory_statement(
 
        &mut self,
 
        f: impl FnOnce(MemoryStatementId) -> MemoryStatement,
 
    ) -> MemoryStatementId {
 
        MemoryStatementId(LocalStatementId(self.statements.alloc_with_id(|id| {
 
            Statement::Local(LocalStatement::Memory(
 
                f(MemoryStatementId(LocalStatementId(id)))
 
            ))
 
        })))
 
    }
 
    pub fn alloc_channel_statement(
 
        &mut self,
 
        f: impl FnOnce(ChannelStatementId) -> ChannelStatement,
 
    ) -> ChannelStatementId {
 
        ChannelStatementId(LocalStatementId(self.statements.alloc_with_id(|id| {
 
            Statement::Local(LocalStatement::Channel(
 
                f(ChannelStatementId(LocalStatementId(id)))
 
            ))
 
        })))
 
    }
 
}
 

	
 
impl Index<MemoryStatementId> for Heap {
 
    type Output = MemoryStatement;
 
    fn index(&self, index: MemoryStatementId) -> &Self::Output {
 
        &self.statements[index.0.0].as_memory()
 
    }
 
}
 

	
 
impl Index<ChannelStatementId> for Heap {
 
    type Output = ChannelStatement;
 
    fn index(&self, index: ChannelStatementId) -> &Self::Output {
 
        &self.statements[index.0.0].as_channel()
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct Root {
 
    pub this: RootId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub pragmas: Vec<PragmaId>,
 
    pub imports: Vec<ImportId>,
 
    pub definitions: Vec<DefinitionId>,
 
}
 

	
 
impl Root {
 
    pub fn get_definition_ident(&self, h: &Heap, id: &[u8]) -> Option<DefinitionId> {
 
        for &def in self.definitions.iter() {
 
            if h[def].identifier().value == id {
 
                return Some(def);
 
            }
 
        }
 
@@ -1750,410 +1751,429 @@ impl SyntaxElement for EndSynchronousStatement {
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct ReturnStatement {
 
    pub this: ReturnStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub expression: ExpressionId,
 
}
 

	
 
impl SyntaxElement for ReturnStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct AssertStatement {
 
    pub this: AssertStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub expression: ExpressionId,
 
    // Phase 2: linker
 
    pub next: Option<StatementId>,
 
}
 

	
 
impl SyntaxElement for AssertStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct GotoStatement {
 
    pub this: GotoStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub label: Identifier,
 
    // Phase 2: linker
 
    pub target: Option<LabeledStatementId>,
 
}
 

	
 
impl SyntaxElement for GotoStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct NewStatement {
 
    pub this: NewStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub expression: CallExpressionId,
 
    // Phase 2: linker
 
    pub next: Option<StatementId>,
 
}
 

	
 
impl SyntaxElement for NewStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct ExpressionStatement {
 
    pub this: ExpressionStatementId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub expression: ExpressionId,
 
    // Phase 2: linker
 
    pub next: Option<StatementId>,
 
}
 

	
 
impl SyntaxElement for ExpressionStatement {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, PartialEq, Eq, Clone, Copy, serde::Serialize, serde::Deserialize)]
 
pub enum ExpressionParent {
 
    None, // only set during initial parsing
 
    If(IfStatementId),
 
    While(WhileStatementId),
 
    Return(ReturnStatementId),
 
    Assert(AssertStatementId),
 
    New(NewStatementId),
 
    ExpressionStmt(ExpressionStatementId),
 
    Expression(ExpressionId, u32) // index within expression (e.g LHS or RHS of expression)
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum Expression {
 
    Assignment(AssignmentExpression),
 
    Binding(BindingExpression),
 
    Conditional(ConditionalExpression),
 
    Binary(BinaryExpression),
 
    Unary(UnaryExpression),
 
    Indexing(IndexingExpression),
 
    Slicing(SlicingExpression),
 
    Select(SelectExpression),
 
    Array(ArrayExpression),
 
    Literal(LiteralExpression),
 
    Call(CallExpression),
 
    Variable(VariableExpression),
 
}
 

	
 
impl Expression {
 
    pub fn as_assignment(&self) -> &AssignmentExpression {
 
        match self {
 
            Expression::Assignment(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `AssignmentExpression`"),
 
        }
 
    }
 
    pub fn as_conditional(&self) -> &ConditionalExpression {
 
        match self {
 
            Expression::Conditional(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `ConditionalExpression`"),
 
        }
 
    }
 
    pub fn as_binary(&self) -> &BinaryExpression {
 
        match self {
 
            Expression::Binary(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `BinaryExpression`"),
 
        }
 
    }
 
    pub fn as_unary(&self) -> &UnaryExpression {
 
        match self {
 
            Expression::Unary(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `UnaryExpression`"),
 
        }
 
    }
 
    pub fn as_indexing(&self) -> &IndexingExpression {
 
        match self {
 
            Expression::Indexing(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `IndexingExpression`"),
 
        }
 
    }
 
    pub fn as_slicing(&self) -> &SlicingExpression {
 
        match self {
 
            Expression::Slicing(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `SlicingExpression`"),
 
        }
 
    }
 
    pub fn as_select(&self) -> &SelectExpression {
 
        match self {
 
            Expression::Select(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `SelectExpression`"),
 
        }
 
    }
 
    pub fn as_array(&self) -> &ArrayExpression {
 
        match self {
 
            Expression::Array(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `ArrayExpression`"),
 
        }
 
    }
 
    pub fn as_constant(&self) -> &LiteralExpression {
 
        match self {
 
            Expression::Literal(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `ConstantExpression`"),
 
        }
 
    }
 
    pub fn as_call(&self) -> &CallExpression {
 
        match self {
 
            Expression::Call(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `CallExpression`"),
 
        }
 
    }
 
    pub fn as_call_mut(&mut self) -> &mut CallExpression {
 
        match self {
 
            Expression::Call(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `CallExpression`"),
 
        }
 
    }
 
    pub fn as_variable(&self) -> &VariableExpression {
 
        match self {
 
            Expression::Variable(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `VariableExpression`"),
 
        }
 
    }
 
    pub fn as_variable_mut(&mut self) -> &mut VariableExpression {
 
        match self {
 
            Expression::Variable(result) => result,
 
            _ => panic!("Unable to cast `Expression` to `VariableExpression`"),
 
        }
 
    }
 
    // TODO: @cleanup
 
    pub fn parent(&self) -> &ExpressionParent {
 
        match self {
 
            Expression::Assignment(expr) => &expr.parent,
 
            Expression::Binding(expr) => &expr.parent,
 
            Expression::Conditional(expr) => &expr.parent,
 
            Expression::Binary(expr) => &expr.parent,
 
            Expression::Unary(expr) => &expr.parent,
 
            Expression::Indexing(expr) => &expr.parent,
 
            Expression::Slicing(expr) => &expr.parent,
 
            Expression::Select(expr) => &expr.parent,
 
            Expression::Array(expr) => &expr.parent,
 
            Expression::Literal(expr) => &expr.parent,
 
            Expression::Call(expr) => &expr.parent,
 
            Expression::Variable(expr) => &expr.parent,
 
        }
 
    }
 
    // TODO: @cleanup
 
    pub fn parent_expr_id(&self) -> Option<ExpressionId> {
 
        if let ExpressionParent::Expression(id, _) = self.parent() {
 
            Some(*id)
 
        } else {
 
            None
 
        }
 
    }
 
    // TODO: @cleanup
 
    pub fn set_parent(&mut self, parent: ExpressionParent) {
 
        match self {
 
            Expression::Assignment(expr) => expr.parent = parent,
 
            Expression::Binding(expr) => expr.parent = parent,
 
            Expression::Conditional(expr) => expr.parent = parent,
 
            Expression::Binary(expr) => expr.parent = parent,
 
            Expression::Unary(expr) => expr.parent = parent,
 
            Expression::Indexing(expr) => expr.parent = parent,
 
            Expression::Slicing(expr) => expr.parent = parent,
 
            Expression::Select(expr) => expr.parent = parent,
 
            Expression::Array(expr) => expr.parent = parent,
 
            Expression::Literal(expr) => expr.parent = parent,
 
            Expression::Call(expr) => expr.parent = parent,
 
            Expression::Variable(expr) => expr.parent = parent,
 
        }
 
    }
 
    pub fn get_type(&self) -> &ConcreteType {
 
        match self {
 
            Expression::Assignment(expr) => &expr.concrete_type,
 
            Expression::Binding(expr) => &expr.concrete_type,
 
            Expression::Conditional(expr) => &expr.concrete_type,
 
            Expression::Binary(expr) => &expr.concrete_type,
 
            Expression::Unary(expr) => &expr.concrete_type,
 
            Expression::Indexing(expr) => &expr.concrete_type,
 
            Expression::Slicing(expr) => &expr.concrete_type,
 
            Expression::Select(expr) => &expr.concrete_type,
 
            Expression::Array(expr) => &expr.concrete_type,
 
            Expression::Literal(expr) => &expr.concrete_type,
 
            Expression::Call(expr) => &expr.concrete_type,
 
            Expression::Variable(expr) => &expr.concrete_type,
 
        }
 
    }
 

	
 
    // TODO: @cleanup
 
    pub fn get_type_mut(&mut self) -> &mut ConcreteType {
 
        match self {
 
            Expression::Assignment(expr) => &mut expr.concrete_type,
 
            Expression::Binding(expr) => &mut expr.concrete_type,
 
            Expression::Conditional(expr) => &mut expr.concrete_type,
 
            Expression::Binary(expr) => &mut expr.concrete_type,
 
            Expression::Unary(expr) => &mut expr.concrete_type,
 
            Expression::Indexing(expr) => &mut expr.concrete_type,
 
            Expression::Slicing(expr) => &mut expr.concrete_type,
 
            Expression::Select(expr) => &mut expr.concrete_type,
 
            Expression::Array(expr) => &mut expr.concrete_type,
 
            Expression::Literal(expr) => &mut expr.concrete_type,
 
            Expression::Call(expr) => &mut expr.concrete_type,
 
            Expression::Variable(expr) => &mut expr.concrete_type,
 
        }
 
    }
 
}
 

	
 
impl SyntaxElement for Expression {
 
    fn position(&self) -> InputPosition {
 
        match self {
 
            Expression::Assignment(expr) => expr.position(),
 
            Expression::Binding(expr) => expr.position,
 
            Expression::Conditional(expr) => expr.position(),
 
            Expression::Binary(expr) => expr.position(),
 
            Expression::Unary(expr) => expr.position(),
 
            Expression::Indexing(expr) => expr.position(),
 
            Expression::Slicing(expr) => expr.position(),
 
            Expression::Select(expr) => expr.position(),
 
            Expression::Array(expr) => expr.position(),
 
            Expression::Literal(expr) => expr.position(),
 
            Expression::Call(expr) => expr.position(),
 
            Expression::Variable(expr) => expr.position(),
 
        }
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub enum AssignmentOperator {
 
    Set,
 
    Multiplied,
 
    Divided,
 
    Remained,
 
    Added,
 
    Subtracted,
 
    ShiftedLeft,
 
    ShiftedRight,
 
    BitwiseAnded,
 
    BitwiseXored,
 
    BitwiseOred,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct AssignmentExpression {
 
    pub this: AssignmentExpressionId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub left: ExpressionId,
 
    pub operation: AssignmentOperator,
 
    pub right: ExpressionId,
 
    // Phase 2: linker
 
    pub parent: ExpressionParent,
 
    // Phase 3: type checking
 
    pub concrete_type: ConcreteType,
 
}
 

	
 
impl SyntaxElement for AssignmentExpression {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct BindingExpression {
 
    pub this: BindingExpressionId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub left: ExpressionId,
 
    pub right: ExpressionId,
 
    // Phase 2: linker
 
    pub parent: ExpressionParent,
 
    // Phase 3: type checking
 
    pub concrete_type: ConcreteType,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct ConditionalExpression {
 
    pub this: ConditionalExpressionId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub test: ExpressionId,
 
    pub true_expression: ExpressionId,
 
    pub false_expression: ExpressionId,
 
    // Phase 2: linker
 
    pub parent: ExpressionParent,
 
    // Phase 3: type checking
 
    pub concrete_type: ConcreteType,
 
}
 

	
 
impl SyntaxElement for ConditionalExpression {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
 
pub enum BinaryOperator {
 
    Concatenate,
 
    LogicalOr,
 
    LogicalAnd,
 
    BitwiseOr,
 
    BitwiseXor,
 
    BitwiseAnd,
 
    Equality,
 
    Inequality,
 
    LessThan,
 
    GreaterThan,
 
    LessThanEqual,
 
    GreaterThanEqual,
 
    ShiftLeft,
 
    ShiftRight,
 
    Add,
 
    Subtract,
 
    Multiply,
 
    Divide,
 
    Remainder,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct BinaryExpression {
 
    pub this: BinaryExpressionId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub left: ExpressionId,
 
    pub operation: BinaryOperator,
 
    pub right: ExpressionId,
 
    // Phase 2: linker
 
    pub parent: ExpressionParent,
 
    // Phase 3: type checking
 
    pub concrete_type: ConcreteType,
 
}
 

	
 
impl SyntaxElement for BinaryExpression {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, PartialEq, Eq, serde::Serialize, serde::Deserialize)]
 
pub enum UnaryOperation {
 
    Positive,
 
    Negative,
 
    BitwiseNot,
 
    LogicalNot,
 
    PreIncrement,
 
    PreDecrement,
 
    PostIncrement,
 
    PostDecrement,
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct UnaryExpression {
 
    pub this: UnaryExpressionId,
 
    // Phase 1: parser
 
    pub position: InputPosition,
 
    pub operation: UnaryOperation,
 
    pub expression: ExpressionId,
 
    // Phase 2: linker
 
    pub parent: ExpressionParent,
 
    // Phase 3: type checking
 
    pub concrete_type: ConcreteType,
 
}
 

	
 
impl SyntaxElement for UnaryExpression {
 
    fn position(&self) -> InputPosition {
 
        self.position
 
    }
 
}
 

	
 
#[derive(Debug, Clone, serde::Serialize, serde::Deserialize)]
 
pub struct IndexingExpression {
src/protocol/ast_printer.rs
Show inline comments
 
use std::fmt::{Debug, Display, Write};
 
use std::io::Write as IOWrite;
 

	
 
use super::ast::*;
 

	
 
const INDENT: usize = 2;
 

	
 
const PREFIX_EMPTY: &'static str = "    ";
 
const PREFIX_ROOT_ID: &'static str = "Root";
 
const PREFIX_PRAGMA_ID: &'static str = "Prag";
 
const PREFIX_IMPORT_ID: &'static str = "Imp ";
 
const PREFIX_TYPE_ANNOT_ID: &'static str = "TyAn";
 
const PREFIX_VARIABLE_ID: &'static str = "Var ";
 
const PREFIX_PARAMETER_ID: &'static str = "Par ";
 
const PREFIX_LOCAL_ID: &'static str = "Loc ";
 
const PREFIX_DEFINITION_ID: &'static str = "Def ";
 
const PREFIX_STRUCT_ID: &'static str = "DefS";
 
const PREFIX_ENUM_ID: &'static str = "DefE";
 
const PREFIX_UNION_ID: &'static str = "DefU";
 
const PREFIX_COMPONENT_ID: &'static str = "DefC";
 
const PREFIX_FUNCTION_ID: &'static str = "DefF";
 
const PREFIX_STMT_ID: &'static str = "Stmt";
 
const PREFIX_BLOCK_STMT_ID: &'static str = "SBl ";
 
const PREFIX_LOCAL_STMT_ID: &'static str = "SLoc";
 
const PREFIX_MEM_STMT_ID: &'static str = "SMem";
 
const PREFIX_CHANNEL_STMT_ID: &'static str = "SCha";
 
const PREFIX_SKIP_STMT_ID: &'static str = "SSki";
 
const PREFIX_LABELED_STMT_ID: &'static str = "SLab";
 
const PREFIX_IF_STMT_ID: &'static str = "SIf ";
 
const PREFIX_ENDIF_STMT_ID: &'static str = "SEIf";
 
const PREFIX_WHILE_STMT_ID: &'static str = "SWhi";
 
const PREFIX_ENDWHILE_STMT_ID: &'static str = "SEWh";
 
const PREFIX_BREAK_STMT_ID: &'static str = "SBre";
 
const PREFIX_CONTINUE_STMT_ID: &'static str = "SCon";
 
const PREFIX_SYNC_STMT_ID: &'static str = "SSyn";
 
const PREFIX_ENDSYNC_STMT_ID: &'static str = "SESy";
 
const PREFIX_RETURN_STMT_ID: &'static str = "SRet";
 
const PREFIX_ASSERT_STMT_ID: &'static str = "SAsr";
 
const PREFIX_GOTO_STMT_ID: &'static str = "SGot";
 
const PREFIX_NEW_STMT_ID: &'static str = "SNew";
 
const PREFIX_PUT_STMT_ID: &'static str = "SPut";
 
const PREFIX_EXPR_STMT_ID: &'static str = "SExp";
 
const PREFIX_ASSIGNMENT_EXPR_ID: &'static str = "EAsi";
 
const PREFIX_BINDING_EXPR_ID: &'static str = "EBnd";
 
const PREFIX_CONDITIONAL_EXPR_ID: &'static str = "ECnd";
 
const PREFIX_BINARY_EXPR_ID: &'static str = "EBin";
 
const PREFIX_UNARY_EXPR_ID: &'static str = "EUna";
 
const PREFIX_INDEXING_EXPR_ID: &'static str = "EIdx";
 
const PREFIX_SLICING_EXPR_ID: &'static str = "ESli";
 
const PREFIX_SELECT_EXPR_ID: &'static str = "ESel";
 
const PREFIX_ARRAY_EXPR_ID: &'static str = "EArr";
 
const PREFIX_CONST_EXPR_ID: &'static str = "ECns";
 
const PREFIX_CALL_EXPR_ID: &'static str = "ECll";
 
const PREFIX_VARIABLE_EXPR_ID: &'static str = "EVar";
 

	
 
struct KV<'a> {
 
    buffer: &'a mut String,
 
    prefix: Option<(&'static str, u32)>,
 
    indent: usize,
 
    temp_key: &'a mut String,
 
    temp_val: &'a mut String,
 
}
 

	
 
impl<'a> KV<'a> {
 
    fn new(buffer: &'a mut String, temp_key: &'a mut String, temp_val: &'a mut String, indent: usize) -> Self {
 
        temp_key.clear();
 
        temp_val.clear();
 
        KV{
 
            buffer,
 
            prefix: None,
 
            indent,
 
            temp_key,
 
            temp_val
 
        }
 
    }
 

	
 
    fn with_id(mut self, prefix: &'static str, id: u32) -> Self {
 
        self.prefix = Some((prefix, id));
 
        self
 
    }
 

	
 
    fn with_s_key(self, key: &str) -> Self {
 
        self.temp_key.push_str(key);
 
        self
 
    }
 

	
 
    fn with_d_key<D: Display>(self, key: &D) -> Self {
 
        self.temp_key.push_str(&key.to_string());
 
        self
 
    }
 

	
 
    fn with_s_val(self, val: &str) -> Self {
 
        self.temp_val.push_str(val);
 
        self
 
    }
 

	
 
    fn with_disp_val<D: Display>(self, val: &D) -> Self {
 
        self.temp_val.push_str(&format!("{}", val));
 
        self
 
    }
 

	
 
    fn with_debug_val<D: Debug>(self, val: &D) -> Self {
 
        self.temp_val.push_str(&format!("{:?}", val));
 
        self
 
    }
 

	
 
    fn with_ascii_val(self, val: &[u8]) -> Self {
 
        self.temp_val.push_str(&*String::from_utf8_lossy(val));
 
        self
 
    }
 

	
 
    fn with_opt_disp_val<D: Display>(self, val: Option<&D>) -> Self {
 
        match val {
 
            Some(v) => { self.temp_val.push_str(&format!("Some({})", v)); },
 
            None => { self.temp_val.push_str("None"); }
 
        }
 
        self
 
    }
 

	
 
    fn with_opt_ascii_val(self, val: Option<&[u8]>) -> Self {
 
        match val {
 
            Some(v) => {
 
                self.temp_val.push_str("Some(");
 
                self.temp_val.push_str(&*String::from_utf8_lossy(v));
 
                self.temp_val.push(')');
 
            },
 
            None => {
 
                self.temp_val.push_str("None");
 
            }
 
        }
 
        self
 
    }
 

	
 
    fn with_custom_val<F: Fn(&mut String)>(mut self, val_fn: F) -> Self {
 
        val_fn(&mut self.temp_val);
 
        self
 
    }
 
}
 

	
 
impl<'a> Drop for KV<'a> {
 
@@ -501,192 +502,204 @@ impl ASTWriter {
 
                self.kv(indent).with_id(PREFIX_ENDWHILE_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndWhile");
 
                self.kv(indent2).with_s_key("StartWhile").with_disp_val(&stmt.start_while.0.index);
 
                self.kv(indent2).with_s_key("Next")
 
                    .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
            },
 
            Statement::Break(stmt) => {
 
                self.kv(indent).with_id(PREFIX_BREAK_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Break");
 
                self.kv(indent2).with_s_key("Label")
 
                    .with_opt_ascii_val(stmt.label.as_ref().map(|v| v.value.as_slice()));
 
                self.kv(indent2).with_s_key("Target")
 
                    .with_opt_disp_val(stmt.target.as_ref().map(|v| &v.0.index));
 
            },
 
            Statement::Continue(stmt) => {
 
                self.kv(indent).with_id(PREFIX_CONTINUE_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Continue");
 
                self.kv(indent2).with_s_key("Label")
 
                    .with_opt_ascii_val(stmt.label.as_ref().map(|v| v.value.as_slice()));
 
                self.kv(indent2).with_s_key("Target")
 
                    .with_opt_disp_val(stmt.target.as_ref().map(|v| &v.0.index));
 
            },
 
            Statement::Synchronous(stmt) => {
 
                self.kv(indent).with_id(PREFIX_SYNC_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Synchronous");
 
                self.kv(indent2).with_s_key("EndSync")
 
                    .with_opt_disp_val(stmt.end_sync.as_ref().map(|v| &v.0.index));
 
                self.kv(indent2).with_s_key("Body");
 
                self.write_stmt(heap, stmt.body, indent3);
 
            },
 
            Statement::EndSynchronous(stmt) => {
 
                self.kv(indent).with_id(PREFIX_ENDSYNC_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("EndSynchronous");
 
                self.kv(indent2).with_s_key("StartSync").with_disp_val(&stmt.start_sync.0.index);
 
                self.kv(indent2).with_s_key("Next")
 
                    .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
            },
 
            Statement::Return(stmt) => {
 
                self.kv(indent).with_id(PREFIX_RETURN_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Return");
 
                self.kv(indent2).with_s_key("Expression");
 
                self.write_expr(heap, stmt.expression, indent3);
 
            },
 
            Statement::Assert(stmt) => {
 
                self.kv(indent).with_id(PREFIX_ASSERT_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Assert");
 
                self.kv(indent2).with_s_key("Expression");
 
                self.write_expr(heap, stmt.expression, indent3);
 
                self.kv(indent2).with_s_key("Next")
 
                    .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
            },
 
            Statement::Goto(stmt) => {
 
                self.kv(indent).with_id(PREFIX_GOTO_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("Goto");
 
                self.kv(indent2).with_s_key("Label").with_ascii_val(&stmt.label.value);
 
                self.kv(indent2).with_s_key("Target")
 
                    .with_opt_disp_val(stmt.target.as_ref().map(|v| &v.0.index));
 
            },
 
            Statement::New(stmt) => {
 
                self.kv(indent).with_id(PREFIX_NEW_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("New");
 
                self.kv(indent2).with_s_key("Expression");
 
                self.write_expr(heap, stmt.expression.upcast(), indent3);
 
                self.kv(indent2).with_s_key("Next")
 
                    .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
            },
 
            Statement::Expression(stmt) => {
 
                self.kv(indent).with_id(PREFIX_EXPR_STMT_ID, stmt.this.0.index)
 
                    .with_s_key("ExpressionStatement");
 
                self.write_expr(heap, stmt.expression, indent2);
 
                self.kv(indent2).with_s_key("Next")
 
                    .with_opt_disp_val(stmt.next.as_ref().map(|v| &v.index));
 
            }
 
        }
 
    }
 

	
 
    fn write_expr(&mut self, heap: &Heap, expr_id: ExpressionId, indent: usize) {
 
        let expr = &heap[expr_id];
 
        let indent2 = indent + 1;
 
        let indent3 = indent2 + 1;
 
        let def_id = self.cur_definition.unwrap();
 

	
 
        match expr {
 
            Expression::Assignment(expr) => {
 
                self.kv(indent).with_id(PREFIX_ASSIGNMENT_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("AssignmentExpr");
 
                self.kv(indent2).with_s_key("Operation").with_debug_val(&expr.operation);
 
                self.kv(indent2).with_s_key("Left");
 
                self.write_expr(heap, expr.left, indent3);
 
                self.kv(indent2).with_s_key("Right");
 
                self.write_expr(heap, expr.right, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
                self.kv(indent2).with_s_key("ConcreteType")
 
                    .with_custom_val(|v| write_concrete_type(v, heap, def_id, &expr.concrete_type));
 
            },
 
            Expression::Binding(expr) => {
 
                self.kv(indent).with_id(PREFIX_BINARY_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("BindingExpr");
 
                self.kv(indent2).with_s_key("LeftExpression");
 
                self.write_expr(heap, expr.left, indent3);
 
                self.kv(indent2).with_s_key("RightExpression");
 
                self.write_expr(heap, expr.right, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
                self.kv(indent2).with_s_key("ConcreteType")
 
                    .with_custom_val(|v| write_concrete_type(v, heap, def_id, &expr.concrete_type));
 
            },
 
            Expression::Conditional(expr) => {
 
                self.kv(indent).with_id(PREFIX_CONDITIONAL_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("ConditionalExpr");
 
                self.kv(indent2).with_s_key("Condition");
 
                self.write_expr(heap, expr.test, indent3);
 
                self.kv(indent2).with_s_key("TrueExpression");
 
                self.write_expr(heap, expr.true_expression, indent3);
 
                self.kv(indent2).with_s_key("FalseExpression");
 
                self.write_expr(heap, expr.false_expression, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
                self.kv(indent2).with_s_key("ConcreteType")
 
                    .with_custom_val(|v| write_concrete_type(v, heap, def_id, &expr.concrete_type));
 
            },
 
            Expression::Binary(expr) => {
 
                self.kv(indent).with_id(PREFIX_BINARY_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("BinaryExpr");
 
                self.kv(indent2).with_s_key("Operation").with_debug_val(&expr.operation);
 
                self.kv(indent2).with_s_key("Left");
 
                self.write_expr(heap, expr.left, indent3);
 
                self.kv(indent2).with_s_key("Right");
 
                self.write_expr(heap, expr.right, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
                self.kv(indent2).with_s_key("ConcreteType")
 
                    .with_custom_val(|v| write_concrete_type(v, heap, def_id, &expr.concrete_type));
 
            },
 
            Expression::Unary(expr) => {
 
                self.kv(indent).with_id(PREFIX_UNARY_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("UnaryExpr");
 
                self.kv(indent2).with_s_key("Operation").with_debug_val(&expr.operation);
 
                self.kv(indent2).with_s_key("Argument");
 
                self.write_expr(heap, expr.expression, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
                self.kv(indent2).with_s_key("ConcreteType")
 
                    .with_custom_val(|v| write_concrete_type(v, heap, def_id, &expr.concrete_type));
 
            },
 
            Expression::Indexing(expr) => {
 
                self.kv(indent).with_id(PREFIX_INDEXING_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("IndexingExpr");
 
                self.kv(indent2).with_s_key("Subject");
 
                self.write_expr(heap, expr.subject, indent3);
 
                self.kv(indent2).with_s_key("Index");
 
                self.write_expr(heap, expr.index, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
                self.kv(indent2).with_s_key("ConcreteType")
 
                    .with_custom_val(|v| write_concrete_type(v, heap, def_id, &expr.concrete_type));
 
            },
 
            Expression::Slicing(expr) => {
 
                self.kv(indent).with_id(PREFIX_SLICING_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("SlicingExpr");
 
                self.kv(indent2).with_s_key("Subject");
 
                self.write_expr(heap, expr.subject, indent3);
 
                self.kv(indent2).with_s_key("FromIndex");
 
                self.write_expr(heap, expr.from_index, indent3);
 
                self.kv(indent2).with_s_key("ToIndex");
 
                self.write_expr(heap, expr.to_index, indent3);
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
                self.kv(indent2).with_s_key("ConcreteType")
 
                    .with_custom_val(|v| write_concrete_type(v, heap, def_id, &expr.concrete_type));
 
            },
 
            Expression::Select(expr) => {
 
                self.kv(indent).with_id(PREFIX_SELECT_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("SelectExpr");
 
                self.kv(indent2).with_s_key("Subject");
 
                self.write_expr(heap, expr.subject, indent3);
 

	
 
                match &expr.field {
 
                    Field::Length => {
 
                        self.kv(indent2).with_s_key("Field").with_s_val("length");
 
                    },
 
                    Field::Symbolic(field) => {
 
                        self.kv(indent2).with_s_key("Field").with_ascii_val(&field.identifier.value);
 
                        self.kv(indent3).with_s_key("Definition").with_opt_disp_val(field.definition.as_ref().map(|v| &v.index));
 
                        self.kv(indent3).with_s_key("Index").with_disp_val(&field.field_idx);
 
                    }
 
                }
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
                self.kv(indent2).with_s_key("ConcreteType")
 
                    .with_custom_val(|v| write_concrete_type(v, heap, def_id, &expr.concrete_type));
 
            },
 
            Expression::Array(expr) => {
 
                self.kv(indent).with_id(PREFIX_ARRAY_EXPR_ID, expr.this.0.index)
 
                    .with_s_key("ArrayExpr");
 
                self.kv(indent2).with_s_key("Elements");
 
                for expr_id in &expr.elements {
 
                    self.write_expr(heap, *expr_id, indent3);
 
                }
 

	
 
                self.kv(indent2).with_s_key("Parent")
 
                    .with_custom_val(|v| write_expression_parent(v, &expr.parent));
 
                self.kv(indent2).with_s_key("ConcreteType")
src/protocol/eval.rs
Show inline comments
 
@@ -1353,192 +1353,195 @@ impl Store {
 
                // Ensure value is compatible with type of variable
 
                let parser_type_id = match &h[var] {
 
                    Variable::Local(v) => v.parser_type,
 
                    Variable::Parameter(v) => v.parser_type
 
                };
 
                let parser_type = &h[parser_type_id];
 
                assert!(value.is_type_compatible(h, parser_type));
 
                // Overwrite mapping
 
                self.map.insert(var, value.clone());
 
                Ok(value)
 
            }
 
            Expression::Indexing(indexing) => {
 
                // Evaluate index expression, which must be some integral type
 
                let index = self.eval(h, ctx, indexing.index)?;
 
                // Mutable reference to the subject
 
                let subject;
 
                match &h[indexing.subject] {
 
                    Expression::Variable(var) => {
 
                        let var = var.declaration.unwrap();
 
                        subject = self.map.get_mut(&var).unwrap();
 
                    }
 
                    _ => unreachable!(),
 
                }
 
                match subject.set(&index, &value) {
 
                    Some(value) => Ok(value),
 
                    None => Err(EvalContinuation::Inconsistent),
 
                }
 
            }
 
            _ => unimplemented!("{:?}", h[lexpr]),
 
        }
 
    }
 
    fn get(&mut self, h: &Heap, ctx: &mut EvalContext, rexpr: ExpressionId) -> EvalResult {
 
        match &h[rexpr] {
 
            Expression::Variable(var) => {
 
                let var_id = var.declaration.unwrap();
 
                let value = self
 
                    .map
 
                    .get(&var_id)
 
                    .expect(&format!("Uninitialized variable {:?}", String::from_utf8_lossy(&var.identifier.value)));
 
                Ok(value.clone())
 
            }
 
            Expression::Indexing(indexing) => {
 
                // Evaluate index expression, which must be some integral type
 
                let index = self.eval(h, ctx, indexing.index)?;
 
                // Reference to subject
 
                let subject;
 
                match &h[indexing.subject] {
 
                    Expression::Variable(var) => {
 
                        let var = var.declaration.unwrap();
 
                        subject = self.map.get(&var).unwrap();
 
                    }
 
                    q => unreachable!("Reached {:?}", q),
 
                }
 
                match subject.get(&index) {
 
                    Some(value) => Ok(value),
 
                    None => Err(EvalContinuation::Inconsistent),
 
                }
 
            }
 
            Expression::Select(selecting) => {
 
                // Reference to subject
 
                let subject;
 
                match &h[selecting.subject] {
 
                    Expression::Variable(var) => {
 
                        let var = var.declaration.unwrap();
 
                        subject = self.map.get(&var).unwrap();
 
                    }
 
                    q => unreachable!("Reached {:?}", q),
 
                }
 
                match subject.length() {
 
                    Some(value) => Ok(value),
 
                    None => Err(EvalContinuation::Inconsistent),
 
                }
 
            }
 
            _ => unimplemented!("{:?}", h[rexpr]),
 
        }
 
    }
 
    fn eval(&mut self, h: &Heap, ctx: &mut EvalContext, expr: ExpressionId) -> EvalResult {
 
        match &h[expr] {
 
            Expression::Assignment(expr) => {
 
                let value = self.eval(h, ctx, expr.right)?;
 
                match expr.operation {
 
                    AssignmentOperator::Set => {
 
                        self.update(h, ctx, expr.left, value.clone())?;
 
                    }
 
                    AssignmentOperator::Added => {
 
                        let old = self.get(h, ctx, expr.left)?;
 
                        self.update(h, ctx, expr.left, old.plus(&value))?;
 
                    }
 
                    AssignmentOperator::Subtracted => {
 
                        let old = self.get(h, ctx, expr.left)?;
 
                        self.update(h, ctx, expr.left, old.minus(&value))?;
 
                    }
 
                    _ => unimplemented!("{:?}", expr),
 
                }
 
                Ok(value)
 
            }
 
            Expression::Binding(expr) => {
 
                unimplemented!("eval binding expression");
 
            }
 
            Expression::Conditional(expr) => {
 
                let test = self.eval(h, ctx, expr.test)?;
 
                if test.as_boolean().0 {
 
                    self.eval(h, ctx, expr.true_expression)
 
                } else {
 
                    self.eval(h, ctx, expr.false_expression)
 
                }
 
            }
 
            Expression::Binary(expr) => {
 
                let left = self.eval(h, ctx, expr.left)?;
 
                let right;
 
                match expr.operation {
 
                    BinaryOperator::LogicalAnd => {
 
                        if left.as_boolean().0 == false {
 
                            return Ok(left);
 
                        }
 
                        right = self.eval(h, ctx, expr.right)?;
 
                        right.as_boolean(); // panics if not a boolean
 
                        return Ok(right);
 
                    }
 
                    BinaryOperator::LogicalOr => {
 
                        if left.as_boolean().0 == true {
 
                            return Ok(left);
 
                        }
 
                        right = self.eval(h, ctx, expr.right)?;
 
                        right.as_boolean(); // panics if not a boolean
 
                        return Ok(right);
 
                    }
 
                    _ => {}
 
                }
 
                right = self.eval(h, ctx, expr.right)?;
 
                match expr.operation {
 
                    BinaryOperator::Equality => Ok(left.eq(&right)),
 
                    BinaryOperator::Inequality => Ok(left.neq(&right)),
 
                    BinaryOperator::LessThan => Ok(left.lt(&right)),
 
                    BinaryOperator::LessThanEqual => Ok(left.lte(&right)),
 
                    BinaryOperator::GreaterThan => Ok(left.gt(&right)),
 
                    BinaryOperator::GreaterThanEqual => Ok(left.gte(&right)),
 
                    BinaryOperator::Remainder => Ok(left.modulus(&right)),
 
                    BinaryOperator::Add => Ok(left.plus(&right)),
 
                    _ => unimplemented!("{:?}", expr.operation),
 
                }
 
            }
 
            Expression::Unary(expr) => {
 
                let mut value = self.eval(h, ctx, expr.expression)?;
 
                match expr.operation {
 
                    UnaryOperation::PostIncrement => {
 
                        self.update(h, ctx, expr.expression, value.plus(&ONE))?;
 
                    }
 
                    UnaryOperation::PreIncrement => {
 
                        value = value.plus(&ONE);
 
                        self.update(h, ctx, expr.expression, value.clone())?;
 
                    }
 
                    UnaryOperation::PostDecrement => {
 
                        self.update(h, ctx, expr.expression, value.minus(&ONE))?;
 
                    }
 
                    UnaryOperation::PreDecrement => {
 
                        value = value.minus(&ONE);
 
                        self.update(h, ctx, expr.expression, value.clone())?;
 
                    }
 
                    _ => unimplemented!(),
 
                }
 
                Ok(value)
 
            }
 
            Expression::Indexing(expr) => self.get(h, ctx, expr.this.upcast()),
 
            Expression::Slicing(_expr) => unimplemented!(),
 
            Expression::Select(expr) => self.get(h, ctx, expr.this.upcast()),
 
            Expression::Array(expr) => {
 
                let mut elements = Vec::new();
 
                for &elem in expr.elements.iter() {
 
                    elements.push(self.eval(h, ctx, elem)?);
 
                }
 
                todo!()
 
            }
 
            Expression::Literal(expr) => Ok(Value::from_constant(&expr.value)),
 
            Expression::Call(expr) => match &expr.method {
 
                Method::Get => {
 
                    assert_eq!(1, expr.arguments.len());
 
                    let value = self.eval(h, ctx, expr.arguments[0])?;
 
                    match ctx.get(value.clone()) {
 
                        None => Err(EvalContinuation::BlockGet(value)),
 
                        Some(result) => Ok(result),
 
                    }
 
                }
 
                Method::Put => {
 
                    assert_eq!(2, expr.arguments.len());
 
                    let port_value = self.eval(h, ctx, expr.arguments[0])?;
 
                    let msg_value = self.eval(h, ctx, expr.arguments[1])?;
 
                    if ctx.did_put(port_value.clone()) {
 
                        // Return bogus, replacing this at some point anyway
 
                        Ok(Value::Message(MessageValue(None)))
 
                    } else {
 
                        Err(EvalContinuation::Put(port_value, msg_value))
 
                    }
 
                }
 
                Method::Fires => {
src/protocol/lexer.rs
Show inline comments
 
@@ -1168,192 +1168,205 @@ impl Lexer<'_> {
 
            let left = result;
 
            let operation;
 
            if self.has_string(b"<<") {
 
                self.consume_string(b"<<")?;
 
                operation = BinaryOperator::ShiftLeft;
 
            } else {
 
                self.consume_string(b">>")?;
 
                operation = BinaryOperator::ShiftRight;
 
            }
 
            self.consume_whitespace(false)?;
 
            let right = self.consume_add_expression(h)?;
 
            self.consume_whitespace(false)?;
 
            result = h
 
                .alloc_binary_expression(|this| BinaryExpression {
 
                    this,
 
                    position,
 
                    left,
 
                    operation,
 
                    right,
 
                    parent: ExpressionParent::None,
 
                    concrete_type: ConcreteType::default(),
 
                })
 
                .upcast();
 
        }
 
        Ok(result)
 
    }
 
    fn consume_add_expression(&mut self, h: &mut Heap) -> Result<ExpressionId, ParseError> {
 
        let mut result = self.consume_mul_expression(h)?;
 
        self.consume_whitespace(false)?;
 
        while self.has_string(b"+") && !self.has_string(b"+=")
 
            || self.has_string(b"-") && !self.has_string(b"-=")
 
        {
 
            let position = self.source.pos();
 
            let left = result;
 
            let operation;
 
            if self.has_string(b"+") {
 
                self.consume_string(b"+")?;
 
                operation = BinaryOperator::Add;
 
            } else {
 
                self.consume_string(b"-")?;
 
                operation = BinaryOperator::Subtract;
 
            }
 
            self.consume_whitespace(false)?;
 
            let right = self.consume_mul_expression(h)?;
 
            self.consume_whitespace(false)?;
 
            result = h
 
                .alloc_binary_expression(|this| BinaryExpression {
 
                    this,
 
                    position,
 
                    left,
 
                    operation,
 
                    right,
 
                    parent: ExpressionParent::None,
 
                    concrete_type: ConcreteType::default(),
 
                })
 
                .upcast();
 
        }
 
        Ok(result)
 
    }
 
    fn consume_mul_expression(&mut self, h: &mut Heap) -> Result<ExpressionId, ParseError> {
 
        let mut result = self.consume_prefix_expression(h)?;
 
        self.consume_whitespace(false)?;
 
        while self.has_string(b"*") && !self.has_string(b"*=")
 
            || self.has_string(b"/") && !self.has_string(b"/=")
 
            || self.has_string(b"%") && !self.has_string(b"%=")
 
        {
 
            let position = self.source.pos();
 
            let left = result;
 
            let operation;
 
            if self.has_string(b"*") {
 
                self.consume_string(b"*")?;
 
                operation = BinaryOperator::Multiply;
 
            } else if self.has_string(b"/") {
 
                self.consume_string(b"/")?;
 
                operation = BinaryOperator::Divide;
 
            } else {
 
                self.consume_string(b"%")?;
 
                operation = BinaryOperator::Remainder;
 
            }
 
            self.consume_whitespace(false)?;
 
            let right = self.consume_prefix_expression(h)?;
 
            self.consume_whitespace(false)?;
 
            result = h
 
                .alloc_binary_expression(|this| BinaryExpression {
 
                    this,
 
                    position,
 
                    left,
 
                    operation,
 
                    right,
 
                    parent: ExpressionParent::None,
 
                    concrete_type: ConcreteType::default(),
 
                })
 
                .upcast();
 
        }
 
        Ok(result)
 
    }
 
    fn consume_binding_expression(&mut self, h: &mut Heap) -> Result<ExpressionId, ParseError> {
 
        if self.has_string("let") {
 
            let position = self.source.pos();
 
            self.consume_whitespace(true)?;
 
            let left_expr = self.consume_expression(h)?;
 
            self.consume_whitespace(false)?;
 
            self.consume_string(b"=")?;
 
            self.consume_whitespace(false)?;
 
            let right_expr = self.consume_expression(h)?;
 
        } else {
 
            self.consume_prefix_expression(h)
 
        }
 
    }
 
    fn consume_prefix_expression(&mut self, h: &mut Heap) -> Result<ExpressionId, ParseError> {
 
        if self.has_string(b"+")
 
            || self.has_string(b"-")
 
            || self.has_string(b"~")
 
            || self.has_string(b"!")
 
        {
 
            let position = self.source.pos();
 
            let operation;
 
            if self.has_string(b"+") {
 
                self.consume_string(b"+")?;
 
                if self.has_string(b"+") {
 
                    self.consume_string(b"+")?;
 
                    operation = UnaryOperation::PreIncrement;
 
                } else {
 
                    operation = UnaryOperation::Positive;
 
                }
 
            } else if self.has_string(b"-") {
 
                self.consume_string(b"-")?;
 
                if self.has_string(b"-") {
 
                    self.consume_string(b"-")?;
 
                    operation = UnaryOperation::PreDecrement;
 
                } else {
 
                    operation = UnaryOperation::Negative;
 
                }
 
            } else if self.has_string(b"~") {
 
                self.consume_string(b"~")?;
 
                operation = UnaryOperation::BitwiseNot;
 
            } else {
 
                self.consume_string(b"!")?;
 
                operation = UnaryOperation::LogicalNot;
 
            }
 
            self.consume_whitespace(false)?;
 
            if self.level >= MAX_LEVEL {
 
                return Err(self.error_at_pos("Too deeply nested expression"));
 
            }
 
            self.level += 1;
 
            let result = self.consume_prefix_expression(h);
 
            self.level -= 1;
 
            let expression = result?;
 
            return Ok(h
 
                .alloc_unary_expression(|this| UnaryExpression {
 
                    this,
 
                    position,
 
                    operation,
 
                    expression,
 
                    parent: ExpressionParent::None,
 
                    concrete_type: ConcreteType::default(),
 
                })
 
                .upcast());
 
        }
 
        self.consume_postfix_expression(h)
 
    }
 
    fn consume_postfix_expression(&mut self, h: &mut Heap) -> Result<ExpressionId, ParseError> {
 
        let mut result = self.consume_primary_expression(h)?;
 
        self.consume_whitespace(false)?;
 
        while self.has_string(b"++")
 
            || self.has_string(b"--")
 
            || self.has_string(b"[")
 
            || (self.has_string(b".") && !self.has_string(b".."))
 
        {
 
            let mut position = self.source.pos();
 
            if self.has_string(b"++") {
 
                self.consume_string(b"++")?;
 
                let operation = UnaryOperation::PostIncrement;
 
                let expression = result;
 
                self.consume_whitespace(false)?;
 
                result = h
 
                    .alloc_unary_expression(|this| UnaryExpression {
 
                        this,
 
                        position,
 
                        operation,
 
                        expression,
 
                        parent: ExpressionParent::None,
 
                        concrete_type: ConcreteType::default(),
 
                    })
 
                    .upcast();
 
            } else if self.has_string(b"--") {
 
                self.consume_string(b"--")?;
 
                let operation = UnaryOperation::PostDecrement;
 
                let expression = result;
 
                self.consume_whitespace(false)?;
 
                result = h
 
                    .alloc_unary_expression(|this| UnaryExpression {
 
                        this,
 
                        position,
 
                        operation,
 
                        expression,
 
                        parent: ExpressionParent::None,
 
                        concrete_type: ConcreteType::default(),
 
                    })
 
                    .upcast();
 
            } else if self.has_string(b"[") {
 
                self.consume_string(b"[")?;
 
                self.consume_whitespace(false)?;
 
                let subject = result;
 
                let index = self.consume_expression(h)?;
src/protocol/tests/parser_monomorphs.rs
Show inline comments
 
/// parser_monomorphs.rs
 
///
 
/// Simple tests to make sure that all of the appropriate monomorphs are 
 
/// instantiated
 

	
 
use super::*;
 

	
 
#[test]
 
fn test_struct_monomorphs() {
 
    Tester::new_single_source_expect_ok(
 
        "no polymorph",
 
        "struct Integer{ int field }"
 
    ).for_struct("Integer", |s| { s
 
        .assert_num_monomorphs(0);
 
    });
 

	
 
    Tester::new_single_source_expect_ok(
 
        "single polymorph",
 
        "
 
        struct Number<T>{ T number }
 
        int instantiator() {
 
            auto a = Number<byte>{ number: 0 };
 
            auto b = Number<byte>{ number: 1 };
 
            auto c = Number<int>{ number: 2 };
 
            auto d = Number<long>{ number: 3 };
 
            auto e = Number<Number<short>>{ number: Number{ number: 4 }};
 
            return 0;
 
        }
 
        "
 
    ).for_struct("Number", |s| { s
 
        .assert_has_monomorph("byte")
 
        .assert_has_monomorph("short")
 
        .assert_has_monomorph("int")
 
        .assert_has_monomorph("long")
 
        .assert_has_monomorph("Number<short>")
 
        .assert_num_monomorphs(5);
 
    }).for_function("instantiator", |f| { f
 
        .for_variable("a", |v| {v.assert_concrete_type("Number<byte>");} )
 
        .for_variable("e", |v| {v.assert_concrete_type("Number<Number<short>>");} );
 
    });
 
}
 

	
 
#[test]
 
fn test_enum_monomorphs() {
 
    Tester::new_single_source_expect_ok(
 
        "no polymorph",
 
        "
 
        enum Answer{ Yes, No }
 
        int do_it() { auto a = Answer::Yes; return 0; }
 
        "
 
    ).for_enum("Answer", |e| { e
 
        .assert_num_monomorphs(0);
 
    });
 

	
 
    Tester::new_single_source_expect_ok(
 
        "single polymorph",
 
        "
 
        enum Answer<T> { Yes, No }
 
        int instantiator() {
 
            auto a = Answer<byte>::Yes;
 
            auto b = Answer<byte>::No;
 
            auto c = Answer<int>::Yes;
 
            auto d = Answer<Answer<Answer<long>>>::No;
 
            return 0;
 
        }
 
        "
 
    ).for_enum("Answer", |e| { e
 
        .assert_num_monomorphs(3)
 
        .assert_has_monomorph("byte")
 
        .assert_has_monomorph("int")
 
        .assert_has_monomorph("Answer<Answer<long>>");
 
    });
 
}
 

	
 
#[test]
 
fn test_union_monomorphs() {
 
    Tester::new_single_source_expect_ok(
 
        "no polymorph",
 
        "
 
        union Trinary { Undefined, Value(boolean) }
 
        int do_it() { auto a = Trinary::Value(true); return 0; }
 
        "
 
    ).for_union("Trinary", |e| { e
 
        .assert_num_monomorphs(0);
 
    });
 

	
 
    // TODO: Does this do what we want? Or do we expect the embedded monomorph
 
    //  Result<byte,int> to be instantiated as well? I don't think so.
 
    Tester::new_single_source_expect_ok(
 
        "polymorphs",
 
        "
 
        union Result<T, E>{ Ok(T), Err(E) }
 
        int instantiator() {
 
            short a_short = 5;
 
            auto a = Result<byte, boolean>::Ok(0);
 
            auto b = Result<boolean, byte>::Ok(true);
 
            auto c = Result<Result<byte, int>, Result<short, long>>::Err(Result::Ok(5));
 
            auto d = Result<Result<byte, int>, auto>::Err(Result<auto, long>::Ok(a_short));
 
            return 0;
 
        }
 
        "
 
    ).for_union("Result", |e| { e
 
        .assert_num_monomorphs(4)
 
        .assert_has_monomorph("byte;bool")
 
        .assert_has_monomorph("bool;byte")
 
        .assert_has_monomorph("Result<byte,int>;Result<short,long>")
 
        .assert_has_monomorph("short;long");
 
    }).for_function("instantiator", |f| { f
 
        .for_variable("d", |v| { v
 
            .assert_parser_type("auto")
 
            .assert_concrete_type("Result<Result<byte,int>,Result<short,long>>");
 
        });
 
    });
 
}
 
\ No newline at end of file
src/protocol/tests/parser_validation.rs
Show inline comments
 
@@ -244,97 +244,111 @@ fn test_correct_union_instance() {
 
        "multiple values in embedded",
 
        "
 
        union Foo { A(int, byte) }
 
        Foo bar() { return Foo::A(0, 2); }
 
        "
 
    );
 

	
 
    Tester::new_single_source_expect_ok(
 
        "mixed tag/embedded",
 
        "
 
        union OptionInt { None, Some(int) }
 
        OptionInt bar() { return OptionInt::Some(3); } 
 
        "
 
    );
 

	
 
    Tester::new_single_source_expect_ok(
 
        "single polymorphic var",
 
        "
 
        union Option<T> { None, Some(T) }
 
        Option<int> bar() { return Option::Some(3); }"
 
    );
 

	
 
    Tester::new_single_source_expect_ok(
 
        "multiple polymorphic vars",
 
        "
 
        union Result<T, E> { Ok(T), Err(E), }
 
        Result<int, byte> bar() { return Result::Ok(3); }
 
        "
 
    );
 

	
 
    Tester::new_single_source_expect_ok(
 
        "multiple polymorphic in one variant",
 
        "
 
        union MaybePair<T1, T2>{ None, Some(T1, T2) }
 
        MaybePair<byte, int> bar() { return MaybePair::Some(1, 2); }
 
        "
 
    );
 
}
 

	
 
#[test]
 
fn test_incorrect_union_instance() {
 
    Tester::new_single_source_expect_err(
 
        "tag-variant name reuse",
 
        "
 
        union Foo{ A, A }
 
        "
 
    ).error(|e| { e
 
        .assert_num(2)
 
        .assert_occurs_at(0, "A }")
 
        .assert_msg_has(0, "union variant is defined more than once")
 
        .assert_occurs_at(1, "A, ")
 
        .assert_msg_has(1, "other union variant");
 
    });
 

	
 
    Tester::new_single_source_expect_err(
 
        "embedded-variant name reuse",
 
        "
 
        union Foo{ A(int), A(byte) }
 
        "
 
    ).error(|e| { e 
 
        .assert_num(2)
 
        .assert_occurs_at(0, "A(byte)")
 
        .assert_msg_has(0, "union variant is defined more than once")
 
        .assert_occurs_at(1, "A(int)")
 
        .assert_msg_has(1, "other union variant");
 
    });
 

	
 
    Tester::new_single_source_expect_err(
 
        "undefined variant",
 
        "
 
        union Silly{ Thing(byte) }
 
        Silly bar() { return Silly::Undefined(5); }
 
        "
 
    ).error(|e| { e
 
        .assert_msg_has(0, "variant 'Undefined' does not exist on the union 'Silly'");
 
    });
 

	
 
    Tester::new_single_source_expect_err(
 
        "using tag instead of embedded",
 
        "
 
        union Foo{ A(int) }
 
        Foo bar() { return Foo::A; }
 
        "
 
    ).error(|e| { e
 
        .assert_msg_has(0, "variant 'A' of union 'Foo' expects 1 embedded values, but 0 were");
 
    });
 

	
 
    Tester::new_single_source_expect_err(
 
        "using embedded instead of tag",
 
        "
 
        union Foo{ A }
 
        Foo bar() { return Foo::A(3); }
 
        "
 
    ).error(|e| { e 
 
        .assert_msg_has(0, "The variant 'A' of union 'Foo' expects 0");
 
    });
 

	
 
    Tester::new_single_source_expect_err(
 
        "wrong embedded value",
 
        "
 
        union Foo{ A(int) }
 
        Foo bar() { return Foo::A(false); }
 
        "
 
    ).error(|e| { e
 
        .assert_occurs_at(0, "Foo::A")
 
        .assert_msg_has(0, "Failed to fully resolve")
 
        .assert_occurs_at(1, "false")
 
        .assert_msg_has(1, "has been resolved to 'int'")
 
        .assert_msg_has(1, "has been resolved to 'bool'");
 
    });
 
}
 
\ No newline at end of file
src/protocol/tests/utils.rs
Show inline comments
 
@@ -529,192 +529,193 @@ impl<'a> FunctionTester<'a> {
 
        // Seek the expression in the source code
 
        assert!(outer_match.contains(inner_match), "improper testing code");
 

	
 
        let module = seek_def_in_modules(
 
            &self.ctx.heap, &self.ctx.modules, self.def.this.upcast()
 
        ).unwrap();
 

	
 
        // Find the first occurrence of the expression after the definition of
 
        // the function, we'll check that it is included in the body later.
 
        let mut outer_match_idx = self.def.position.offset;
 
        while outer_match_idx < module.source.input.len() {
 
            if module.source.input[outer_match_idx..].starts_with(outer_match.as_bytes()) {
 
                break;
 
            }
 
            outer_match_idx += 1
 
        }
 

	
 
        assert!(
 
            outer_match_idx < module.source.input.len(),
 
            "[{}] Failed to find '{}' within the source that contains {}",
 
            self.ctx.test_name, outer_match, self.assert_postfix()
 
        );
 
        let inner_match_idx = outer_match_idx + outer_match.find(inner_match).unwrap();
 

	
 
        // Use the inner match index to find the expression
 
        let expr_id = seek_expr_in_stmt(
 
            &self.ctx.heap, self.def.body,
 
            &|expr| expr.position().offset == inner_match_idx
 
        );
 
        assert!(
 
            expr_id.is_some(),
 
            "[{}] Failed to find '{}' within the source that contains {} \
 
            (note: expression was found, but not within the specified function",
 
            self.ctx.test_name, outer_match, self.assert_postfix()
 
        );
 
        let expr_id = expr_id.unwrap();
 

	
 
        // We have the expression, call the testing function
 
        let tester = ExpressionTester::new(
 
            self.ctx, self.def.this.upcast(), &self.ctx.heap[expr_id]
 
        );
 
        f(tester);
 

	
 
        self
 
    }
 

	
 
    fn assert_postfix(&self) -> String {
 
        format!(
 
            "Function{{ name: {} }}",
 
            &String::from_utf8_lossy(&self.def.identifier.value)
 
        )
 
    }
 
}
 

	
 
pub(crate) struct VariableTester<'a> {
 
    ctx: TestCtx<'a>,
 
    definition_id: DefinitionId,
 
    local: &'a Local,
 
    assignment: &'a AssignmentExpression,
 
}
 

	
 
impl<'a> VariableTester<'a> {
 
    fn new(
 
        ctx: TestCtx<'a>, definition_id: DefinitionId, local: &'a Local, assignment: &'a AssignmentExpression
 
    ) -> Self {
 
        Self{ ctx, definition_id, local, assignment }
 
    }
 

	
 
    pub(crate) fn assert_parser_type(self, expected: &str) -> Self {
 
        let mut serialized = String::new();
 
        serialize_parser_type(&mut serialized, self.ctx.heap, self.local.parser_type);
 

	
 
        assert_eq!(
 
            expected, &serialized,
 
            "[{}] Expected parser type '{}', but got '{}' for {}",
 
            self.ctx.test_name, expected, &serialized, self.assert_postfix()
 
        );
 
        self
 
    }
 

	
 
    pub(crate) fn assert_concrete_type(self, expected: &str) -> Self {
 
        let mut serialized = String::new();
 
        serialize_concrete_type(
 
            &mut serialized, self.ctx.heap, self.definition_id, 
 
            &self.assignment.concrete_type
 
        );
 

	
 
        assert_eq!(
 
            expected, &serialized,
 
            "[{}] Expected concrete type '{}', but got '{}' for {}",
 
            self.ctx.test_name, expected, &serialized, self.assert_postfix()
 
        );
 
        self
 
    }
 

	
 
    fn assert_postfix(&self) -> String {
 
        println!("DEBUG: {:?}", self.assignment.concrete_type);
 
        format!(
 
            "Variable{{ name: {} }}",
 
            &String::from_utf8_lossy(&self.local.identifier.value)
 
        )
 
    }
 
}
 

	
 
pub(crate) struct ExpressionTester<'a> {
 
    ctx: TestCtx<'a>,
 
    definition_id: DefinitionId, // of the enclosing function/component
 
    expr: &'a Expression
 
}
 

	
 
impl<'a> ExpressionTester<'a> {
 
    fn new(
 
        ctx: TestCtx<'a>, definition_id: DefinitionId, expr: &'a Expression
 
    ) -> Self {
 
        Self{ ctx, definition_id, expr }
 
    }
 

	
 
    pub(crate) fn assert_concrete_type(self, expected: &str) -> Self {
 
        let mut serialized = String::new();
 
        serialize_concrete_type(
 
            &mut serialized, self.ctx.heap, self.definition_id,
 
            self.expr.get_type()
 
        );
 

	
 
        assert_eq!(
 
            expected, &serialized,
 
            "[{}] Expected concrete type '{}', but got '{}' for {}",
 
            self.ctx.test_name, expected, &serialized, self.assert_postfix()
 
        );
 
        self
 
    }
 

	
 
    fn assert_postfix(&self) -> String {
 
        format!(
 
            "Expression{{ debug: {:?} }}",
 
            self.expr
 
        )
 
    }
 
}
 

	
 
//------------------------------------------------------------------------------
 
// Interface for failed compilation
 
//------------------------------------------------------------------------------
 

	
 
pub(crate) struct AstErrTester {
 
    test_name: String,
 
    error: ParseError,
 
}
 

	
 
impl AstErrTester {
 
    fn new(test_name: String, error: ParseError) -> Self {
 
        Self{ test_name, error }
 
    }
 

	
 
    pub(crate) fn error<F: Fn(ErrorTester)>(&self, f: F) {
 
        // Maybe multiple errors will be supported in the future
 
        let tester = ErrorTester{ test_name: &self.test_name, error: &self.error };
 
        f(tester)
 
    }
 
}
 

	
 
//------------------------------------------------------------------------------
 
// Utilities for failed compilation
 
//------------------------------------------------------------------------------
 

	
 
pub(crate) struct ErrorTester<'a> {
 
    test_name: &'a str,
 
    error: &'a ParseError,
 
}
 

	
 
impl<'a> ErrorTester<'a> {
 
    pub(crate) fn assert_num(self, num: usize) -> Self {
 
        assert_eq!(
 
            num, self.error.statements.len(),
 
            "[{}] expected error to consist of '{}' parts, but encountered '{}' for {}",
 
            self.test_name, num, self.error.statements.len(), self.assert_postfix()
 
        );
 

	
 
        self
 
    }
 

	
 
    pub(crate) fn assert_ctx_has(self, idx: usize, msg: &str) -> Self {
 
        assert!(
 
            self.error.statements[idx].context.contains(msg),
 
            "[{}] expected error statement {}'s context to contain '{}' for {}",
 
            self.test_name, idx, msg, self.assert_postfix()
 
        );
 

	
 
        self
 
    }
 

	
 
    pub(crate) fn assert_msg_has(self, idx: usize, msg: &str) -> Self {
 
        assert!(
 
@@ -772,319 +773,317 @@ impl<'a> ErrorTester<'a> {
 
        for (idx, stmt) in self.error.statements.iter().enumerate() {
 
            if idx != 0 {
 
                v.push_str(", ");
 
            }
 

	
 
            v.push_str(&format!("{{ context: {}, message: {} }}", &stmt.context, stmt.message));
 
        }
 
        v.push(']');
 
        v
 
    }
 
}
 

	
 
//------------------------------------------------------------------------------
 
// Generic utilities
 
//------------------------------------------------------------------------------
 

	
 
fn has_equal_num_monomorphs<'a>(ctx: TestCtx<'a>, num: usize, definition_id: DefinitionId) -> (bool, usize) {
 
    let type_def = ctx.types.get_base_definition(&definition_id).unwrap();
 
    let num_on_type = type_def.monomorphs.len();
 
    
 
    (num_on_type == num, num_on_type)
 
}
 

	
 
fn has_monomorph<'a>(ctx: TestCtx<'a>, definition_id: DefinitionId, serialized_monomorph: &str) -> (bool, String) {
 
    let type_def = ctx.types.get_base_definition(&definition_id).unwrap();
 

	
 
    let mut full_buffer = String::new();
 
    let mut has_match = false;
 
    full_buffer.push('[');
 
    for (monomorph_idx, monomorph) in type_def.monomorphs.iter().enumerate() {
 
        let mut buffer = String::new();
 
        for (element_idx, monomorph_element) in monomorph.iter().enumerate() {
 
            if element_idx != 0 { buffer.push(';'); }
 
            serialize_concrete_type(&mut buffer, ctx.heap, definition_id, monomorph_element);
 
        }
 

	
 
        if buffer == serialized_monomorph {
 
            // Found an exact match
 
            has_match = true;
 
        }
 

	
 
        if monomorph_idx != 0 {
 
            full_buffer.push_str(", ");
 
        }
 
        full_buffer.push('"');
 
        full_buffer.push_str(&buffer);
 
        full_buffer.push('"');
 
    }
 
    full_buffer.push(']');
 

	
 
    (has_match, full_buffer)
 
}
 

	
 
fn serialize_parser_type(buffer: &mut String, heap: &Heap, id: ParserTypeId) {
 
    use ParserTypeVariant as PTV;
 

	
 
    let p = &heap[id];
 
    match &p.variant {
 
        PTV::Message => buffer.push_str("msg"),
 
        PTV::Bool => buffer.push_str("bool"),
 
        PTV::Byte => buffer.push_str("byte"),
 
        PTV::Short => buffer.push_str("short"),
 
        PTV::Int => buffer.push_str("int"),
 
        PTV::Long => buffer.push_str("long"),
 
        PTV::String => buffer.push_str("string"),
 
        PTV::IntegerLiteral => buffer.push_str("intlit"),
 
        PTV::Inferred => buffer.push_str("auto"),
 
        PTV::Array(sub_id) => {
 
            serialize_parser_type(buffer, heap, *sub_id);
 
            buffer.push_str("[]");
 
        },
 
        PTV::Input(sub_id) => {
 
            buffer.push_str("in<");
 
            serialize_parser_type(buffer, heap, *sub_id);
 
            buffer.push('>');
 
        },
 
        PTV::Output(sub_id) => {
 
            buffer.push_str("out<");
 
            serialize_parser_type(buffer, heap, *sub_id);
 
            buffer.push('>');
 
        },
 
        PTV::Symbolic(symbolic) => {
 
            buffer.push_str(&String::from_utf8_lossy(&symbolic.identifier.value));
 
            if symbolic.poly_args2.len() > 0 {
 
                buffer.push('<');
 
                for (poly_idx, poly_arg) in symbolic.poly_args2.iter().enumerate() {
 
                    if poly_idx != 0 { buffer.push(','); }
 
                    serialize_parser_type(buffer, heap, *poly_arg);
 
                }
 
                buffer.push('>');
 
            }
 
        }
 
    }
 
}
 

	
 
fn serialize_concrete_type(buffer: &mut String, heap: &Heap, def: DefinitionId, concrete: &ConcreteType) {
 
    // Retrieve polymorphic variables, if present (since we're dealing with a 
 
    // concrete type we only expect procedure types)
 
    // Retrieve polymorphic variables
 
    let poly_vars = match &heap[def] {
 
        Definition::Function(definition) => &definition.poly_vars,
 
        Definition::Component(definition) => &definition.poly_vars,
 
        Definition::Struct(definition) => &definition.poly_vars,
 
        Definition::Enum(definition) => &definition.poly_vars,
 
        Definition::Union(definition) => &definition.poly_vars,
 
        _ => unreachable!("Error in testing utility: unexpected type for concrete type serialization"),
 
    };
 

	
 
    fn serialize_recursive(
 
        buffer: &mut String, heap: &Heap, poly_vars: &Vec<Identifier>, concrete: &ConcreteType, mut idx: usize
 
    ) -> usize {
 
        use ConcreteTypePart as CTP;
 

	
 
        let part = &concrete.parts[idx];
 
        match part {
 
            CTP::Marker(poly_idx) => {
 
                buffer.push_str(&String::from_utf8_lossy(&poly_vars[*poly_idx].value));
 
            },
 
            CTP::Void => buffer.push_str("void"),
 
            CTP::Message => buffer.push_str("msg"),
 
            CTP::Bool => buffer.push_str("bool"),
 
            CTP::Byte => buffer.push_str("byte"),
 
            CTP::Short => buffer.push_str("short"),
 
            CTP::Int => buffer.push_str("int"),
 
            CTP::Long => buffer.push_str("long"),
 
            CTP::String => buffer.push_str("string"),
 
            CTP::Array => {
 
                idx = serialize_recursive(buffer, heap, poly_vars, concrete, idx + 1);
 
                buffer.push_str("[]");
 
                idx += 1;
 
            },
 
            CTP::Slice => {
 
                idx = serialize_recursive(buffer, heap, poly_vars, concrete, idx + 1);
 
                buffer.push_str("[..]");
 
                idx += 1;
 
            },
 
            CTP::Input => {
 
                buffer.push_str("in<");
 
                idx = serialize_recursive(buffer, heap, poly_vars, concrete, idx + 1);
 
                buffer.push('>');
 
                idx += 1;
 
            },
 
            CTP::Output => {
 
                buffer.push_str("out<");
 
                idx = serialize_recursive(buffer, heap, poly_vars, concrete, idx + 1);
 
                buffer.push('>');
 
                idx += 1
 
            },
 
            CTP::Instance(definition_id, num_sub) => {
 
                let definition_name = heap[*definition_id].identifier();
 
                buffer.push_str(&String::from_utf8_lossy(&definition_name.value));
 
                if *num_sub != 0 {
 
                    buffer.push('<');
 
                    for sub_idx in 0..*num_sub {
 
                        if sub_idx != 0 { buffer.push(','); }
 
                        idx = serialize_recursive(buffer, heap, poly_vars, concrete, idx + 1);
 
                    }
 
                    buffer.push('>');
 
                }
 
                idx += 1;
 
            }
 
        }
 

	
 
        idx
 
    }
 

	
 
    serialize_recursive(buffer, heap, poly_vars, concrete, 0);
 
}
 

	
 
fn seek_def_in_modules<'a>(heap: &Heap, modules: &'a [LexedModule], def_id: DefinitionId) -> Option<&'a LexedModule> {
 
    for module in modules {
 
        let root = &heap.protocol_descriptions[module.root_id];
 
        for definition in &root.definitions {
 
            if *definition == def_id {
 
                return Some(module)
 
            }
 
        }
 
    }
 

	
 
    None
 
}
 

	
 
fn seek_stmt<F: Fn(&Statement) -> bool>(heap: &Heap, start: StatementId, f: &F) -> Option<StatementId> {
 
    let stmt = &heap[start];
 
    if f(stmt) { return Some(start); }
 

	
 
    // This statement wasn't it, try to recurse
 
    let matched = match stmt {
 
        Statement::Block(block) => {
 
            for sub_id in &block.statements {
 
                if let Some(id) = seek_stmt(heap, *sub_id, f) {
 
                    return Some(id);
 
                }
 
            }
 

	
 
            None
 
        },
 
        Statement::Labeled(stmt) => seek_stmt(heap, stmt.body, f),
 
        Statement::If(stmt) => {
 
            if let Some(id) = seek_stmt(heap,stmt.true_body, f) {
 
                return Some(id);
 
            } else if let Some(id) = seek_stmt(heap, stmt.false_body, f) {
 
                return Some(id);
 
            }
 
            None
 
        },
 
        Statement::While(stmt) => seek_stmt(heap, stmt.body, f),
 
        Statement::Synchronous(stmt) => seek_stmt(heap, stmt.body, f),
 
        _ => None
 
    };
 

	
 
    matched
 
}
 

	
 
fn seek_expr_in_expr<F: Fn(&Expression) -> bool>(heap: &Heap, start: ExpressionId, f: &F) -> Option<ExpressionId> {
 
    let expr = &heap[start];
 
    if f(expr) { return Some(start); }
 

	
 
    match expr {
 
        Expression::Assignment(expr) => {
 
            None
 
            .or_else(|| seek_expr_in_expr(heap, expr.left, f))
 
            .or_else(|| seek_expr_in_expr(heap, expr.right, f))
 
        },
 
        Expression::Binding(expr) => {
 
            None
 
            .or_else(|| seek_expr_in_expr(heap, expr.left, f))
 
            .or_else(|| seek_expr_in_expr(heap, expr.right, f))
 
        }
 
        Expression::Conditional(expr) => {
 
            None
 
            .or_else(|| seek_expr_in_expr(heap, expr.test, f))
 
            .or_else(|| seek_expr_in_expr(heap, expr.true_expression, f))
 
            .or_else(|| seek_expr_in_expr(heap, expr.false_expression, f))
 
        },
 
        Expression::Binary(expr) => {
 
            None
 
            .or_else(|| seek_expr_in_expr(heap, expr.left, f))
 
            .or_else(|| seek_expr_in_expr(heap, expr.right, f))
 
        },
 
        Expression::Unary(expr) => {
 
            seek_expr_in_expr(heap, expr.expression, f)
 
        },
 
        Expression::Indexing(expr) => {
 
            None
 
            .or_else(|| seek_expr_in_expr(heap, expr.subject, f))
 
            .or_else(|| seek_expr_in_expr(heap, expr.index, f))
 
        },
 
        Expression::Slicing(expr) => {
 
            None
 
            .or_else(|| seek_expr_in_expr(heap, expr.subject, f))
 
            .or_else(|| seek_expr_in_expr(heap, expr.from_index, f))
 
            .or_else(|| seek_expr_in_expr(heap, expr.to_index, f))
 
        },
 
        Expression::Select(expr) => {
 
            seek_expr_in_expr(heap, expr.subject, f)
 
        },
 
        Expression::Array(expr) => {
 
            for element in &expr.elements {
 
                if let Some(id) = seek_expr_in_expr(heap, *element, f) {
 
                    return Some(id)
 
                }
 
            }
 
            None
 
        },
 
        Expression::Literal(expr) => {
 
            if let Literal::Struct(lit) = &expr.value {
 
                for field in &lit.fields {
 
                    if let Some(id) = seek_expr_in_expr(heap, field.value, f) {
 
                        return Some(id)
 
                    }
 
                }
 
            }
 
            None
 
        },
 
        Expression::Call(expr) => {
 
            for arg in &expr.arguments {
 
                if let Some(id) = seek_expr_in_expr(heap, *arg, f) {
 
                    return Some(id)
 
                }
 
            }
 
            None
 
        },
 
        Expression::Variable(expr) => {
 
            None
 
        }
 
    }
 
}
 

	
 
fn seek_expr_in_stmt<F: Fn(&Expression) -> bool>(heap: &Heap, start: StatementId, f: &F) -> Option<ExpressionId> {
 
    let stmt = &heap[start];
 

	
 
    match stmt {
 
        Statement::Block(stmt) => {
 
            for stmt_id in &stmt.statements {
 
                if let Some(id) = seek_expr_in_stmt(heap, *stmt_id, f) {
 
                    return Some(id)
 
                }
 
            }
 
            None
 
        },
 
        Statement::Labeled(stmt) => {
 
            seek_expr_in_stmt(heap, stmt.body, f)
 
        },
 
        Statement::If(stmt) => {
 
            None
 
            .or_else(|| seek_expr_in_expr(heap, stmt.test, f))
 
            .or_else(|| seek_expr_in_stmt(heap, stmt.true_body, f))
 
            .or_else(|| seek_expr_in_stmt(heap, stmt.false_body, f))
 
        },
 
        Statement::While(stmt) => {
 
            None
 
            .or_else(|| seek_expr_in_expr(heap, stmt.test, f))
 
            .or_else(|| seek_expr_in_stmt(heap, stmt.body, f))
 
        },
 
        Statement::Synchronous(stmt) => {
 
            seek_expr_in_stmt(heap, stmt.body, f)
 
        },
 
        Statement::Return(stmt) => {
 
            seek_expr_in_expr(heap, stmt.expression, f)
 
        },
 
        Statement::Assert(stmt) => {
 
            seek_expr_in_expr(heap, stmt.expression, f)
 
        },
 
        Statement::New(stmt) => {
0 comments (0 inline, 0 general)